EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

Similar documents
A solid Foundation for q-appell Polynomials

MAT 271 Project: Partial Fractions for certain rational functions

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

A note on the p-adic gamma function and q-changhee polynomials

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

Infinite Series and Improper Integrals

1 6 = 1 6 = + Factorials and Euler s Gamma function

Math 155 (Lecture 3)

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

Harmonic Number Identities Via Euler s Transform

Introductions to HarmonicNumber2

Sequences of Definite Integrals, Factorials and Double Factorials

Some p-adic congruences for p q -Catalan numbers

Introductions to PartitionsP

SOME RELATIONS ON HERMITE MATRIX POLYNOMIALS. Levent Kargin and Veli Kurt

A q-analogue of some binomial coefficient identities of Y. Sun

CHAPTER I: Vector Spaces

The r-generalized Fibonacci Numbers and Polynomial Coefficients

The Riemann Zeta Function

Modular Relations for the Sextodecic Analogues of the Rogers-Ramanujan Functions with its Applications to Partitions

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus

Enumerative & Asymptotic Combinatorics

The Arakawa-Kaneko Zeta Function

Chimica Inorganica 3

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers

MAT1026 Calculus II Basic Convergence Tests for Series

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS

Shivley s Polynomials of Two Variables

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

On the Inverse of a Certain Matrix Involving Binomial Coefficients

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

CALCULATION OF FIBONACCI VECTORS

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

q-durrmeyer operators based on Pólya distribution

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

TEACHER CERTIFICATION STUDY GUIDE

and Genocchi Polynomials

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

A TYPE OF PRIMITIVE ALGEBRA*

Weighted Approximation by Videnskii and Lupas Operators

An enumeration of flags in finite vector spaces

Some identities involving Fibonacci, Lucas polynomials and their applications

A Mean Paradox. John Konvalina, Jack Heidel, and Jim Rogers. Department of Mathematics University of Nebraska at Omaha Omaha, NE USA

Chapter 7 COMBINATIONS AND PERMUTATIONS. where we have the specific formula for the binomial coefficients:

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION

Chapter 6 Infinite Series

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

Self-normalized deviation inequalities with application to t-statistic

On Generalized Fibonacci Numbers

Section 5.1 The Basics of Counting

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006

6.3 Testing Series With Positive Terms

On a general q-identity

Appendix K. The three-point correlation function (bispectrum) of density peaks

Section 11.8: Power Series

Math 2784 (or 2794W) University of Connecticut

Factors of sums and alternating sums involving binomial coefficients and powers of integers

A symbolic approach to multiple zeta values at the negative integers

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Course : Algebraic Combinatorics

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

gcd(n, k) = 1 Kwang Ho Kim 1 and Sihem Mesnager 2 Pyongyang, Democratic People s Republic of Korea

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) =

Asymptotic distribution of products of sums of independent random variables

arxiv: v1 [cs.sc] 2 Jan 2018

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

Math 475, Problem Set #12: Answers

Bertrand s Postulate

An Asymptotic Expansion for the Number of Permutations with a Certain Number of Inversions

On Involutions which Preserve Natural Filtration

Week 5-6: The Binomial Coefficients

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

David Vella, Skidmore College.

The natural exponential function

Lecture 23: Minimal sufficiency

arxiv: v1 [math.nt] 10 Dec 2014

Random Models. Tusheng Zhang. February 14, 2013

6.003 Homework #3 Solutions

Generating Functions for Laguerre Type Polynomials. Group Theoretic method

Some remarks for codes and lattices over imaginary quadratic

Sum of cubes: Old proofs suggest new q analogues

Counting Well-Formed Parenthesizations Easily

Ma 530 Introduction to Power Series

Matrix representations of Fibonacci-like sequences

Integral Representations and Binomial Coefficients

arxiv: v2 [math.nt] 9 May 2017

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco

A PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

Chapter 6 Principles of Data Reduction

Transcription:

LE MATEMATICHE Vol. LXXIII 208 Fasc. I, pp. 3 24 doi: 0.448/208.73.. EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES THOMAS ERNST We preset idetities of various kids for geeralized Apostol- Beroulli ad Apostol-Euler polyomials ad power sums, which resemble aalogues of formulas from the 2009 paper by Liu ad Wag. These formulas are divided ito two types: formulas with oly Apostol- Beroulli, ad oly Apostol-Euler polyomials, or so-called mixed formulas, which cotai polyomials of both kids. This ca be see as a logical coseuece of the fact that the Appell polyomials form a commutative rig. The fuctioal euatios for Ward umbers operatig o the expoetial fuctio, as well as symmetry argumets, are essetial for may of the proofs. We coclude by fidig multiplicatio formulas for two Appell polyomials of geeral form. This brigs us to the H polyomials, which were discussed i a previous paper.. Itroductio I the secod article o aalogues of two Appell polyomials [4], the Apostol- Beroulli ad Apostol-Euler polyomials, focus was o multiplicatio formulas ad o formulas icludig multiple λ power sums. I this article we will fid a correspodig multiplicatio formula for a more geeral Appell polyomial, which is a geeralizatio of both Apostol-Euler ad Apostol-H polyomials. Etrato i redazioe: 4 settembre 207

4 THOMAS ERNST There are may ew formulas o this subject, both Apostol-Appell ad similar Appell, which have recetly bee published; i all cases the limit λ is straightforward. Sometimes we write -aalogue of etc., ot botherig about the above dichotomy. This paper is orgaized as follows: I sectio we give a geeral itroductio och the defiitios. I sectio 2 we preset formulas with oly Apostol- Beroulli, ad oly Apostol-Euler polyomials. I sectio 3 we preset mixed formulas for these polyomials. I sectio 4, two geeral polyomials are defied, which geeralize the Apostol-Beroulli ad Apostol-Euler polyomials. The multiplicatio formulas for these polyomials are proved, which specialize to the Apostol-H polyomials. We ow start with the defiitios. Some of the otatio is well-kow ad ca be foud i the book []. The variables i, j,k,l,m,, vill deote positive itegers, ad λ,µ will deote complex umbers whe othig else is stated. Defiitio.. The Gauss biomial coefficiet are defied by {}!,k 0,,...,. k {k}!{ k}! Let a ad b be ay elemets with commutative multiplicatio. The the NWA additio is give by a b k0 a k b k, 0,,2,... 2 k If 0 < < ad z <, the expoetial fuctio is defied by E z k0 {k}! zk. 3 The followig theorem shows how Ward umbers usually appear i applicatios. Theorem.. Assume that,k N. The k k m +...+m k m,...,m, 4 where each partitio of k is multiplied with its umber of permutatios. Theorem.2. Fuctioal euatios for Ward umbers operatig o the expoetial fuctio. First assume that the letters m ad are idepedet,

ON Q-APPELL POLYNOMIALS 5 i.e. come from two differet fuctios, whe operatig with the fuctioal. Furthermore, mt <. The we have E m t E m t. 5 Furthermore, E jm E j m E m j. 6 Compare with the semirig of Ward umbers [, p. 67]. Proof. Formula 5 is proved as follows: E m t E t, 7 where the umber of s to the left is m. But this meas exactly E t m, ad the result follows. Defiitio.2. The geeralized NWA Apostol-Beroulli polyomials x are defied by B NWA,λ,, t λe t E xt t B NWA,λ,, x {}!, t + logλ < 2π. 8 Defiitio.3. The geeralized NWA Apostol-Euler polyomials x are defied by F NWA,λ,, 2 λe t + E xt t F NWA,λ,, x {}! Defiitio.4. The geeralized NWA H polyomials are defied by 2t λe t + E xt t H NWA,λ,, x {}! Defiitio.5. The geeralized JHC H polyomials are defied by 2t λe t + E xt t H, t + logλ < π. 9, t + logλ < π. 0 JHC,λ,, x, t + logλ < π. {}!

