Nonlinear Saturation Controller for Suppressing Inclined Beam Vibrations. Usama H. Hegazy *, Noura A Salem

Similar documents
Engineering Differential Equations Practice Final Exam Solutions Fall 2011

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

Characteristics of beam-electron cloud interaction

ENGR 7181 LECTURE NOTES WEEK 5 Dr. Amir G. Aghdam Concordia University

DISCRETE TIME FOURIER TRANSFORM (DTFT)

Constrained Single Period Stochastic Uniform Inventory Model With Continuous Distributions of Demand and Varying Holding Cost

Characteristic Equations and Boundary Conditions

Uncertainty in non-linear long-term behavior and buckling of. shallow concrete-filled steel tubular arches

Vibration Control of an Electromechanical Model with Time-Dependent Magnetic Field

LESSON 10: THE LAPLACE TRANSFORM

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

Fracture simulation of fiber reinforced concrete by visco-elasto-plastic suspension element method

On the Vibration Behavior Study of a Nonlinear Flexible Composite Beam Under Excitation Forces via Nonlinear Active Vibration Controller

(1) Then we could wave our hands over this and it would become:

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

[1] (20 points) Find the general solutions of y y 2y = sin(t) + e t. Solution: y(t) = y c (t) + y p (t). Complementary Solutions: y

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

A Simple Method of Tuning PI Controllers for Interval Plant of Cold Rolling Mill

On-Line PI Controller Tuning Using Closed-Loop Setpoint Responses for Stable and Integrating Processes*

Wave Mode Couplings in a Free-Electron Laser with Axial Magnetic Field in the Presence of Self-Fields

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

The Study on Influence Factors of the Mechanical Smoke Evacuation System in Atrium Buildings

Integral Calculus What is integral calculus?

Linear Regression Using Combined Least Squares

Adaptive Hysteresis Band Control for Constant Switching Frequency in Direct Torque Control of Induction Machine Drives

The Matrix Exponential

A Quadratic Serendipity Plane Stress Rectangular Element

Southern Taiwan University

The Matrix Exponential

Inference Methods for Stochastic Volatility Models

Department of Mechanical Engineering, Imperial College, London SW7 2AZ, UK

Equilibrium Composition and Thermodynamic Properties of Hydrogen Plasma

Differential Equations

Rational Approximation for the one-dimensional Bratu Equation

An analytical study on the stress-strain relation of PVA-ECC under tensile fatigue

Homotopy perturbation technique

STRIPLINES. A stripline is a planar type transmission line which is well suited for microwave integrated circuitry and photolithographic fabrication.

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Notes on Vibration Design for Piezoelectric Cooling Fan

Static and fatigue failure simulation of concrete material by discrete analysis

Inventory Control with Unobservable Lost Sales andbayesianupdates

Digital Signal Processing, Fall 2006

Where k is either given or determined from the data and c is an arbitrary constant.

Analytical Relation Between the Concentration of Species at the Electrode Surface and Current for Quasi-Reversible Reactions

2008 AP Calculus BC Multiple Choice Exam

Fuzzy Logic Model of Fiber Concrete

SUMMER 17 EXAMINATION

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

DIFFERENTIAL EQUATION

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

Chloride diffusion in the cracked concrete

Assignment 4 Biophys 4322/5322

A New Operational Matrix of Orthonormal Bernstein Polynomials and Its Applications

Fracture energy of high performance mortar subjected to high temperature

Position control of DC Servomotor with Nonlinearity Using ICA Based on FLC

Determination of fracture parameters of concrete interfaces using DIC

GRINDING PARAMETERS SELECTION USING TLBO METHOD

Propagation of Torsional Surface Waves in Non-Homogeneous Viscoelastic Aeolotropic Tube Subjected to Magnetic Field

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

1 Isoparametric Concept

10. The Discrete-Time Fourier Transform (DTFT)

Junction Tree Algorithm 1. David Barber

Bond analysis model of deformed bars to concrete

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

Chapter 10 Time-Domain Analysis and Design of Control Systems

AS 5850 Finite Element Analysis

An Inventory Model with Change in Demand Distribution

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice.

