Cover Page. The handle holds various files of this Leiden University dissertation.

Similar documents
Cover Page. The handle holds various files of this Leiden University dissertation

Collective motor dynamics in membrane transport in vitro. Paige M. Shaklee

Cover Page. The handle holds various files of this Leiden University dissertation

Mean-field Description of the Structure and Tension of Curved Fluid Interfaces. Joris Kuipers

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle holds various files of this Leiden University dissertation.

Coherent X-ray scattering of charge order dynamics and phase separation in titanates Shi, B.

Cover Page. The handle holds various files of this Leiden University dissertation

Dirac and Majorana edge states in graphene and topological superconductors

Citation for published version (APA): Weber, B. A. (2017). Sliding friction: From microscopic contacts to Amontons law

Superfluid helium and cryogenic noble gases as stopping media for ion catchers Purushothaman, Sivaji

Citation for published version (APA): Nguyen, X. C. (2017). Different nanocrystal systems for carrier multiplication

Citation for published version (APA): Hoekstra, S. (2005). Atom Trap Trace Analysis of Calcium Isotopes s.n.

Photo-CIDNP MAS NMR Studies on Photosynthetic Reaction Centers

University of Groningen. Taking topological insulators for a spin de Vries, Eric Kornelis

The Early and Middle Pleistocene Archaeological Record of Greece. current status and future prospects

UvA-DARE (Digital Academic Repository) Phenotypic variation in plants Lauss, K. Link to publication

Ab initio modeling of primary processes in photosynthesis

Citation for published version (APA): Hin, V. (2017). Ontogenesis: Eco-evolutionary perspective on life history complexity.

Collective Behaviour of Self-Propelling Particles with Conservative Kinematic Constraints. Valeriya Igorivna Ratushna

Citation for published version (APA): Adhyaksa, G. W. P. (2018). Understanding losses in halide perovskite thin films

On electronic signatures of topological superconductivity

On transport properties of Weyl semimetals

Cover Page. The handle holds various files of this Leiden University dissertation

Physiological and genetic studies towards biofuel production in cyanobacteria Schuurmans, R.M.

MEAN VALUE AND CORRELATION PROBLEMS CONNECTED WITH THE MOTION OF SMALL PARTICLES SUSPENDED IN A TURBULENT FLUID

Citation for published version (APA): Brienza, M. (2018). The life cycle of radio galaxies as seen by LOFAR [Groningen]: Rijksuniversiteit Groningen

Dual photo- and redox- active molecular switches for smart surfaces Ivashenko, Oleksii

Cover Page. The handle holds various files of this Leiden University dissertation

Light Scattering by Photonic Crystals with a Dirac Spectrum

Discrete tomography with two directions

On the random-matrix theory of Majorana fermions in topological superconductors

DOWNLOAD OR READ : UNIFORM OUTPUT REGULATION OF NONLINEAR SYSTEMS A CONVERGENT DYNAMICS APPROACH 1ST EDITION PDF EBOOK EPUB MOBI

CENOZOIC TECTONIC EVOLUTION OF THE IBERIAN PENINSULA: EFFECTS AND CAUSES OF CHANGING STRESS FIELDS

Citation for published version (APA): Sarma Chandramouli, V. V. M. (2008). Renormalization and non-rigidity s.n.

University of Groningen. Enabling Darwinian evolution in chemical replicators Mattia, Elio

Detecting and using Majorana fermions in superconductors

Topological Phases in One Dimension

University of Groningen. Event-based simulation of quantum phenomena Zhao, Shuang

SIMULATING MICROTRANSPORT IN REALISTIC

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

Climate change and topography as drivers of Latin American biome dynamics Flantua, S.G.A.

