Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Similar documents
Cosmic Positron Signature from Dark Matter Annihilation and Big-Bang Nucleosynthesis

Cosmological and astrophysical probes of dark matter annihilation

Dark Matter in the Universe

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

Neutrinos and DM (Galactic)

Indirect Dark Matter Detection

Cosmological Constraints on high energy neutrino injection. KEKPH07 March 1-3, 2007

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Detecting or Limiting Dark Matter through Gamma-Ray Telescopes

Neutrino Signals from Dark Matter Decay

Fundamental Physics with GeV Gamma Rays

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Indirect Dark Matter constraints with radio observations

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

Constraints on dark matter annihilation and decay from ν e cascades

Dark Matter Decay and Cosmic Rays

Big Bang Nucleosynthesis and Particle Physics

Indirect detection of decaying dark matter

Ingredients to this analysis

Dark Matter - II. Workshop Freudenstadt shedding (Cherenkov) light on dark matter. September 30, 2015

Anisotropy signatures of dark matter annihilation

Spectra of Cosmic Rays

Dark Matter Electron Anisotropy: A universal upper limit

Cosmic ray electrons from here and there (the Galactic scale)

Project Paper May 13, A Selection of Dark Matter Candidates

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

CMB constraints on dark matter annihilation

Indirect Search for Dark Matter with AMS-02

Par$cle physics Boost Factors

The positron and antiproton fluxes in Cosmic Rays

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Dark Matter searches with astrophysics

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Structure of Dark Matter Halos

Enhancement of Antimatter Signals from Dark Matter Annihilation

Antiproton Limits on Decaying Gravitino Dark Matter

Cosmic Ray Anomalies from the MSSM?

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Prospects for indirect dark matter detection with Fermi and IACTs

Conservative Constraints on Dark Matter Self Annihilation Rate

Decaying Dark Matter and the PAMELA anomaly

Clues in the Quest for the Invisible Universe by Jeremy Mardon

Dark matter in split extended supersymmetry

Signals from Dark Matter Indirect Detection

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

PoS(idm2008)089. Minimal Dark Matter (15 +5 )

Surprises in (Inelastic) Dark Matter

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

The Story of Wino Dark matter

Preliminary lecture programme:

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

Measuring Dark Matter Properties with High-Energy Colliders

Dynamical Dark Matter and the Positron Excess in Light of AMS

Probing Dark Matter in Galaxy Clusters using Neutrinos

Probing the nature of Dark matter with radio astronomy. Céline Boehm

e+ + e-(atic, FERMI, HESS, PAMELA) e-, p drown in cosmic rays?

DeepCore and Galactic Center Dark Matter

Neutralino Dark Matter as the Source of the WMAP Haze

ATLAS Missing Energy Signatures and DM Effective Field Theories

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

Possible Connections in Colliders, Dark Matter, and Dark Energy

Constraints on dark matter annihilation cross section with the Fornax cluster

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Gravitino LSP as Dark Matter in the Constrained MSSM

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

Astrophysical issues in indirect DM detection

Indirect dark matter detection and the Galactic Center GeV Excess

Detectors for astroparticle physics

What is known about Dark Matter?

Cosmic Ray Excess From Multi-Component Dark Matter

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

Gravitino Dark Matter with Broken R-Parity

PAMELA from Dark Matter Annihilations to Vector Leptons

Overview of Dark Matter models. Kai Schmidt-Hoberg

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Neutrinos as Probes. of Dark Matter. Hasan Yüksel The Ohio State University

a cosmic- ray propagation and gamma-ray code

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Fundamental Physics from the Sky

Update on Dark Matter and Dark Forces

Indirect Searches for Gravitino Dark Matter

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

arxiv: v1 [astro-ph.he] 29 Jan 2015

The Egret Excess, an Example of Combining Tools

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

arxiv:hep-ph/ v2 9 Sep 2005

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Antiproton Limits on Decaying Gravitino Dark Matter

- A Bayesian approach

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Indirect Dark Matter Detection with Dwarf Galaxies

Subir Sarkar

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Cosmological Constraints! on! Very Dark Photons

Transcription:

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892 J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0812.0219 J.Hisano, M.Kawasaki, K.Kohri, T.Moroi and KN, arxiv:0901.3582 KEKPH09 @ KEK (2009/03/06)