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

A local bond stress-slip model for reinforcing bars in self-compacting concrete

HIGHER ORDER DIFFERENTIAL EQUATIONS

A Propagating Wave Packet Group Velocity Dispersion

Experimental investigation of compressive concrete elements confined with shape memory Ni-Ti wires

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

ES 240 Solid Mechanics

Measuring crack width and spacing in reinforced concrete members

TN recent years, various multi-species logarithmic population

Hydrogen Atom and One Electron Ions

DTFT Properties Using the differentiation property of the DTFT given in Table 3.2, we observe that the DTFT of nx[n] is given by

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

2.3 Matrix Formulation

A General Mathematical Model Based on Laplace and Modified Z-Transform for Time and Frequency Domain Investigation of Three-Phase Switched Circuits

Fiber reinforced concrete characterization through round panel test - Part II: analytical and numerical study

Transfer function and the Laplace transformation

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

Journal of Asian Scientific Research CONTROLLING THE PERFORMANCE OF MDPSK IN BAD SCATTERING CHANNELS

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Finite element discretization of Laplace and Poisson equations

Calculus II (MAC )

Asymptotic Behaviour of the Solutions. of the Falkner-Skan Equations. Governing the Swirling Flow

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

The Transmission Line Wave Equation

Electron energy in crystal potential

Simulation Of Induction Motor Modelling In MATLAB Software.

Transcription:

Nonlinar Saturation Controllr for Suppring Inlind Bam Vibration Uama H. Hgazy * Noura A Salm Abtrat In thi papr prnt th numrial prturbation olution of an inlind bam to xtrnal paramtri for ith to diffrnt ontrollr poitiv poition fdbak (PPF) nonlinar aturation (NS) ontrollr found that th (NS) on i an fftiv ontrollr. Th frquny rpon funtion th pha plan mthod ar ud to invtigat th ytm bhavior it tability. All poibl ronan a ill b xtratd fft of diffrnt paramtr on ytm bhavior at ronan ar tudid. Kyord: Bam Vibration ontrol Prturbation u INTRODUCTION availabl ronan a. Thy rportd th ourrn of aturation phnomna at diffrnt paramtr valu. Kak ibration ar th au of diomfort diturban Ho [8] prntd fftivn of th PPF algorithm Vdamag omtim dtrution of mahin applid for a modl of a olar panl hr th firt four trutur. It mut b rdud or ontrolld or mod of vibration hav bn onidrd. Si Hgazy liminatd. On of th mot ommon mthod of vibration [9] applid diffrnt ativ ontrollr to uppr th ontrol i th dynami aborbr. It ha th advantag of lo vibration of a miromhanial ronator ytm. Morovr a ot impl opration at on modl frquny. In th tim-varying tiffn i introdud to ontrol th haoti domain of many mhanial vibration ytm th oupld nonlinar vibration of uh motion of th onidrd ytm. Eia Amr [] ytm an b rdud to Yaman Sn [] tudid th vibration ontrol of a nonlinar ond ordr diffrntial quation hih ar olvd antilvr bam ubjt to both xtrnal paramtri analytially numrially. xitation but ith diffrnt ontrollr. Golnaraghi [] Elhfnay Baiouny [] tudid th nonlinar indiatd that hn th ytm i xitd at a frquny nar intability problm of to uprpod diltri fluid by th high natural frquny th trutur rpond at th uing th mthod of multipl al. Frquny rpon frquny of th xitation th amplitud of th rpon urv ar prntd graphially. Th tability of th propod inra ith th xitation amplitud. Ouini t al. [3] olution i dtrmind. Numrial olution ar prntd propod a nonlinar ontrol la hih i bad on ubi graphially for th fft of th diffrnt paramtr on th vloity fdbak to uppr th vibration of th firt mod ytm tability rpon hao. El Bhady El-Zahar of a antilvr bam hn ubjtd to a prinipal paramtri [] tudid th fft of th nonlinar ontrollr on th xitation. Th mthod of multipl al i ud to driv to vibrating ytm. Th approximat olution up to th ond firt-ordr diffrntial quation govrning th tim volution ordr ar drivd uing th mthod of multipl al of th amplitud pha of th rpon. Thn a prturbation thniqu nar th primary prinipal paramtri bifuration analyi i ondutd to xamin th tability of intrnal ronan a. Morovr thy invtigatd th th lod-loop ytm to invtigat th prforman of tability of th olution uing both pha plan mthod th ontrol la. Th thortial xprimntal finding frquny rpon quation th fft of diffrnt indiat that th ontrol la lad to fftiv vibration paramtr on th vibration of th ytm. Warminki t al. [3] upprion bifuration ontrol. El-Srafi t al. [45] tudid ativ upprion of nonlinar ompoit bam hod ho fftiv i th ativ ontrol on vibration vibration by ltd ontrol algorithm. un t al. [45] rdution of diffrnt mod of motion at ronan. Thy xtnivly tudid thortial xprimntal rarh on dmontratd th advantag of ativ ontrol ovr th th aturation phnomnon. Eia t al. [67] invtigatd a paiv on. Hgazy [6] tudid th nonlinar dynami ingl-dgr-of-frdom nonlinar oillating ytm ubjt vibration ontrol of an ltromhanial imograph ytm to multi-paramtri /or xtrnal xitation. Th multipl ith tim-varying tiffn. An ativ ontrol mthod i tim al prturbation thniqu i applid to obtain olution applid to th ytm bad on ubi vloity fdbak. In up to th third ordr approximation to xtrat tudy th [7] Hgazy invtigatd Th problm of uppring th vibration of a hingd hingd flxibl bam that i ubjtd to primary prinipal paramtri xitation. Diffrnt Uama H. Hgazy i an Aoiat Profor of Applid Mathmati in Dpartmnt of Mathmati Faulty of Sin Al-Azhar Univrity- ontrol la ar propod aturation phnomnon i Gaza Paltin. E-mail: u.hjazy@alazhar.du.p uhijazy@yahoo.om invtigatd to uppr th vibration of th ytm. El- Noura A. Salm i urrntly puruing matr dgr program in Ganaini t al. [8] applid poitiv poition fdbak ativ Dpartmnt of Mathmati Faulty of Sin in Al-Azhar Univrity- Gaza Paltin ontrollr to uppr th vibration of a nonlinar ytm hn ubjtd to xtrnal primary ronan xitation. Th multipl al prturbation mthod i applid to obtain a firt- 6 964