6 THOMAS ERNST Defiitio.6. The geeratig fuctio for H NWA,, x is give by 2t E t + E xt t H NWA,, x {}!, t < 2π. 2 Defiitio.7. The geeratig fuctio for H JHC,, x is give by E 2t t + E xt t H JHC,,, x {}!, t < 2π. 3 The polyomials i 2 ad 3 are aalogues of the geeralized H polyomials. Defiitio.8. The polyomials b λ,, x are defied by t gt λe t E xt Defiitio.9. The e polyomials are defied by 2 gt λe t + E xt t b λ,, x {}! t e λ,, x {}!. 4. 5 The f polyomials are more geeral forms of the JHC H polyomials. Defiitio.0. The f polyomials f λ,, x are defied by 2 gt λe t + E xt t f λ,, x {}!. 6 Defiitio.. A aalogue of [7, 20 p. 38], the multiple power sum is defied by s l l NWA,λ,m, j λ k m k, 7 j l where k j + 2 j 2 + + j, j i 0. Defiitio.2. A aalogue of [7, 46 p. 386], the multiple alteratig power sum is defied by σ l l NWA,λ,m, l j λ k m k, 8 j l where k j + 2 j 2 + + j, j i 0.

ON Q-APPELL POLYNOMIALS 7 Theorem.3. A symmetry relatio for the geeralized H umbers. H JHC,λ,, H NWA,λ,,. 9 Proof. A simple computatio with geeratig fuctios shows the way: t H JHC,λ,, {}! λ t H NWA,λ,,. {}! 2t λ E t + 2tλE t λe t + 20 Euatig the coefficiets of t gives 9. Theorem.4. Assume that gt i 5 ad 6 are eual ad eve fuctios. The f λ,, x λ e λ,, x. 2 This implies a complemetary argumet theorem for the geeralized H polyomials. Theorem.5. H JHC,λ,, x λ H NWA,λ,, x, eve. 22 H JHC,λ,, x + λ H NWA,λ,, x, odd. 23 Defiitio.3. The followig fuctios amed the power sum, ad the alterate power sum with respect to λ, were itroduced i [4]. s NWA,λ,m, k0 λ k k m ad σ NWA,λ,m, Their respective geeratig fuctios are k0 k λ k k m. 24 m0 t m s NWA,λ,m, {m}! λ E t λe t 25 ad m0 t m σ NWA,λ,m, {m}! + λ E t +. 26 λe t +

8 THOMAS ERNST 2. The first expasio formulas Theorem 2.. A triple sum of NWA Apostol-Euler polyomials is eual to aother triple sum of NWA Apostol-Euler polyomials. i j 2 F k NWA,λ i j, x F k, NWA,λ j i, 2 y σ, NWA,λ j, 3,i j 3 F k NWA,λ i,, i j F k NWA,λ j,, j x jm i. i y i λ jm m m0 27 Proof. Defie the followig fuctio, ote that f t is symmetric whe i, j have the same parity. f t E i j x yt i+ λ i j E i j t + λ i E i t + k λ j E j t + k 2 2k E i j x yt 2 k k 2 i+ λ i j E i j t + λ i E i t + λ j E j t + λ j. E j t + 28 By usig the formula for a geometric seuece, we ca expad f t i two ways: f t by26,9 2 2k F k NWA,λ i j x i t σ,, {}! NWA,λ j,m,i j t m m0 {m}! i y j t l 2 2k 2 k λ i E i t + k F k NWA,λ j,l, l0 2 k λ j E j t + k 2 i 2k m0 i m0 {l}! m λ jm m λ jm E l0 j t 0 {}! F k NWA,λ j,, i y. j x j y jm i l t l {l}! F k jm j NWA,λ i,l, x i The theorem follows by euatig the coefficiets of i t {}!. i t 29