Cover Page. The following handle holds various files of this Leiden University dissertation:

THE STRUCTURE AND PERFORMANCE OF OPTIMAL ROUTING SEQUENCES. Proefschrift

University of Groningen. Bifurcations in Hamiltonian systems Lunter, Gerard Anton

Observing atmospheric methane from space. Enabling satellite-borne observations of methane in the cloudy atmosphere

5 Topological insulator with time-reversal symmetry

arxiv:cond-mat/ v1 7 Jun 1994

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

Citation for published version (APA): Borensztajn, K. S. (2009). Action and Function of coagulation FXa on cellular signaling. s.n.

SPONTANEOUS-EMISSION RATES OF QUANTUM DOTS AND DYES CONTROLLED WITH PHOTONIC CRYSTALS

University of Groningen. Morphological design of Discrete-Time Cellular Neural Networks Brugge, Mark Harm ter

Effect of a voltage probe on the phase-coherent conductance of a ballistic chaotic cavity

Spin-Orbit Interactions in Semiconductor Nanostructures

ELECTRONIC TRANSPORT THROUGH NANOWIRES: A REAL-SPACE FINITE-DIFFERENCE APPROACH. Petr Khomyakov

disordered topological matter time line

Topological Insulators

LONG-RANGE SURFACE POLARITONS

The Transition to Chaos

Symmetric Surfaces of Topological Superconductor

Low-frequency sensitivity of next generation gravitational wave detectors

Topological insulator with time-reversal symmetry

Optimal Sensor Placement and Timing Where and When To Measure?

Composite Dirac liquids

Domain decomposition in the Jacobi-Davidson method for eigenproblems

Splitting Kramers degeneracy with superconducting phase difference

Universal transport at the edge: Disorder, interactions, and topological protection

Measurement and manipulation of body temperature in rest and exercise

UvA-DARE (Digital Academic Repository) Fluorogenic organocatalytic reactions Raeisolsadati Oskouei, M. Link to publication

Bayesian Networks: Aspects of Approximate Inference

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

The role of camp-dependent protein kinase A in bile canalicular plasma membrane biogenesis in hepatocytes Wojtal, Kacper Andrze

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Berry s phase in Hall Effects and Topological Insulators

Stability analysis in continuous and discrete time. Niels Besseling

Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II

On Asymptotic Approximations of First Integrals for a Class of Nonlinear Oscillators

Matrix Algebras and Semidefinite Programming Techniques for Codes. Dion Gijswijt

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

MAGNETOTRANSPORT OF HOT ELECTRONS AND HOLES IN THE SPIN-VALVE TRANSISTOR

Quantum Liquid Crystals. Vladimir Cvetković

A conformal field theory description of fractional quantum Hall states

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

University of Groningen. Hollow-atom probing of surfaces Limburg, Johannes

Majorana Fermions in Superconducting Chains

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

Floquet Topological Insulator:

Novel topologies in superconducting junctions

Continuous State Space Q-Learning for Control of Nonlinear Systems

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Aerial image based lens metrology for wafer steppers

Topological Phases in Floquet Systems

B A L A N C E F U N C T I O N S : Multiplicity and transverse momentum dependence of the charge dependent correlations in ALICE

Topological Defects inside a Topological Band Insulator

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Electronic transport in topological insulators

POEM: Physics of Emergent Materials

Transcription:

Cover Page The handle http://hdl.handle.net/1887/20139 holds various files of this Leiden University dissertation. Author: Dahlhaus, Jan Patrick Title: Random-matrix theory and stroboscopic models of topological insulators and superconductors Date: 2012-11-21

Random-matrix theory and stroboscopic models of topological insulators and superconductors Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr P. F. van der Heijden, volgens besluit van het College voor Promoties te verdedigen op woensdag 21 november 2012 klokke 10.00 uur door Jan Patrick Dahlhaus geboren te Essen, Duitsland in 1982

Promotiecommissie Promotor: Overige leden: Prof. dr. C. W. J. Beenakker Prof. dr. E. R. Eliel Prof. dr. ir. L. P. Kouwenhoven (Technische Universiteit Delft) Prof. dr. H. Schomerus (Lancaster University) Prof. dr. J. Zaanen Casimir PhD Series, Delft-Leiden, 2012-29 ISBN 978-90-8593-137-9 Dit werk maakt deel uit van het onderzoekprogramma van de Stichting voor Fundamenteel Onderzoek der Materie (FOM), die deel uit maakt van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). Cover: Topological invariant of a nodal Rashba superconductor in contact with a metal, as a function of interface orientation and momentum. Compare with the left panel of Fig. 5.4.

