Comparison between MERIS and GOCI in regional seas around Korea

Similar documents
Current Application of Vicarious Calibration for Geostationary Ocean Color Imager (GOCI) DATA

Operation and Calibration Status of GOCI

HICO OSU Website and Data Products

GEO New Mission and Synergy Joo-Hyung Ryu

Atmospheric correction in presence of sun glint: the POLYMER Algorithm

Introduction of GOCI and GOCI-II Mission with Lunar Calibration

HICO Calibration and Atmospheric Correction

Report Benefits and Challenges of Geostationary Ocean Colour Remote Sensing - Science and Applications. Antonio Mannino & Maria Tzortziou

In-flight Evaluation of the SPOT-6 Radiometric Calibration based on Acquisitions over Natural Targets and Automated in-situ Measurements

A Comparative Study and Intercalibration Between OSMI and SeaWiFS

Status of GOCI-II Development

C M E M S O c e a n C o l o u r S a t e l l i t e P r o d u c t s

MERIS, A-MODIS, SeaWiFS, AATSR and PARASOL over the Salar de Uyuni March 2006 MAVT 2006 Marc Bouvet, ESA/ESTEC

EXTRACTION OF THE DISTRIBUTION OF YELLOW SAND DUST AND ITS OPTICAL PROPERTIES FROM ADEOS/POLDER DATA

RadCalNet Quick Start Guide. RadCalNet Quick Start Guide

KOREA GEOSTATIONARY SATELLITE PROGRAM : COMMUNICATION, OCEAN, AND METEOROLOGICAL SATELLITE(COMS)

OCEAN COLOUR MONITOR ON-BOARD OCEANSAT-2

AEROSOL RETRIEVAL AND ATMOSPHERIC CORRECTION FOR MERIS DATA OVER LAKES

Hyperspectral Atmospheric Correction

Sentinel 2 Pre-processing Requirements for coastal and inland waters

In-flight Calibration Techniques Using Natural Targets. CNES Activities on Calibration of Space Sensors

CNES WGCV-36 Report Cal/Val Activities

Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies

VIIRS SDR Cal/Val: S-NPP Update and JPSS-1 Preparations

In-Orbit Vicarious Calibration for Ocean Color and Aerosol Products

MERIS SMILE EFFECT CHARACTERISATION AND CORRECTION DOCUMENT. document title/ titre du document. prepared by/préparé par MERIS ESL

Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) Mireya Etxaluze (STFC RAL Space)

THE LAND-SAF SURFACE ALBEDO AND DOWNWELLING SHORTWAVE RADIATION FLUX PRODUCTS

Impacts of Atmospheric Corrections on Algal Bloom Detection Techniques

BAYESIAN METHODOLOGY FOR ATMOSPHERIC CORRECTION OF PACE OCEAN-COLOR IMAGERY

A Method for MERIS Aerosol Correction : Principles and validation. David Béal, Frédéric Baret, Cédric Bacour, Kathy Pavageau

Analysis of the particle size distribution and optical properties in the Korean seas

Mapping water constituents in Lake Constance using CHRIS/Proba

Status of CNES Cal/Val Activities

5.5. Coastal and inland waters

Menzel/Matarrese/Puca/Cimini/De Pasquale/Antonelli Lab 2 Ocean Properties inferred from MODIS data June 2006

Calibration of MERIS on ENVISAT Status at End of 2002

Optical Theory Basics - 1 Radiative transfer

David Antoine on behalf of the OCAPI science team

Detection of ship NO 2 emissions over Europe from satellite observations

A 2016 CEOS Chair Initiative. Non-meteorological Applications for Next Generation Geostationary Satellites

Atmospheric Correction of Ocean Color RS Observations

A case for FLH in coastal waters: monitoring the spring bloom in British Columbia, Canada, plus MCI examples

Non-meteorological Applications for Next Generation Geostationary Satellites: A 2016 CEOS Chair Initiative

Simulation of UV-VIS observations

Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference

GOSAT mission schedule

THE SOLAR RESOURCE: PART I MINES ParisTech Center Observation, Impacts, Energy (Tel.: +33 (0) )

Satellite-based Red-Tide Detection/Monitoring

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

A Method Suitable for In-flight Calibration of a UAV Hyperspectral Remote Sensor

6 th ET SAT meeting, April 12 15, Geneva, Switzerland Satellite Programme of KMA

VIIRS Radiometric Calibration for Reflective Solar Bands: Antarctic Dome C Site and Simultaneous Nadir Overpass Observations