Energy content of the Universe after WMAP What is the dark matter? Can it be detected? Direct detection Indirect detection DM-nucleon Scattering DM annihilation Cosmic Ray Signals

PAMELA observation )) - )+!(e + ) / (!(e +!(e 0.3 0.2 0.1 Positron excess Positron fraction 0.02 PAMELA Expected Background 0.01 1 10 100 Energy (GeV) excess in cosmic-ray positron flux Adriani et al.,arxiv:0810.4995

ATIC/PPB-BETS observations 1,000 excess in electron+positron flux E e 3.0 dn/dee (m 2 s 1 sr 1 GeV 2 ) 100 10 ATIC BETS, PPB-BETS HEAT AMS 10 100 1,000 Energy (GeV) J.Chang et al. Nature (2008)

From SPIRES database (2009/2/11) 5) Observation of an anomalous positron abundance in the cosmic radiation. O. Adriani et al. Oct 2008. 20pp. Temporary entry e-print: arxiv:0810.4995 [astro-ph] TOPCITE = 50+ References LaTeX(US) LaTeX(EU) Harvmac BibTeX Keywords Cited 104 times Abstract and Postscript and PDF from arxiv.org (mirrors: au br cn de es fr il in it jp kr ru tw uk za aps lanl ) Bookmarkable link to this information

From SPIRES database (2009/2/11) 5) Observation of an anomalous positron abundance in the cosmic radiation. O. Adriani et al. Oct 2008. 20pp. Temporary entry e-print: arxiv:0810.4995 [astro-ph] TOPCITE = 50+ References LaTeX(US) LaTeX(EU) Harvmac BibTeX Keywords Cited 104 times Abstract and Postscript and PDF from arxiv.org (mirrors: au br cn de es fr il in it jp kr ru tw uk za aps lanl ) Bookmarkable link to this information More than 100 citations during 3 month

From SPIRES database (2009/2/11) 5) Observation of an anomalous positron abundance in the cosmic radiation. O. Adriani et al. Oct 2008. 20pp. Temporary entry e-print: arxiv:0810.4995 [astro-ph] TOPCITE = 50+ References LaTeX(US) LaTeX(EU) Harvmac BibTeX Keywords Cited 104 times Abstract and Postscript and PDF from arxiv.org (mirrors: au br cn de es fr il in it jp kr ru tw uk za aps lanl ) Bookmarkable link to this information More than 100 citations during 3 month ~90% : Particle Physics (Dark matter)

From SPIRES database (2009/2/11) 5) Observation of an anomalous positron abundance in the cosmic radiation. O. Adriani et al. Oct 2008. 20pp. Temporary entry e-print: arxiv:0810.4995 [astro-ph] TOPCITE = 50+ References LaTeX(US) LaTeX(EU) Harvmac BibTeX Keywords Cited 104 times Abstract and Postscript and PDF from arxiv.org (mirrors: au br cn de es fr il in it jp kr ru tw uk za aps lanl ) Bookmarkable link to this information More than 100 citations during 3 month ~90% : Particle Physics (Dark matter) ~10% : Astrophysics (Pulsar, Gamma-ray burst, Supernova)

Decay or Annihilate Decaying DM DM need not be completely stable. DM lifetime with can explain PAMELA. Annihilating DM τ 10 26 sec Flux n DM τ 10 29 cm 3 s 1 DM has weak scale annihilation cross section. Cross section with σv 10 24 10 23 cm 3 s 1 can explain PAMELA. Flux n 2 DM σv 10 29 cm 3 s 1

Decay or Annihilate Decaying DM DM need not be completely stable. DM lifetime with can explain PAMELA. Annihilating DM τ 10 26 sec Flux n DM τ 10 29 cm 3 s 1 DM has weak scale annihilation cross section. Cross section with σv 10 24 10 23 cm 3 s 1 can explain PAMELA. Flux n 2 DM σv 10 29 cm 3 s 1

Dark matter annihilation in the Galaxy now Positron, Gamma-ray, Neutrinos,...

Dark matter annihilation in the early Universe Effects on Big-Bang Nucleosynthesis Dark matter annihilation in the Galaxy now Positron, Gamma-ray, Neutrinos,...

