Spin Torque Oscillator from micromagnetic point of view

Similar documents
Injection locking at zero field in two free layer spin-valves

Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin-current pulse

Theory of Spin Diode Effect

Strong linewidth variation for spin-torque nano-oscillators as a function of in-plane magnetic field angle

arxiv: v1 [cond-mat.mes-hall] 2 Dec 2013

Spin-torque nano-oscillators trends and challenging

Spin-transfer switching and thermal stability in an FePt/Au/FePt nanopillar prepared by alternate monatomic layer deposition

MSE 7025 Magnetic Materials (and Spintronics)

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin Torque and Magnetic Tunnel Junctions

Mesoscopic Spintronics

arxiv: v4 [physics.comp-ph] 16 Sep 2016

Semiclassical limit of the Schrödinger-Poisson-Landau-Lifshitz-Gilbert system

Simultaneous readout of two adjacent bit tracks with a spin-torque oscillator

A brief history with Ivan. Happy Birthday Ivan. You are now closer to 70!

voltage measurement for spin-orbit torques"

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

Micromagnetic Modeling

7. Basics of Magnetization Switching

Spin-torque oscillator using a perpendicular polarizer and a planar free layer

Enhancement in spin-torque efficiency by nonuniform spin current generated within a tapered nanopillar spin valve

Transition from the macrospin to chaotic behaviour by a spin-torque driven magnetization precession of a square nanoelement

Rotating vortex-antivortex dipoles in ferromagnets under spin-polarised current Stavros Komineas

On the Ultimate Speed of Magnetic Switching

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

SUPPLEMENTARY INFORMATION

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves

Enhanced spin orbit torques by oxygen incorporation in tungsten films

0.002 ( ) R xy

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

Large-amplitude coherent spin waves exited by spin-polarized current in nanoscale spin valves

THere is currently tremendous interest in spintronic devices

Unidirectional spin-wave heat conveyer

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Spin wave assisted current induced magnetic. domain wall motion

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Microwave Assisted Magnetic Recording

Innovative Weak Formulation for The Landau-Lifshitz-Gilbert Equations

Supporting Information: Topological Magnon Modes. in Patterned Ferrimagnetic Insulator Thin Films

Direct observation of the skyrmion Hall effect

Current-induced Domain Wall Dynamics

Magnetization Dynamics

Spin transfer torque and magnetization dynamics in in-plane and out-of-plane magnetized spin valves

Current-induced asymmetric magnetoresistance due to energy transfer via

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Time resolved transport studies of magnetization reversal in orthogonal spin transfer magnetic tunnel junction devices

Techniques for inferring M at small scales

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots

Non-collinear coupling across RuCo and RuFe alloys

Stability phase diagram of a perpendicular magnetic tunnel junction in noncollinear geometry

An extended midpoint scheme for the Landau-Lifschitz-Gilbert equation in computational micromagnetics. Bernhard Stiftner

Spin-Torque Driven Magnetization Dynamics: Micromagnetic Modelling

Micromagnetics of single and double point contact spin torque oscillators. Sir Robert Hadfieldbuilding, Mapping Street, S13JD Sheffield, UK

Skyrmion based microwave detectors and harvesting

Field dependence of magnetization reversal by spin transfer

Micromagnetic simulations of current-induced magnetization switching in Co/ Cu/ Co nanopillars

Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Resonance Measurement of Nonlocal Spin Torque in a Three-Terminal Magnetic Device

An Overview of Spintronics in 2D Materials

Micromagnetic simulations of the magnetization precession induced by a spin-polarized current in a point-contact geometry Invited

Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

Giant Magnetoresistance

Micromagnetic simulation of magnetization reversal in rotational magnetic fields

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories

Systèmes Hybrides. Norman Birge Michigan State University

Mesoscopic Spintronics

Spin pumping and spin transport in magne0c metal and insulator heterostructures. Eric Montoya Surface Science Laboratory Simon Fraser University

Manipulation of the magnetization of Perpendicular magnetized Rare-earth-transition metal alloys using polarized light

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Micromagnetic simulations of magnetization reversal. in Co/Ni multilayers

Magnetism and Magnetic Switching

High-frequency measurements of spin-valve films and devices invited

Tunnel Diodes (Esaki Diode)

Magnetization Processes I (and II) C.H. Back. Bert Koopmans / TU Eindhoven

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

introduction: what is spin-electronics?

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

MODELING OF THE ADVANCED SPIN TRANSFER TORQUE MEMORY: MACRO- AND MICROMAGNETIC SIMULATIONS


Magnetization dynamics for the layman: Experimental Jacques Miltat Université Paris-Sud & CNRS, Orsay

arxiv:cond-mat/ v1 4 Oct 2002

-Ni n. Pd m. Pd 1<m<20. Ni 1<n<20. System. e-beam evaporation. Deposition Technique. P=10-8 Torr, T=400 K 30 nm Pd/ 5 nm Pd.