ON Q-APPELL POLYNOMIALS 9 Theorem 2.2. Almost a aalogue of [5, p. 335]. Assume that i ad j are either both odd, or both eve. The we have j i F k NWA,λ i,, i j F k NWA,λ j,, i λ jm m F k NWA,λ i,, m0 j y j λ im m F k im i NWA,λ j,, x m0 j i y j x jm i 30 Proof. This follows from the previous proof, ad the usig the symmetry for i ad j. Theorem 2.3. A triple sum of NWA Apostol-Beroulli polyomials is eual to a double sum of NWA Apostol-Beroulli polyomials. i j 2 j 3 B k NWA,λ i,, i j B k NWA,λ j,, j x B k NWA,λ j, 2, i y s NWA,λ j, 3,i i y i λ jm B k jm j NWA,λ i,, x m0 i 3 Proof. Defie the followig symmetric fuctio φ t E i j x ytλ i j E i j t λ i E i t k λ j E j t k tk E i j x yt k k i t j t λ i j E i j t t 2k λ i E i t λ j E j t λ j E j t i k j k. 32 By usig the formula for a geometric seuece, we ca expad φ t i two

0 THOMAS ERNST ways: φ t by25 B k NWA,λ j,l, l0 j t k λ j E j t k t 2k i k j k B k NWA,λ i j x i t,, i y j t l {l}! j t 0 {}! Bk NWA,λ j,, i y. s {}! NWA,λ j,m,i j t m m0 {m}! t 2k i k j k i t k λ i E i t k i λ jm jm E j x j y m0 i i λ jm i l t l m0 l0 {l}! Bk NWA,λ i,l, The theorem follows by euatig the coefficiets of j x jm i t {}!. Theorem 2.4. A aalogue of [2, p. 2994], [, p. 55]. i j 2 j 3 B k NWA,λ i,, j i 2 i 3 B k NWA,λ j,, Proof. Use the symmetry i φ t. t 2k i t i k j k 33 j x B k NWA,λ j, 2, i y s NWA,λ j, 3,i i x B k NWA,λ i, 2, j y s NWA,λ i, 3, j 34 Theorem 2.5. A aalogue of [2, p. 2996]. We have i j λ l+m i j B k NWA,λ,, l0 m0 B k NWA,λ,, j i l0 m0 B k NWA,λ,, i y im j λ l+m j i B k NWA,λ,, j y jm i j x jl i il i x j 35

ON Q-APPELL POLYNOMIALS Proof. We ca expad the followig symmetric fuctio φ t by usig the formula for a geometric seuece: φ t E i j x ytλ i E i j t λ j E i j t λe i t k λe j t k t 2k 2 E i j x yt i k j k k k i t j t λ i E i j t λ j E i j t λe i t λe j t λe j t λe i t i j k k i k j k λ l+m i t j t l0 m0 λe i t λe j t jl im E j x i t E i y j i j t i k j k j λ m m0 2 0 i λ l l0 j 2t 2 0 { 2 }! Bk NWA,λ, 2, i t { }! Bk NWA,λ,, i y im j. j x jl i 36 The theorem follows by usig the symmetry i φ t ad chagig k to k. Theorem 2.6. A aalogue of [2, p. 2997]. We have i l0 j λ l+m B k NWA,λ,, m0 i j B k j l0 i λ l+m B k NWA,λ,, m0 NWA,λ,, j x jl i m j i B k i y NWA,λ,, il i x m. j j y 37 Proof. Similar to above.

2 THOMAS ERNST Theorem 2.7. A aalogue of [, p. 552]. We have i k j k i m j m m m0 B k NWA,λ j, m, j k i k B k NWA,λ i, m, i y i m0 l0 m λ jl B k NWA,λ i,m, j m i m j y j λ il B k NWA,λ j,m, l0 j x jl i i x il j. 38 Proof. We ca expad the followig symmetric fuctio ψ t by usig the formula for a geometric seuece: ψ t E i j x ytλ i j E i j t λ i E i t k λ j E j t k t2k E i j x yt i k j k k k i t j t λ i j E i j t λ i E i t λ j E j t λ j E j t k k i t j t i i k j k λ i E i t λ j E λ l j j t l0 jl E j x i t E i y j t i i i k j k l0 λ jl 0 j 2t 2 2 0 { 2 }! Bk NWA,λ j i, 2 y, λ jl i m j m B k NWA,λ i,m, i t jl { }! Bk NWA,λ i, j, x i k j k j x jl i 0 m0 i m i l0 B k NWA,λ j i y t, m, {}!. 39 The theorem follows by usig the symmetry i ψ t. 3. Mixed formulas This is a cotiuatio of the very similar computatios i [4], to which we will refer.