This talk DM annihilation as explanation for PAMELA/ATIC. Implications on other signatures of DM annihilation in a model-independent way. Gamma-Ray Flux Neutrino Flux Effects on Big-Bang Nucleosynthesis

Positron Flux

Positron from DM Annihilation Kamionkowski,Turner(91), Baltz,Edjso(98),... χχ W + W, b b, l + l,... e ±, γ, p, ν,... Energy loss due to synchrotron radiation and inverse Compton with CMB and star light. High-Energy positron can reach to the Earth within a few kpc. L Positron flux is not so sensitive to diffusion zone L and halo density profile.

Propagation of positrons in Galaxy Diffusion Equation Φ t = K(E) 2 Φ(E) + E [b(e)φ(e)] + Q(E) Diffusion Energy loss DM annihilation e + r K(E) 3 10 27 cm 2 s 1 (E/1GeV) 0.6 b(e) 10 16 GeVs 1 (E/1GeV) 2 Typical propagation distance w/o energy loss r 1 kpc(100gev/e) 0.2

Positron fraction Total flux [GeV 2 m 2 s 1 sr 1 ] 10 3 L=4kpc χχ e + e : m χ = 650GeV, σv = 5 10 24 cm 3 s 1 χχ µ + µ : m χ = 900GeV, σv = 15 10 24 cm 3 s 1 J.Hisano, M.Kawasaki, K.Kohri, T.Moroi and KN, 0901.3582.

Positron fraction Total flux [GeV 2 m 2 s 1 sr 1 ] 10 3 L=1kpc χχ τ + τ : m χ = 1TeV, σv = 4 10 23 cm 3 s 1 χχ W + W : m χ = 800GeV, σv = 3 10 23 cm 3 s 1 J.Hisano, M.Kawasaki, K.Kohri, T.Moroi and KN, 0901.3582.

Gamma-Ray Flux

Gamma-ray from DM Annihilation Bergstrom, Ullio, Buckley(98),... γ Gamma-ray comes from DM annihilation at the Galactic center Flux: Φ γ (ψ, E) σv 8πm 2 DM dn γ de l.o.s. ρ 2 (l)dl(ψ)

Gamma-ray from DM Annihilation Bergstrom, Ullio, Buckley(98),... γ Gamma-ray comes from DM annihilation at the Galactic center Flux: Φ γ (ψ, E) σv 8πm 2 DM dn γ de l.o.s. ρ 2 (l)dl(ψ) Particle physics model

Gamma-ray from DM Annihilation Bergstrom, Ullio, Buckley(98),... Flux: Φ γ (ψ, E) γ σv 8πm 2 DM Gamma-ray comes from DM annihilation at the Galactic center dn γ de Orders of magnitude uncertainty l.o.s. ρ 2 (l)dl(ψ) Particle physics model DM density profile

Continuum Gamma-Rays from DM ann. Internal Brems. Final state charged particle always emit photon. χχ l + l χχ l + l γ χ χ e + e γ Cascade decay χχ τ + τ, W + W hadrons(π ±, π 0, ρ,... ) 2γ

Gamma-Ray Flux from GC Halo profile NFW ρ ρ 0 r(1 + r) 2 Isothermal ρ ρ 0 1 + r 2 r = r/r 0

Gamma-Ray Flux from GC Halo profile NFW ρ ρ 0 r(1 + r) 2 Too large Gamma flux for NFW profile. More moderate profile is OK. Isothermal ρ ρ 0 1 + r 2 r = r/r 0

Neutrino Flux

Neutrino Signal from DM Annihilation χχ W + W, b b, l + l,... e ±, γ, p, ν,... Ritz, Seckel (88),Kamionkowski (90),... Beacom, Bell, Mack (07) Interaction inside the Earth ν detector µ from GC Earth Search for up-going muons Limits from Super-K

Limits from SK : DM annihilation which can explain ATIC must not produce neutrinos with same rate. Annihilate into left handed leptons Annihilate into right handed leptons (ν ν + l L l+ R ) (l R l+ L ) J.Hisano, M.Kawasaki, K.Kohri, KN (2008)

Effects on BBN

Effects of DM Annihilation on BBN Even after freezeout, DM still annihilates each other and injects high-energy particles. Jedamzik (2004) Hisano,Kawasaki,Kohri,KN(2008) Destruction/production of light elements 4 He, 3 He, D, 6 Li, 7 Li Observations of light elements 4 He, 3 He, D, 6 Li, 7 Li BBN gives constraints on DM annihilation rate

χχ W + W, l + l hadrons, radiation Destruction/production of light elements D, 3He production p(n, γ) + α BG D, T, 3 He,... 6Li Production p(n, γ) + α BG T, 3 He,... T( 3 He) + α BG n(p) + 6 Li 6Li production and many other processes... 4 He, 3 He, D, 6 Li, 7 Li

Constraint on Leptonic DM annihilation χχ l + l J.Hisano, M.Kawasaki, K.Kohri, T.Moroi and KN, 0901.3582.