965 ordr approximat olution. Th quilibrium urv for variou ontrollr paramtr ar plottd. Th tability of th tady tat olution i invtigatd uing frquny rpon quation. Th approximat olution i numrially vrifid. Thy found that all prdition from analytial olution ar in good agrmnt ith th numrial imulation. SYSTEM MODEL Th modifid ond-ordr nonlinar ordinary diffrntial quation that drib th motion of th inlind bam i givn by [] u mu u bu b u - d uu uu 3 5 = f o( W t) o( a) uf o( W t)in( a) tf ( t). Whr uu u rprnt diplamnt vloity ontrol ignal ontrol F F f = v fdbak ignal Ff F = v f () = u for (PPF) = uv for (NS) ontrol. So th lod loop ytm quation to th both ontrollr ar: (i) Poitiv Poition Fdbak (PPF) ontrol u mu u bu b u - d uu uu = 3 5 f o( W t)o( a) uf o( W t)in( a) tv (3) v x v v = ruv 3 NUMERICAL INTEGRATION Th numrial tudy of th rpon th tability of to nonlinar ytm ar ondutd. Eah ytm i rprntd by to (th plant th aborbr) oupld ond ordr nonlinar diffrntial quation. Th plant (orintd bam) ha quadrati ubi quinti nonlinariti i ubjtd to xtrnal paramtri xitation. Th oupling trm ar ithr produ th poitiv poition aborbr or nonlinar ink aborbr. All poibl ronan a ar xtratd fft of diffrnt paramtr ontrollr on th plant ar diud rportd. 3. TIME-RESPONSE SOLUTION Th tim rpon of th nonlinar ytm (3) (4) (5) (6) alration of th vibrating bam rptivly i th ha bn invtigatd applying fourth ordr Rung-Kutta natural frquny m i th damping offiint b b numrial mthod th rult ar hon in Fig. () () rptivly. Th pha plan mthod i ud to giv an d ar nonlinar offiint f f ar th xtrnal indiation about th tability of th ytm. Fig. (a) (b) paramtri foring amplitud rptivly W i th ho th non-ronant bhavior of th main ytm th xitation frquny a i th orintation angl t i th gain PPF aborbr rptivly ith fin limit yl for th plant. Whra a haoti bhavior i illutratd in Fig.() (d) F () t i th ontrol ignal. for both th plant th aborbr at th imultanou primary ronan a. Fig. () ho th rpon of th W introdu a to ond-ordr nonlinar ontrollr hih plant th NS aborbr at non-ronan Fig. (a) ar oupld to th main ytm through a ontrol la. Thn (b) rptivly at to ronan a Fig. () th quation govrning th dynami of th ontrollr i (d). It i lar that th rpon of th plant ith th NS uggtd a aborbr i muh bttr than of PPF aborbr. Th NS might b mor fftiv in ontrolling th bhavior of th main v xv v = rff ( t) () ytm at ronan hih rultd in a light haoti ronant rpon Fig. () or a modulatd amplitud Fig. hr vv v rprnt diplamnt vloity (). Thrfor th NS aborbr ill b onidrd alration of th ontrollr i th natural frquny z i oupld ith th main ytm for furthr invtigation in th th damping offiint r i th gain. W hoo th folloing tion. 4 MULTIPLE-TIME SCALES ANALYSIS Th nonlinar diffrntial quation (5) ith NS ontrollr (6) i ald uing th prturbation paramtr a follo u m u u b u b u - d uu uu = 3 5 f t a uf t a tv o( W )o o( W )in (6) (5a) v x v v = ru (ii) Nonlinar Saturation (NS) ontrol 3 5 ( u mu u bu bu d uu uu ) - = f t uf t v o( W )o( a) o( W )in( a) t (4) (5) v v v = uv (6a) x r. Applying th multipl al mthod obtain firt ordr approximat olution for quation (3) (4) by king th olution in th form 6

u( T T ) = u ( T T ) u ( T T ) v( T T ) = v ( T T ) v ( T T ). hr i a mall dimnionl book kping prturbation paramtr T = t T = T ar th fat lo tim al rptivly. Th tim drivativ tranform i rat in trm of th n tim al a d dt hr D d = D D = D DD (8) dt = D T Subtituting (8) gt u = u u (7) =. (9) T u tim drivativ from quation (7) u = Du Du Du Du u = D u D u D Du D Du () 5 5i T iwt = - ba f o( a) () i( ) W T i( -W) T f A in ( a) f A. it tb tbb m it 3 5 3 ( D ) v = (-ib -ixb ) u u u u Du () i ( ) T i ( ) T rba rab. fo( t)o uf o( t)in v - v v v v = Dv Dv Dv Dv v = D v D v D Dv D Dv Subtituting quation () () into quation (5a) (6a) gt Du Du DDu Du b b - d - W a - W a - t = Dv Dv DDv x Dv v v - ruv =. (3) Equating th offiint of am por of in quation () (3) giv O : ( D ) = (4) u ( D ) v. O( ): = (5) ( ) D u =-D Du -md u -bu -b u 3 5 dd u f o( Wt)o( a) 3 u f o( W t)in( a) tv (6) ( ) D v =-DDv - x Dv ruv. (7) Th gnral olution of quation (4) (5) i givn by u = A( T ) A( T ) (8) it -it v = BT BT. (9) it -it hr th quantiti AT ( ) BT ( ) ar unknon funtion in T. No to olv quation (6) (7) ubtitut quation (8) (9) into thm thn uing th form iwt -W i T o( W T) = in( W T) = obtain D u= -ia -mia-3baa ( ) ( 3 it -baa -6d AA ) 3 4 3 (-b -5b -8d ) A A A A 3i T hr dnot th omplx onjugat trm. - i iwt -W i T in ( a) () () Th partiular olution of quation () () an b rittn in th folloing form u ( T T ) = 6 A - - A - A A - A 3 4 3 ( b 5b 8d ) it 3iT 8 b A f o( a) 4 5 5iT iwt ( -W)( W) - f A W W ( ) f A W -W ( ) ( W) ( -W) (- )( ) i i T T in in ( a) ( a) t t it B BB 966 ()