Atmospheric Correction

Carsten Brockmann, Ana Ruescas, Simon Pinnock CoastColour Team: BC D, HZG D, PML UK, RBINS B, LISE F, FCUL P COASTCOLOUR SPOT 4 TAKE 5

Atmospheric correction of HJ1-A/B images and the effects on remote sensing monitoring of cyanobacteria bloom

MSI aerosol retrieval algorithm for the Multi- Spectral Imager (MSI) on EarthCare

Status of VIIRS Reflective Solar Bands On-orbit Calibration and Performance

Minutes of the First Meeting. of the IOCCG Working Group. L1 Requirements for Ocean-Colour Remote Sensing. April 20-21, 2010

FIRST VALIDATION OF MERIS AEROSOL PRODUCT OVER LAND

A unified, global aerosol dataset from MERIS, (A)ATSR and SEVIRI

Ocean Colour Remote Sensing in Turbid Waters. Lecture 2: Introduction to computer exercise #1 The Colour of Water.

Spaceborne Wind Lidar Observations by Aeolus Data Products and Pre-Launch Validation with an Airborne Instrument

The current status of FY-3D

NIR Solar Reference Spectrum Algorithm for the Orbiting Carbon Observatory (OCO)

Vicarious calibration of GLI by global datasets. Calibration 5th Group Hiroshi Murakami (JAXA EORC)

Status of Indian Satellite Meteorological Programme

Yi Liu TanSat Science Team

Difference between forward- and backwardlooking bands of GOSAT-2 CAI-2 cloud discrimination used with Terra MISR data

GCOM-C/SGLI and its Lunar Calibration

Potential of profiling floats to enhance NASA s mission

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Atmospheric Correction of Satellite Ocean-Color Imagery In the Presence of Semi-Transparent Clouds

KORUS-AQ campaign: Overview and Status (1 May 14 June 2016)

Lawrence Younan Senior Applications Scientist, Turner Designs February 15, Fluorometers; Experiences with Autonomous Vehicles

Vicarious Calibration for MERIS 4 th Reprocessing

GMES: calibration of remote sensing datasets

Preparation for FY-4A. (Submitted by Xiang Fang, CMA)

JRC Activities in Support of Satellite Ocean Color Cal/Val

Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal

ESA/MERIS vicarious adjustment

McIDAS support of Suomi-NPP /JPSS and GOES-R L2

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

GCOM-C SGLI calibration and characterization. Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration

(A)ATSR and SLSTR VIS/SWIR Channels Calibration

JRC Agency Report: 1. Land Activities 2. Ocean Color Activities. Giuseppe Zibordi

THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL

SATELLITE RETRIEVAL OF AEROSOL PROPERTIES OVER BRIGHT REFLECTING DESERT REGIONS

Evaluation of Satellite and Reanalysis Products of Downward Surface Solar Radiation over East Asia

Ocean Color Algorithms for the Southern Ocean Constraining the Carbon cycle

Climatology of Oceanic Zones Suitable for In-flight Calibration of Space Sensors

Tracking On-orbit Radiometric Accuracy and Stability of Suomi NPP VIIRS using Extended Low Latitude SNOs

VALIDATION OF AEROSOL OPTICAL THICKNESS RETRIEVED BY BAER (BEMEN AEROSOL RETRIEVAL) IN THE MEDITERRANEAN AREA

Line Parameters and Forward Calculation for Rertrieving Carbon Dioxide and Methane (CO 2 & CH 4 ) from GOSAT Data

Ocean Observation from Haiyang Satellites:

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

Atmospheric Measurements from Space

Coastal Characterization Using EO-1 Hyperion Data

A proposal for a new IOCCG working group. Theme: ocean colour observations from the geostationary orbit. Proposed by David Antoine

Stratospheric aerosol profile retrieval from SCIAMACHY limb observations

Transcription:

Comparison between MERIS and GOCI in regional seas around Korea Young-Je Park, Yu-Hwan Ahn, Jung-Mi Yoo KOSC staff Korea Ocean Satellite Center (KOSC), Korea Ocean Research and Development Institute (KODI) 19-20 Oct 2011 CoastColour UCM3, Lisbon, Portugal