To Nina and my parents.

Contents 1 Introduction 1 1.1 Preface.............................. 1 1.2 Concept of topology in insulating systems......... 2 1.2.1 Example: winding number.............. 3 1.2.2 Boundary states..................... 4 1.2.3 Role of symmetries and dimensionality....... 5 1.2.4 Anderson localization and topology......... 8 1.3 Topological superconductors................. 9 1.3.1 Example: Majorana wire................ 10 1.4 Random-matrix theory..................... 12 1.4.1 Symmetry classes.................... 12 1.4.2 Circular ensembles................... 14 1.5 Stroboscopic models...................... 15 1.5.1 The quantum kicked rotator............. 15 1.5.2 Stroboscopic models in higher dimensions and the Anderson metal-insulator transition........ 16 1.6 This thesis............................ 18 1.6.1 Chapter 2........................ 18 1.6.2 Chapter 3........................ 19 1.6.3 Chapter 4........................ 20 1.6.4 Chapter 5........................ 21 1.6.5 Chapter 6........................ 22 1.6.6 Chapter 7........................ 24 1.6.7 Chapter 8........................ 25 2 Random-matrix theory of thermal conduction in superconducting quantum dots 29 2.1 Introduction........................... 29

vi CONTENTS 2.2 Formulation of the problem.................. 32 2.2.1 Andreev quantum dot................. 32 2.2.2 Scattering matrix ensembles............. 33 2.3 Transmission eigenvalue distribution............ 35 2.3.1 Joint probability distribution............. 35 2.3.2 Eigenvalue density................... 35 2.4 Distribution of the thermal conductance........... 37 2.4.1 Minimal channel number............... 37 2.4.2 Large number of channels............... 38 2.4.3 Arbitrary number of channels............ 40 2.5 How to reach the single-channel limit using topological phases.............................. 40 2.6 Conclusion............................ 42 Appendix 2.A Calculation of the transmission eigenvalue distribution............................. 44 3 Random-matrix theory of Andreev reflection from a topological superconductor 51 3.1 Introduction........................... 51 3.2 Andreev reflection eigenvalues................ 54 3.3 Random-matrix theory..................... 56 3.3.1 Class D, ensemble CRE................ 56 3.3.2 Class DIII, ensemble T-CRE.............. 58 3.3.3 Class C, ensemble CQE................ 60 3.3.4 Class CI, ensemble T-CQE............... 60 3.4 Dependence of conductance distributions on topological invariant............................. 61 3.4.1 Broken time-reversal symmetry........... 61 3.4.2 Preserved time-reversal symmetry.......... 63 3.4.3 Weak localization and UCF.............. 63 3.5 Conclusion and comparison with a model Hamiltonian.. 64 Appendix 3.A Calculation of the invariant measure...... 67 3.A.1 Class D (ensemble CRE)................ 67 3.A.2 Class DIII (ensemble T-CRE)............. 71 Appendix 3.B Proof of the topological-charge theorem for circular ensembles......................... 73