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

Magnetic vortex dynamics in the non-circular potential of a thin elliptic ferromagnetic nanodisk with applied fields

AP Physics 1 Second Semester Final Exam Review

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Spin injection. concept and technology

Transcription:

Spin Torque Oscillator from micromagnetic point of view Liliana BUDA-PREJBEANU Workshop on Advance Workshop Magnetic on Materials Advance / Cluj-Napoca Magnetic (Romania) Materials 16/9/27 / Cluj-Napoca (Romania) 16/9/27 1/27

Modeling & simulation Daria Gusakova Ioana Firastrau Anatoly Vedyayev Jean-Christophe Toussaint Fabrication & characterization Dimitri Houssameddine Ursula Ebels Betrand Delaët Bernard Rodmacq Fabienne Ponthenier Magalie Brunet Christophe Thirion Jean-Philip-Michel Marie-Claire. Cyrille Olivier Redon Bernard Dieny 2/27

What is a spin torque oscillator? Why we are interested in ST oscillator? Which are the modeling tools to describe them? Out-of-plane precision (OPP) In-plane precision (IPP) 3/27

Starting point The magnetization acts on the current GMR / TMR phenomena Action-reaction principle: Every action has an equal and opposite reaction. The polarized current acts on the magnetization Spin torque phenomena 4/27

Starting point Basic picture ( J<) Cu Co Cu Co Cu Exchange interaction between injected polarized e - and local magnetization causes the magnetization switching in the direction parallel to the spin of the injected e - 5/27

Starting point Landau-Lifshitz-Gilbert equation + polarized current M = γ t 2 M = 1 [ M H ] eff + α M M t M + t ST H eff H eff Gilbert torque M Gilbert torque M spin torque spin torque antidamping steady oscillation 6/27

Perpendicular spin torque oscillator Main goal generate steady oscillations without applying field Pt / (Co/Pt)/PEL /Cu/Py/Cu/Co/ Co/IrMn I DC 57,6 Low current R(H b ) AP AN R (Ohm) 57,5 FL AN POL FL J. C. Slonczewski US5695864 K. J. Lee APL 86 (25) O. Redon US6,532,164 B2 57,4 P -1, -,5,,5 1, H b (koe) Ellipse of 6x7 nm² I DC =.15 ma ΔR =.19Ω MR=.3% Houssameddine et al. Nat. Mat. 6, 447 (27) 7/27

Perpendicular spin torque oscillator FL Shoulder R (Ohm) 57,6 57,5 57,4 I =.15 ma P AP -1, -,8 -,6 -,4 -,2,,2 H b (koe) Intermediate resistance level (IRL) I = 1.1 ma P -1, -,8 -,6 -,4 -,2,,2 H b (koe) AP R (Ω).4 Ω -,2,,2,4 H beff (koe) I DC -1.5-1.3-1.1 -.9 -.7 -.5 -.3 -.1.1.3.5.7.9 1.1 1.3 There are two magnetoresistive states Houssameddine et al. Nat. Mat. 6, 447 (27) 8/27

Perpendicular spin torque oscillator Static current- field diagram AP IRL IRL P -1 1 I DC (ma) shoulder 6 4 2-2 Hbeff (Oe) PSD (nv 2 /Hz) 4 3 2 1 I DC < I DC > 2 3 4 f (Ghz) H beff = 9 Oe 2 3 4 f (GHz) I DC 1.5 1.4 1.3 1.2 1.1 1..9.8.7.6.5.4.3 Houssameddine et al. Nat. Mat. 6, 447 (27) 9/27

Perpendicular spin torque oscillator Static current- field diagram Dynamic current- field diagram AP IRL IRL P -1 1 I DC (ma) shoulder 6 4 2-2 Hbeff (Oe) f1 f2 f3 AP P P? -1 1 I DC (ma)?? 6 4 2-2 Hbeff (Oe) Houssameddine et al. Nat. Mat. 6, 447 (27) 1/27

Micromagnetic model Full 3D integration of H eff a)the Landau-Lifshitz-Gilbert (LLG) equation M = γ t M H E 2 eff = = 1 1 = µ M E ex + E [ M H ] s anis eff δe δm + E dem M + α M t + E app M b)the magnetostatic equations H dem V m ( r' ) dv' G( r r' ) σ ( ) ( r) = G ( r r' ) ρ r' ds' S m 11/27

Micromagnetic model (2) c) Addition term due to the spin torque transfer M = γ t 2 M = 1 [ M H ] eff M + α M t + M t ST M t ST = γ a J [ M ( M )] m PL M t ST = c [ m M] J. C. Slonczewski JMMM. 159, L1 (1996) A. Vedyeyev, D. Gusakova «ballistic transport model» «diffusive transport model» ST-GLFFT LLG_SA 12/27

Micromagnetic model (3) Transport equation j z m + J η sd m M + m τ sf = electron current j e = j +j = σ E z D z n D β (M z m) spin current j m => j j =σ E z βm D z m D β M z n M t ST = J μ sf B m M 13/27