967 (b) Non-ronant tim ri of th ontrollr v ( T T ) = B - rba it i ( ) T ( ) i( - ) T - r ( - ) AB. (3) () Ronant tim ri of th plant hn W= = (a) Non-ronant tim ri of th plant (d) Ronant tim ri of th ontrollr hn = W= 6 Fig. Non-ronant ronant tim hitory olution of th plant th (PPF) ontrollr hn:

968 =. b = 5. d =.3 m =.5 W=.7 b = 5. f =.4 f =. a= 3 t =. x =. r =. = 6.5. () Ronant tim ri of th plant hn (a) Non-ronant tim ri of th plant W= = (b) Non-ronant tim ri of th ontrollr (d) Ronant tim ri of th ontrollr hn = W= 6

969 =. b = 5. d =.3 m =.5 W=.7 b = 5. f =.4 f =. a= 3 t =. x =. r =. = 6.5. 5 STABILITY ANALYSIS W hall invtigat th tability of th ytm at th imultanou ronan ondition W= Subtituting quation (4) into quation () () liminating th trm that produ ular trm prforming om algbrai manipulation obtain 3 -ia -mia-3baa -baa -6d AA () Ronant tim ri of th plant hn W= (5) i = T i T f o ( a) tb = -i T (-ib - ixb ) rab =. (6) i Subtituting A = a q i B = a q obtain th folloing quation that drib th modulation of amplitud pha of th motion =. In thi a introdu th dtuning paramtr uh that W= = (4) a =- ma f in - q T o a tain( - q q T) 3 5 3 aq - ba - ba - da 3 5 3 4 8 f o - ( q T ) o ( a) tao (- q q T) =. (7) (8) (f) Ronant tim ri of th ontrollr hn = W= Fig. Non-ronant ronant tim hitory olution of th plant th (NS) ontrollr ytm hn: a =-x a - raa in - q q T (9) 4 a q r aa o - q q T =. (3) 4 6