CONTENTS vii 4 Quantum point contact as a probe of a topological superconductor 79 4.1 Introduction........................... 79 4.2 Integer versus half-integer conductance plateaus...... 80 4.3 Effect of disorder........................ 82 4.4 Effect of finite voltage and temperature........... 83 4.5 Conclusion............................ 86 Appendix 4.A Model Hamiltonian................ 88 Appendix 4.B Béri degeneracy................... 90 5 Scattering theory of topological invariants in nodal superconductors 95 5.1 Introduction........................... 95 5.2 Topological invariant for Andreev reflection........ 97 5.2.1 Chiral symmetry.................... 97 5.2.2 Topological invariant.................. 98 5.3 Topologically protected boundary states........... 99 5.4 Relation between conductance and topological invariant. 100 5.5 Effects of additional unitary symmetries........... 101 5.5.1 Spatial symmetries................... 102 5.5.2 Symmetries that preserve k............. 104 5.6 Application: 2D Rashba superconductor........... 104 5.6.1 Hamiltonian and edge states............. 104 5.6.2 Reflection matrix and conductance.......... 107 5.6.3 Anisotropic spin-orbit coupling........... 109 5.7 Effects of angular averaging and disorder.......... 110 5.8 Three-dimensional superconductors............. 112 5.8.1 Topological invariant for arc surface states..... 112 5.8.2 Example......................... 113 5.9 Conclusion............................ 115 Appendix 5.A Topological invariant counts number of unit Andreev reflection eigenvalues................ 116 5.A.1 Proof for the Z invariant............... 116 5.A.2 Proof for the Z 2 invariant............... 116 Appendix 5.B Proof of Eq. (5.34)................. 117 Appendix 5.C Equality of conductance and topological invariant in class BDI......................... 117

viii CONTENTS 6 Quantum Hall effect in a one-dimensional dynamical system 121 6.1 Introduction........................... 121 6.2 Formulation of the 2D stroboscopic model......... 122 6.2.1 Quantum anomalous Hall effect........... 122 6.2.2 Stroboscopic Hamiltonian............... 123 6.2.3 Relation to quantum kicked rotator......... 124 6.2.4 Floquet operator.................... 125 6.3 Mapping onto a 1D model................... 126 6.4 Localization in the quantum Hall effect........... 127 6.4.1 Numerical simulation................. 127 6.4.2 Localization-delocalization transition........ 128 6.4.3 Scaling and critical exponent............. 129 6.5 Hall conductance and topological invariant......... 131 6.6 Discussion............................ 132 Appendix 6.A Tight-binding representation........... 134 Appendix 6.B Finite-time scaling................. 135 Appendix 6.C Scattering matrix from Floquet operator.... 136 7 Metal topological-insulator transition in the quantum kicked rotator with Z 2 symmetry 143 7.1 Introduction........................... 143 7.2 Construction of the Z 2 quantum kicked rotator...... 145 7.2.1 Stationary model without disorder.......... 145 7.2.2 Time-dependent model with disorder........ 147 7.2.3 Mapping from 2D to 1D................ 148 7.3 Phase diagram with disorder................. 149 7.4 Scaling law and critical exponent............... 151 7.5 Conclusion............................ 153 8 Geodesic scattering by surface deformations of a topological insulator 159 8.1 Introduction........................... 159 8.2 Geodesic scattering....................... 160 8.2.1 Geodesic motion.................... 160 8.2.2 Scattering angle..................... 162 8.3 Calculation of the conductivity................ 163 8.3.1 Linearized Boltzmann equation........... 163 8.3.2 Isotropic dispersion relation............. 165 8.3.3 Anisotropic dispersion relation............ 166

CONTENTS ix 8.4 Results.............................. 168 8.4.1 Isotropic dispersion relation............. 168 8.4.2 Anisotropic dispersion relation............ 170 8.5 Comparison with potential scattering............ 171 8.5.1 Carrier density dependence.............. 171 8.5.2 Anisotropy dependence of conductivity....... 173 Appendix 8.A Calculation of scattering cross section...... 176 8.A.1 Christoffel symbols in rotated basis......... 176 8.A.2 Geodesic equation for shallow deformation.... 176 8.A.3 Circularly symmetric deformation.......... 177 Samenvatting 181 Summary 185 List of Publications 187 Curriculum Vitæ 189

x CONTENTS