Outline GOCI overview Some interesting GOCI images Inter-slot radiance discrepancy in GOCI L1B image Image-based GOCI and MERIS comparison

GOCI (Geostationary Ocean Colour Imager) Project GOCI is on board the Korean geostationary satellite, COMS, with other two payloads, Meteorological Imager and Ka-band satellite communication. GOCI was developed for 2003-2010 by Korea Aerospace Research Institute (KARI) and Astrium, France as a Korean space program. Supported by Ministry of Land, Transport and Maritime affairs and supervised by Yu-Hwan Ahn, KORDI. GOCI was successfully launched on 27 June 2010 by Ariane-V at the Kourou space centre. KOSC (Korea Ocean Satellite Center) of KORDI is in charge of initial test and follow-on operational mission (mission planning, data acquisition and distribution, Cal/Val, algorithm development and applications).

GOCI sensor

GOCI optical layout Three Mirror Anastigmatic Telescope

GOCI image example: Sea fog in the northern Yellow Sea 19~23 Feb 2011 2011.02.19 07:15 2011.02.20 2011.02.21 2011.02.22 2011.02.23 00:15 01:15 02:15 03:15 04:15 05:15 06:15 CHINA GOCI observed dynamic movement of sea fog KOREA (UTC)

GOCI image example: Massive green algae floating on Yellow Sea 13 June, 19-20 July, 2011 13 June : First observed near Chinese coast 19-20 July: Widely spread over southern Yellow Sea 핚국 칭다오 6월 13일 7월 19일 중국 굮산 황해 흑산도 목포 제주도 동중국해 양쯔강 하구 (a) 7월 10일 흑산도 인근 해역 천리안 해양관측위성 녹조 관측 영상 핚국해양연구원 온누리호 촬영 (2011-06-13 13:16 & 2011-07-19 16:16 합성 이미지) (b) 7월 16일 동중국해(31N, 125E) 핚국해양연구원과 일본 나가사키 대학 합동 조사에서 촬영 (c) 7월 21일 흑산도 인근 해역 (34N 31.9, 125E 27.8) 전남대학교 김광용 교수 연구팀 서 해어업관리단 무궁화 2호에서 촬영

GOCI image example: Spring algal blooms in East Sea and Yellow Sea 30 Mar 2011 (East Sea) 12 April 2011 (Yellow Sea) KOREA KOREA Ulleung CHINA 2011.03.30. 03:16(UTC) 2011.04.12. 03:16(UTC)

Latitude (deg) GOCI slots imaging sequence P2 (+Y,+Z) 50,00 Target Area P6 P1 (+Y,-Z) 45,00 Slot 16 Slot 13 1 2 3 4 40,00 35,00 P7 8 7 6 5 Slot 9 Slot 12 P5 9 Slot 8 10 11 Slot 5 12 30,00 P3 (-Y,+Z) 25,00 16 Slot 1 Slot 4 15 14 13 P8 P4 (-Y,-Z) 20,00 110,00 115,00 120,00 125,00 130,00 135,00 140,00 145,00 150,00 Longitude (deg)

Inter-slot discrepancy

Inter-slot difference: Variability within a slot border 20110330_0h image: slot 3-6 border

Reflectance difference Inter-slot difference Variability within a slot border Reflectance differences at slot 3-6 boundary in the 20110330-0h image 0.01 Similar shape 0.005 0-0.005-0.01 400 500 600 700 800 900 wavelength (nm) point 1 point 2 point 3 point 4 point 5 point 6 point 7

Reflectance difference Inter-slot difference Variability across different slot borders Reflectance differences at different boundaries in the 20110330-3h image 0.01 0.005 Variable shapes slots 2-7 slots 3-6 slots 4-5 0 slots 5-12 slots 6-11 -0.005 slots 7-10 slots 8-9 -0.01 400 500 600 700 800 900 wavelength (nm) slots 9-16 slots 10-15

TOA reflectance diference Inter-slot difference: Variability with observation hours from GOCI image 0.006 0.004 0.002 0-0.002-0.004 0h 3h 7h -0.006-0.008 400 500 600 700 800 900 wavelength (nm)

TOA reflectance diference Inter-slot difference: Variation with observation hours - 6S Simulation with AOT550=0.5 0.002 0.001 0-0.001-0.002 0h 3h 7h -0.003-0.004 400 500 600 700 800 900 wavelength (nm)