ON Q-APPELL POLYNOMIALS 3 Corollary 3.. A aalogue of [0, 3 p. 34]. If i is eve the λ im im F NWA,λ 2,, i x m0 2 2 i k {} 2 k0 k 2 k k0 2 i {} 2 i i 2 k B NWA,λ i,k, 2 x σ NWA,λ 2, k,i 2 k i k F NWA,λ 2,k, i x s NWA,λ i, k,2 i m0 m λ 2m B NWA,λ i,, 2m 2 x. i Proof. Put j 2 i formula 56 [4], ad multiply by 2 {} 2. 40 Corollary 3.2. A aalogue of [0, 32 p. 34]. m0 m+ λ m 2m B NWA,λ,, x {} 2 2 2 λ m 2m F NWA,λ,, x m0 2. 4 Proof. Put i 2 i formula 40, replace x ad λ 2 by x 2 ad λ, ad multiply by {} 2 2. Corollary 3.3. A aalogue of [0, 33 p. 34]. m0 m λ jm B NWA,λ 2,, m0 j x jm 2 {} 2 k0 j k 2 k F NWA,λ j,k, 2 x s NWA,λ 2, k, j {} 2 j j λ 2m 2m F NWA,λ j,, 2 x. j k 42 Proof. Put i 2 i formula 56 [4], ad multiply by 2 2. The followig formula is a geeralizatio of [4, 57].

4 THOMAS ERNST Theorem 3.. A aalogue of [5, 3.9 p. 3356]. B k NWA,λ i,, i j 2 B k NWA,λ i,, i j F k NWA,λ j,, j x jm i Proof. Defie the followig fuctio. j x F k NWA,λ j i, 2 y σ, NWA,λ j, 3,i j 3 i y i λ jm m m0 g t E i j x yt i+ λ i j E i j t + λ i E i t k λ j E j t + k 2 k i t k E i j x yt k k i t 2 i+ λ i j E i j t + λ i E i t λ j E j t + λ j. E j t + 43 44 By usig the formula for a geometric seuece, we ca expad g t i two ways: g t by26 2 k i t k F k NWA,λ j,l, l0 2 k λ j E j t + k 2 k i t k i m0 B k NWA,λ i j x i t,, {}! m0 i y j t l i m0 m λ jm 2 k {l}! i t k m λ jm E l0 j t 0 {}! F k NWA,λ j,, i y. i t λ i E i t σ NWA,λ j,m,i j t m {m}! k j x j y jm i l t l jm {l}! Bk j NWA,λ i,l, x i The theorem follows by euatig the coefficiets of i t {}!. i t 45

ON Q-APPELL POLYNOMIALS 5 Theorem 3.2. A aalogue of [5, p. 3353]. Uder the assumptio that i is eve, we have i j 2 B k NWA,λ i j, x F k, NWA,λ j i, 2 y s, NWA,λ j, 3,i j 3 j y {} i k 2i k F k NWA,λ j, 2, i x s NWA,λ i, 3, j. i j 2 j 3 B k NWA,λ i,, 46 Proof. We ca write g t as follows: g t by25,44 F k NWA,λ j,l, l0 2 λ j E j t + 2 k 2 k i t k B k NWA,λ i j x i t s,, {}! NWA,λ j,m,i j t m m0 {m}! k 2 k {l}! i t k E i t i j x yt λ i E i t by25 λ i E i t i y j t l k λ i j E i j t F k NWA,λ j,, i x j t {}! i t k s NWA,λ i,m, j j t m B k m0 {m}! NWA,λ i,l, l0 j y i t l. {l}! 47 The theorem follows by euatig the coefficiets of t {}!. Theorem 3.3. A aalogue of [5, p. 3353]. Uder the assumptio that i is