Constraint on Leptonic DM annihilation χχ l + l PAMELA/ATIC region J.Hisano, M.Kawasaki, K.Kohri, T.Moroi and KN, 0901.3582.

Constraint on hadronic DM annihilation χχ W + W J.Hisano, M.Kawasaki, K.Kohri, T.Moroi and KN, 0901.3582.

Constraint on hadronic DM annihilation χχ W + W PAMELA/ATIC region J.Hisano, M.Kawasaki, K.Kohri, T.Moroi and KN, 0901.3582.

Summary Signatures of DM annihilation which explain PAMELA/ATIC w/o boost factor Gamma-ray Flux Neutrino Flux Effects on BBN NFW is not favored. χχ ν ν should be suppressed. Hadronic ann. is not favored. Constraints on DM model, or may be another hint for DM annihilation.

ν µ µ ν µ µ Cross section for σ (µ) ν G2 F s π s = 2m N E ν W N N Muon energy loss de dx = a be Ionization loss : a 2 MeVcm 2 g 1 Pair production, brems,... : b 10 6 cm 2 g 1 Muon range: µ Muon Flux at SK production R µ E F µ Primary Neutrino Flux de df ν de E2 de

Thermal Relic DM : σv 3 10 26 cm 3 s 1 PAMELA/ATIC : σv 10 24 10 23 cm 3 s 1 Nonthermal production of DM Introduce large boost factor B F (Clumpy DM halo) σv eff = B F σv In this talk, we assume B F = 1 (smooth DM distribution)

Nonthermal Production Decay of long-lived particle mdm Decay at Td < Tf 20 Nonthermal DM Td=10GeV Gravitino Moduli Q-Ball Saxion WMAP Kawsaki,Moroi,Yanagida(96),Moroi,Randall(00), Fujii,Hamaguchi(02),Gelmini,Gondolo(06) Kawasaki,KN(07),Nagai,KN(08),Acharya et al(08) Td=1GeV M.Nagai, KN (08)

Nonthermal Production Decay of long-lived particle mdm Decay at Td < Tf 20 Nonthermal DM Td=10GeV Gravitino Moduli Q-Ball Saxion WMAP Td=1GeV What s the implication? Kawsaki,Moroi,Yanagida(96),Moroi,Randall(00), Fujii,Hamaguchi(02),Gelmini,Gondolo(06) Kawasaki,KN(07),Nagai,KN(08),Acharya et al(08) M.Nagai, KN (08)

Anti-Proton Flux

Anti-Protons from DM Annihilation Bergstrom, Edsjo, Ullio(99), Donato et al. (01),... χχ W + W, b b, l + l,... e ±, γ, p, ν,... (m p m e ) Energy-loss is not effective. Easily escape from the diffusion zone. Anti proton flux sensitively depends on the choice of diffusion zone. L L Degeneracy between diffusion const. and L. consistent with B/C ratio. Degeneracy does not hold for DM-originated anti-proton flux.

Anti-proton flux from χχ W + W max L = 15kpc med L = 4kpc min L = 1kpc Consistent with observational data.

SUSY Neutralino?

Neutralino : Majorana fermion Annihilation into lepton pair is helicity suppressed. However, annihilation into WW is not suppressed. Wino-like neutralino : Mainly annihiltes into W boson pair. Large annihilation cross section. Naturally realized in AMSB models.

L=1kpc J.Hisano, M.Kawasaki, K.Kohri, KN (2008)

Wino with mass around 200GeV fits the PAMELA data L=1kpc J.Hisano, M.Kawasaki, K.Kohri, KN (2008)

Anti-proton flux from 200GeV Wino max L = 15kpc med L = 4kpc min L = 1kpc Consistent with observational data. See also Grajek, Kane, Phalen, Pierce, Watson, 0812.4555(2008)

W-boson injection J.Hisano, M.Kawasaki, K.Kohri, KN (2008)

200GeV Wino also solves lithium problem! W-boson injection J.Hisano, M.Kawasaki, K.Kohri, KN (2008)