Weighted average technique (GOCI 20110412-07h, South Japan) [Original] [Weighted average]

GOCI and MERIS GEO/GOCI LEO/MERIS Altitude 35,857 km 800 km Sensor type Staring-frame capture Push-broom Spatial resolution 500 m 300m 1200 m Spectral range Temporal resolution Sun-Satellite position Coverage Bio-optical algorithm 400-900 nm 390-1040 nm 1 hour 3 day Variable Local (2500km x 2500km) Local Stable Global (296km x 296km(FR), 575km x 575km(FR), 1150km x 1150km(RR)) Global

Comparison spectral band of GOCI and Ch. GOCI Band Center(nm) Band width(nm) MERIS Ch. MERIS Band Center(nm) Band width(nm) B1 412 20 B1 412.5 10 B2 443 20 B2 442.5 10 B3 490 20 B3 490 10 B4 510 10 B4 555 20 B5 560 10 B6 620 10 B5 660 20 B7 665 10 B6 680 10 B8 681.25 7.5 B9 708.75 10 B7 745 20 B10 753.75 7.5 B11 760.625 3.75 B12 778.75 15 B8 865 40 B13 865 20 B14 885 10 B15 900 10

1.2 1 0.8 0.6 0.4 0.2 GOCI B1(412) BOL B2(443) BOL B3(490) BOL B4(555) BOL B5(660) BOL B6(680) BOL B6(680) EOL B6(680) BOL add B6(680) EOL add B7(745) BOL B7(745) EOL B8(865) BOL B8(865) EOL 0 382 402 422 442 462 482 502 522 542 562 582 602 622 642 662 682 702 722 742 762 782 802 822 842 862 882 902 1.2 1.0 0.8 0.6 0.4 MERIS band 1(412.5) band 2(442.5) band 3(490) band 4(510) band 5(560) band 6(620) band 7(665) band 8(681.25) band 9(708.75) band 10(753.75) band 11(760.625) 0.2 band 11 (760.625)SciHiO2) band 12(778.75) band 13(865) 0.0 382 402 422 442 462 482 502 522 542 562 582 602 622 642 662 682 702 722 742 762 782 802 822 842 862 882 902 band 14(885) band 15(900)

Comparison between GOCI and MERIS Image date: 20110330 Radiometric data only MERIS data: RR data downloaded from the MERCI website L2 data downloaded from the MERCI website L2 data processed using C2R processor in BEAM

20110330 image

Clear water Transect CHINA KOREA JAPAN Turbid water Transect

reflectance (no dimen) Clear water: GOCI hourly data 0.14 TOA reflectance at 555nm from GOCI 0.13 0.12 0.11 0.1 07H 00H 06H 01H 0.09 0.08 127.5 128 128.5 129 129.5 130 130.5 131 131.5 longitude (dege) Reflectance: 07h > 00h = 06h > 01h > 02h, 03h, 04h, 05h 00 hour 01 hour 02 hour 03 hour 04 hour 05 hour 06 hour 07 hour Solar Zenith: 64 > 55 = 54 > 45 > 39, 36, 38, 45 Rel. Azimuth: 70 62 58 47 27 2 22 42

reflectance (no dimen) Clear water: GOCI vs MERIS 0.11 TOA reflectance at 555nm(GOCI) and 560nm(MERIS) 0.1 0.09 0.08 0.07 0.06 0.05 GOCI 01 hour GOCI 02 hour MERIS 0.04 127.5 128 128.5 129 129.5 130 130.5 131 131.5 longitude (dege)

reflectance (no dimen) Clear water: GOCI vs MERIS 0.3 TOA reflectance spectra 0.25 0.2 0.15 0.1 GOCI 01 hour GOCI 02 hour MERIS 0.05 0 400 500 600 700 800 900 wavelength (nm) Reflectance: GOCI > MERIS Sensor zenith: 46 5