6 THOMAS ERNST eve, i j F k NWA,λ j i y i,, m0 B k NWA,λ i,, {} i k 2i k F k NWA,λ j,k, j x jm k0 i k i x im j Proof. We ca expad g t as follows: g t by44 2 k i t k E i j x yt i t λ i E i t λ jm m i k j k B k NWA,λ i, k,. j y j λ im m0 k k 2 λ i j E i j t λ j E j t + λ i. E i t 48 2 k i t k 2 k λ j E j t + k 2 k i t k i t λ i E i t k j λ im im E i x m0 j j t j λ im i l t l m0 l0 {l}! Bk NWA,λ i j y,l, j t 0 {}! F k NWA,λ j,, i im x. j The theorem follows by euatig the coefficiets of Theorem 3.4. i j 2 j 3 F k NWA,λ i,, i j B k NWA,λ j,, t {}!. E i j yt 49 j x B k NWA,λ j, 2, i y s NWA,λ j, 3,i i y i m0 λ jm F k NWA,λ i,, j x jm i 50

Proof. Defie the followig fuctio ON Q-APPELL POLYNOMIALS 7 Ψ t E i j x ytλ i j E i j t λ i E i t + k λ j E j t k tk E i j x yt 2 k k j t λ i j E i j t 2 k λ i E i t + λ j E j t λ j E j t j k. 5 By usig the formula for a geometric seuece, we ca expad Ψ t i two ways: Ψ t by25 F k NWA,λ i j x i t s,, NWA,λ j,m,i j t m {m}! B k NWA,λ j,l, l0 j t k λ j E j t k i m0 2 k λ jm j k i y j t l {l}! {}! m0 2 k j k 2 k λ i E i t k i λ jm jm E j x j y m0 i i l t l l0 {l}! F k NWA,λ i,l, j t 0 {}! Bk NWA,λ j,, i y. j x jm i The theorem follows by euatig the coefficiets of t {}!. i t 2 k j k 52 The followig example illustrates that similar formulas with H polyomials ca easily be costructed. Theorem 3.5. i j 2 j 3 H k NWA,λ i,, i j B k NWA,λ j,, Proof. Use Ψ t agai. Theorem 3.6. A aalogue of [5, 3. p. 3356]. j x B k NWA,λ j, 2, i y s NWA,λ j, 3,i i y i λ jm H k jm j NWA,λ i,, x m0 i 53

8 THOMAS ERNST i j 2 j 3 F k NWA,λ i,, i j B k NWA,λ j,, Proof. Defie the followig fuctio j x B k NWA,λ j, 2, i y NWA,λ j, 3,i i y i λ jm F k jm j NWA,λ i,, x m0 i 54 f t E i j x ytλ i j E i j t λ i E i t + k λ j E j t k tk E i j x yt 2 k k j t λ i j E i j t λ i E i t + λ j E j t λ j E j t 2 k j k. 55 By usig the formula for a geometric seuece, we ca expad f t i two ways: f t by25 B k NWA,λ i j x i t,, B k NWA,λ j,l, l0 j t k λ j E j t k i m0 λ jm 2 k j k i y j t l {l}! s {}! NWA,λ j,m,i j t m m0 {m}! 2 k j k 2 k λ i E i t + k i λ jm jm E j x j y m0 i i l t l l0 {l}! F k NWA,λ i,l, j t 0 {}! Bk NWA,λ j,, i y. j x jm i The theorem follows by euatig the coefficiets of t {}!. i t 2 k j k 56 4. Multiplicatio formulas We will ow defie two uite geeral Appell polyomials, which have some similarities with the Appell polyomials i [9]. The ames are chose to resemble the Euler ad Beroulli polyomials.