Micromagnetic model (4) Transport equation m x m y m z 4 35 3 25 2 15 1 5-5 POL FL AN, 25 5,x1-7 1,x1-6 1,5x1-6 2,x1-6 2,5x1-6 3,x1-6 2 15 1 5-5, 5,x1-7 1,x1-6 1,5x1-6 2,x1-6 2,5x1-6 3,x1-6 1 5-5 -1-15 -2-25, 5,x1-7 1,x1-6 1,5x1-6 2,x1-6 2,5x1-6 3,x1-6 z (m) 2nm 4nm 3.5nm 3nm 3nm 45 14/27

Perpendicular spin torque oscillator z Micromagnetic parameters AN Fixed layer circular disk 6nm, thickness 3.5nm POL FL y x M s K u = 866 ka/m = 664.5J/m 3 Ox (H u =15Oe) A ex = 2 1-11 J/m α =.1 Mesh size 2 x 2 x 3.5 nm 3 Fixed layer 15/27

Macrospin current-field diagram z POL-FL POL FL applied magnetic field, Oe 15 12 9 IPS 6 3 OPS OPP -3-6 -9-12 -15 -,3 -,2 -,1,,1,2,3 current density, 1 7 A/cm 2 Daria Gusakova 16/27

Macrospin current-field diagram AN z POL-FL-AN POL FL applied magnetic field, Oe IPP 15 12 9 IPS 6 3 OPS OPP -3-6 -9-12 -15 -,3 -,2 -,1,,1,2,3 current density, 1 7 A/cm 2 Daria Gusakova 17/27

Macrospin current-field diagram AN z POL-FL-AN POL FL applied magnetic field, Oe 15 12 9 6 3-3 -6-9 -12-15 -,3 -,2 -,1,,1,2,3 current density, 1 7 A/cm 2 H app = Daria Gusakova 18/27

OPP frequency No applied field 2 16 Frequency (GHz) 12 8 4 macro micro POL-FL POL-FL POL-FL-AN -2x1 1-1x1 1 1x1 1 J app (A/m 2 ) 19/27

OPP frequency No applied field µmag simulation experimental data 2 4, H bias =-371Oe 16 3,5 Frequency (GHz) 12 8 Frequency (GHz) 3, 2,5 4 macro micro POL-FL POL-FL-AN -2x1 1-1x1 1 1x1 1 J app (A/m 2 ) 2, 1,5-1,5-1, -,5,,5 1, 1,5 I app (ma) 2/27

OPP frequency No applied field 2 2 16 16 Frequency (GHz) Frequency (GHz) 12 12 88 44 macro micro POL-FL POL-FL POL-FL-AN -2x1-2x1 1 1-1x1-1x1 1 1 1x1 1 1x1 1 J app (A/m 2 app (A/m ) 21/27

OPP frequency No applied field 2 16 Frequency (GHz) 12 8 4 macro micro POL-FL POL-FL POL-FL-AN -2x1 1-1x1 1 1x1 1 J app (A/m 2 ) 22/27

OPP frequency No applied field 2 16 Frequency (GHz) 12 8 4 macro micro POL-FL POL-FL POL-FL-AN -2x1 1-1x1 1 1x1 1 J app (A/m 2 ) 23/27

Perpendicular spin torque oscillator Static current- field diagram Dynamic current- field diagram AP IRL IRL P -1 1 I DC (ma) shoulder 6 4 2-2 Hbeff (Oe) f1 f2 f3 AP P P -1 1 I DC (ma)? 6 4 2-2 Hbeff (Oe) Houssameddine et al. accepted Nat. Mat. 24/27

IPP frequency experimental data µmag simulation 6 H beff (Oe) 4 2-2 Freq (GHz) -1 1 I DC (ma) 4 3 f3 2 1-3 3 H beff (Oe) Frequency (Hz) 7,x1 9 6,x1 9 5,x1 9 4,x1 9 3,x1 9 2,x1 9 J app =,8*1 1 A/m 2 micro macro POL-FL-AN 1 2 3 4 5 µ H app (mt) 25/27

Temperature effects No applied field µmag simulation 2,1 16,5, Frequency (GHz) 12 8 4 macro micro POL-FL POL-FL-AN <M z > -,5 -,1 -,15 -,2 before jump,47*1 1 A/m 2,48*1 1 A/m 2 (CH) after jump,48*1 1 A/m 2,47*1 1 A/m 2 T=4K T=4K -2x1 1-1x1 1 1x1 1 J app (A/m 2 ), 1,x1-8 2,x1-8 3,x1-8 4,x1-8 time (s) 26/27

Conclusion Solving self-consistently the LLG equation and the spin dependant transport equation: a) accurate investigation of structures with 2, 3 or more coupled magnetic layers b) qualitative good agreement with the experimental data c) A toy dedicated to the ST oscillator optimization for future device integration 27/27