Reflectance (no dimen) Turbid area: GOCI hourly data TOA reflectance at 555nm from GOCI 0.19 0.17 0.15 0.13 0.11 0.09 0.07 122 123 124 125 126 127 128 129 Longitude (dege) The variation in the GOCI hourly measurements - primarily due to sun angle change - probably due to temporal variation in suspended sediment concentration 00 hour 01 hour 02 hour 03 hour 04 hour 05 hour 06 hour 07 hour

reflectance (no dimen) Turbid area: GOCI vs MERIS 0.19 0.17 0.15 TOA reflectance at 555nm (560 for MERIS) 0.13 0.11 0.09 0.07 GOCI 01 hour GOCI 02 hour MERIS 0.05 122 124 126 128 Longitude (dege) Difference between GOCI and MERIS is mainly due to viewing geometry (viewing zenith) The reflectances from both seem to show very well the turbidity variation

GOCI atmospheric correction Three options in publicly available GOCI Data processing software (GDPS) Standard Atm. Corr. (Gordon and Wang approach) SGCA (POLYMER) provided by P. Deschamp Spectrum shape matching algorithm by Y-H. Ahn Atmospheric correction comparison is challenging. The comparison shown here is just an example and should be more systematic in the future.

Atmospheric Correction GOCI Standar Atmospheric Correction Raw Image Radiometric Calibration & Geometric Correction Geometric Corrected TOA Radiance Image L TOA (λ) Reflectance of TOA Image ρ(λ)=ρ (λ) + ρ R (λ) Reflectance of Ocean + Aerosol Image ρ (λ) = T d (λ)ρ W (λ) + ρ A (λ) + ρ RA (λ) Reflectance of Ocean Image ρ W (λ) Remote Sensing Reflectance of Ocean Image Rrs(λ) Downward Solar Irradiance Normalization Longitude, Latitude, Time, SZA, VZA, AZA Remove Rayleigh & Sun-glint Reflectance & Mask Radiative Transfer Equation, Cox&Munk Model Remove Aerosol Reflectance Radiative Transfer Equation, Aerosol Model Bidirectional reflectance distribution function Radiative Transfer Equation, Underwater Algorithm Level 2 Product Chl, SS, CDOM, Kd490, Underwater Algorithm

reflectance (no dimen) Clear water: GOCI hourly data 0.01 Water-leaving reflectance derived from GOCI 0.008 0.006 0.004 0.002-0.002 0 127.5 128 128.5 129 129.5 130 130.5 131 131.5 Longitude (dege) - 01 to 05 hour images shows < ~0.002 variability in water-leaving reflectance at 555 - Need to improve the atmospheric correction, especially for 00, 06, 07 hours 00 hour 01 hour 02 hour 03 hour 04 hour 05 hour 06 hour 07 hour

Water reflectance (no dimen.) Clear water: GOCI vs MERIS Water-leaving reflectance at 555nm (GOCI) and 560 (MERIS) 0.011 0.01 0.009 0.008 GOCI 01 hour 0.007 GOCI 02 hour 0.006 MERIS Standard 0.005 MERIS C2R 0.004 0.003 127.5 128 128.5 129 129.5 130 130.5 131 131.5 Longitude (dege)

Water-leaving reflectance Clear water: GOCI vs MERIS Water-leaving reflectance : GOCI vs MERIS 0.018 0.016 0.014 0.012 0.01 0.008 0.006 0.004 0.002 0-0.002 400 500 600 700 800 900 Wavelength (nm) GOCI 01 hour GOCI 02 hour MERIS STA MERIS C2R

Reflectance (no dimen) Turbid area: GOCI hourly data 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Water-leaving reflectance at 555 from GOCI Uncertainty in water-leaving reflectance at 555nm is ~ 0.01 although all the images capture the small scale structure 00 hour 01 hour 02 hour 03 hour 04 hour 05 hour 06 hour 07 hour 0 122 123 124 125 126 127 128 129-0.01 Longitude (dege)

Refletance (no dimen) Turbid water: GOCI vs MERIS Water-leaving reflectance: GOCI vs MERIS 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 122 123 124 125 126 127 128 129 Longitude (dege) GOCI 01 hour GOCI 02 hour MERIS Standard MER C2R - MERIS Standard is consistently high - GOCI and MERIS C2R noticeably differ in a part of the transect -> need insitu data

Reflectance (no dimen) Turbid water: GOCI vs MERIS 0.06 0.05 0.04 Water-leaving reflectance: GOCI vs MERIS 0.03 0.02 0.01 GOCI 01 hour GOCI 02 hour MERIS Standard MERIS C2R 0 400 500 600 700 800 900 Wavelength (nm)

Thank you! youngjepark@kordi.re.kr