ON Q-APPELL POLYNOMIALS 9 Defiitio 4.. A aalogue of Lu, Luo [6, p. 4]. The geeratig fuctio for the geeralized NWA Apostol E polyomials of degree ad order, E NWA,λ,µ,θ;, x, is give by 2 µ t θ t E xt λe t + {}! E NWA,λ,µ,θ;, x,θ N. 57 Several Appell polyomials i this article are special cases of these polyomials, e.g. the Euler polyomial is the case θ 0, µ. Theorem 4.. A aalogue of [6, 2.3 p. 5], first multiplicatio formula for Apostol-E polyomials E NWA,λ,µ,θ;, m x m m θ λ k E k j NWA,λ m,µ,θ;, x, m j 58 where k j + 2 j 2 + + m j m, m odd. Proof. E NWA,λ,µ,θ;, m x t {}! m 2 µ t θ λ m E m t + by6 2 µ t θ m θ λ m E m t + m m θ j i0 2 µ t θ λe t + E m xt λ i E i t E m xt j j λ k k E x m t m j λ k E NWA,λ m,µ,θ;, m θ k x t m {}!. 59 The theorem follows by euatig the coefficiets of t {}!. The followig formula oly applies for special values of the itegers. Theorem 4.2. A aalogue of [6, 2.4 p. 5], secod multiplicatio formula for Apostol-E polyomials. E NWA,λ,µ,θ;, m x 2 µ m + θ { + } θ, m λ k j j B NWA,λ m,+ θ, k x, m 60

20 THOMAS ERNST where k j + 2 j 2 + + m j m, m eve, θ. Proof. E NWA,λ,µ,θ;, m x t {}! m 2 µ t θ λe t + E m xt 2 µ t θ λ m E m t λ i E i t E m xt i0 2 µ tm λ m E m t j λ k k t θ E x m t m m j t θ 2 µ m m j λ k B k NWA,λ m,; x t m {}! j 6 The theorem follows by euatig the coefficiets of t {}!. Corollary 4.2. A aalogue of [8, 2. p. 49], [6, p. 7], first multiplicatio formula for geeralized H polyomials. H NWA,λ,, m x m m λ k H k j NWA,λ m,, x, m 62 j where k j + 2 j 2 + + m j m, m odd. Corollary 4.3. A aalogue of [8, 2.2 p. 49], [6, p. 7], secod multiplicatio formula for geeralized H polyomials. H NWA,λ,, m x 2 m m λ k j B k NWA,λ m,, x, m j 63 where k j + 2 j 2 + + m j m, m eve. Theorem 4.3. A aalogue of [8, p. 5], a explicit formula for the multiple alteratig power sum: σ l l NWA,λ,, 2 l +l m0 + l m j0 H j NWA,λ,m, l j λ j+l j { + } l, j + l H l j NWA,λ,+l m,m,, 64

ON Q-APPELL POLYNOMIALS 2 Proof. We use the geeratig fuctio techiue. Put k j + 2 j 2 + + j. It is assumed that j i 0, i. All zeros are eglected. σ l NWA,λ,, t by7 l {}! l j λ k k t {}! j l λe t λ 2 E 2 t + + λ E t l λ E t λe t + + λe l t λe t + l l λ E t j λe t l j j0 j λe t + λe t + by6 2t l l l j λ j+l j0 j H j t m NWA,λ,m, j + l m0 {m}! [ l j t i H NWA,λ,i, 2 l l l j λ j+l j { + } l, i0 +l m0 + l m {i}! j0 j + l H H j NWA,λ,m, l j NWA,λ,+l m,m, ] t {}!. 65 The theorem follows by euatig the coefficiets of t {}!. Theorem 4.4. For m odd, we have the followig recurrece relatio for Apostol-E -umbers. E l NWA,λ,µ,θ;, m l l j0 j m θ l E m j NWA,λ m,µ,θ; j, σ l 66 where k j + 2 j 2 + + m j m i σ l NWA,λ, j, m. Proof. E l by58 NWA,λ,µ,θ;, m m θ l l λ k l j0 m m θ l m j m j m θ l E l j0 l λ k E l k NWA,λ m,µ,θ;, m l j k j E l NWA,λ m,µ,θ; j, NWA,λ m,µ,θ; j, l m l λ k NWA,λ, j, m, j by7 k LHS. 67

22 THOMAS ERNST Defiitio 4.4. The geeratig fuctio for the geeralized NWA Apostol C polyomials of degree ad order, C NWA,λ,θ;, x, is give by t θ t E xt λe t {}! C NWA,λ,θ;, x,θ N. 68 Theorem 4.5. Multiplicatio formula for Apostol-C polyomials C NWA,λ,θ;, m x m m θ where k j + 2 j 2 + + m j m. Proof. λ k C k j NWA,λ m,θ;, x, m 69 j C NWA,λ,θ;, m x t θ t {}! m λ m E m t by6 t θ m θ λ m E m t m m θ j i0 t θ λe t E m xt λ i E i t E m xt j jλ k k E x m t m j λ k C NWA,λ m,θ;, m θ k x t m {}!. 70 The theorem follows by euatig the coefficiets of t {}!. 5. Discussio This was the first multiplicatio formula for a Appell polyomial of geeral form; the Ward umbers replace the itegers i the fuctio argumet. Certaily there are other geeral Appell polyomials with similar expasio ad multiplicatio formulas. May of the proofs use the formula for a geometric seuece i form ad the geeratig fuctio for the Appell polyomials ad the power sums. The itegers i ad j are crucial for the formulas; by the geeratig fuctio, if λ i, appears as idex i a polyomial, certaily the factor i will also appear. If the orders of two polyomials i a formula are k ad k, the last oe with

ON Q-APPELL POLYNOMIALS 23 idex λ j, ad argumet i y, surely a fuctio σ NWA,λ j,m,i or s NWA,λ j,m,i, together with j m will appear. If a polyomial has λ i, as idex, it will have j i the fuctio argumet, ad vice versa. These cosideratios also hold for the case. Eve if the reader is ot iterested i calculus, this paper is a good summary of the recet treds o Apostol type Appell polyomials; just put. REFERENCES [] Erst.T., A comprehesive treatmet of calculus, Birkhäuser 202. [2] Erst, T. O certai geeralized Appell polyomial expasios A. Uiv. Marie Curie, Sect. A 68, No. 2, 27-50 205 [3] Erst, T. A solid foudatio for Appell Polyomials. ADSA 0, 27-35 205 [4] Erst, T. O multiplicatio formulas for Apostol-Beroulli ad Apostol- Euler polyomials ad the multiple power sums, A. Uiv. Marie Curie, Sect. A 70, No., -8 206 [5] Liu, Hogmei; Wag, Weipig Some idetities o the Beroulli, Euler ad Geocchi polyomials via power sums ad alterate power sums. Discrete Math. 309 2009, o. 0, 3346 3363. [6] Lu, D., Luo, Q.: Some uified formulas ad represetatios for the Apostol-type polyomials. Advaces i Differece Euatios 205:37 [7] Luo, Q.-M. The multiplicatio formulas for the Apostol-Beroulli ad Apostol- Euler polyomials of higher order. Itegral Trasforms Spec. Fuct. 20 2009, o. 5-6, 377 39. [8] Luo, Q.-M Multiplicatio formulas for Apostol-type polyomials ad multiple alteratig sums. A traslatio of Mat. Zametki 9 202, o., 54 66. Math. Notes 9 202, o. -2, 46 57. [9] T.R. Prabhakar ad Reva, A Appell cross-seuece suggested by the Beroulli ad Euler polyomials of geeral order. Idia J. Pure Appl. Math. 0 o. 0 979, 26 227 [0] Wag, Weipig; Wag, Wewe Some results o power sums ad Apostol-type polyomials. Itegral Trasforms Spec. Fuct. 2 200, o. 3-4, 307 38. [] Yag, Sheg-liag A idetity of symmetry for the Beroulli polyomials. Discrete Math. 308 2008, o. 4, 550 554. [2] Zhag, Zhizheg; Yag, Haig Several idetities for the geeralized Apostol- Beroulli polyomials. Comput. Math. Appl. 56 2008, o. 2, 2993 2999.

24 THOMAS ERNST THOMAS ERNST Departmet of Mathematics Uppsala Uiversity P.O. Box 480, SE-75 06 Uppsala, Swede