97 L = f L = ta L = raa 3 4 Lt = (- ) g = (- q q T ) g q T Thn quation (7) - (3) bom a =- ma L in g o a L in g (3) 3 5 3 ag = a - ba - ba - da 3 5 3 4 8 ( g ) ( a) ( g ) L o o L o. ( g ) (3) a =-xa-l 3in (33) æ ift ift -i ç ( p 3 - ip 4) i f( p3 -ip4) a( g - g ) = a( - ) L 3o ( g). (34) è (44) ift -ix ( p3 - ip4) =. Th tady tat olution orrpond to ontant a a i T Dividing both id of quation (43) by g g that i a = a = g = g =. Thu gt f both of ma =L in ( g) o ( a) i T id of quation (44) by L in ( g) (35) f giv 3 3 5 5 3 3 -ip - p fp-i fp - ipm- pm =. (45) - a ba ba d a 4 8 (36) =L o( g) o ( a) Lo ( g). -ip 3 - p 4 fp3 -ifp4 -ip3x - p4x =. (46) x ( g ) = -L in (37) a 3 - ( ) 3o ( ). a - =L g (38) From quation (35) - (38) hav æ 3 3 5 5 3 3 ( ma) ç - a ba ba d a è 4 8 ( a) ( a) =L o L LL o a æ a - =L3 x ç ( ). è (39) (4) Equation (39) (4) ar alld frquny rpon quation of th plant th NS ontrollr rptivly. (A) TRIVIAL SOLUTION To dtrmin th tability of th trivial olution invtigat th olution of th linarizd form quation (5) (6) that i -i A - mi A = (4) - - = (4) ib ixb. W xpr A B in th folloing Cartian form A p ip f p p p p ar ral. W obtain i T i T = ( - ) B = ( p -ip ) f hr 3 4 3 4 æ ift ift -iç ( p - ip ) if( p-ip) è ift - im ( p- ip) =. (43) Sparating ral imaginary part in quation (45) (46) to gt æ p = ç - m p (-f) p è (47) æ p = ( f) p ç - m p è (48) p = - x p - f p (49) 3 3 4 ( f ) ( x) p = p - p (5). 4 3 4 Stting =- m =-f 33 =-z =-f. 34 Th tability of th trivial olution i invtigatd by valuating th ignvalu of th aobian matrix of quation (47) - (5) 6 -l - -l -l 33 34 - -l 34 33 =

97 hih giv 4 3 l hl hl h3l h4 =. (5) hr h h h3 h 4 ar funtion in th ytm paramtr. Aording to th Routh-Huritz ritrion th nary uffiint ondition for all th root of quation (5) to hav ngativ ral part hn a tabl olution ar h > hh - h3 > h ( hh -h )- hh > h 4>. (B)NON-TRIVIAL SOLUTION 3 3 4 To dtrmin th tability of th non-trivial olution lt a = b b( T) a = ( T) j j j = ( T) y y y T = (5) Subtituting quation (5) into quation (3) - (34) imilarly a in abov hav ç - rb oy y è 4 b b =-mb- mb f( inj joj) o ( a) t ( iny yoy) t ( iny yo y) æ (53) 9 5 3 9 y = ç - bb b d b- roy b bj bj bj bj = b b è b 8 6 4 æ 3 3 5 5 4 - b( b 3 bb...) - b( b 5 bb...) ç - ( -) - toy- rboy 4 8 è b æ æ 3 3 (54) rbiny tin y y finjo ( a) j. - d ( b 3 bb... ) f( oj-jin j) o( a ç ç ) è 4b èb t ( o y - y iny ) t ( o y -y in y ) =-x -x - rb y y y ( in o ) 4 - rb ( iny y oy )- rb ( in y y o y ) 4 4 ( j j j j -y -y -y -y ) = - - rb o y-yiny 4 (55) rb ( o y- yiny) rb ( o y-yin y). 4 4 Sin b j y ar olution of quation (3) - (34) b j y ar a vry mall trm j j = j = y y = y = thn thy an b liminatd hav (56) æ æ b = ç - m bç f ojo( a) j è è æ æ ç tiny ç t o y y è4 è4 æ 9 5 3 9 j = ç - b - b - d b b èb 8 6 4 æ æ ç - f in j o( a) j ç t oy è b è b æ ç - tin y y è 4b æ æ = ç - r iny b ç -x - rb iny è 4 è 4 Lt æ =- m = f ojo ( a) 3 = tin y 4 = t o y 4 4 9 5 3 9 = b b b - b b d 8-6 4 - =- f injo ( a) b 3 = o b t y 4 =- in b t y =- r in y 3 4 33 4 4 (57) (58) (59) (6) =-x - rb in y 34 =- rb o y 4 6

97 9 5 9 =- b b db - ro y 3 4 b 8 6 4 =- - - t o y - r b o y 43 b = rb iny t in y. 44 4b Th tability of th non-trivial olution i invtigatd by valuating th ignvalu of th aobian matrix of quation (57) - (6) -l 3 4 -l 3 4 -l 3 33 34 - -l 4 43 44 hih giv 4 3 3 4 = l h l h l h l h =. (6) Th non-trivial olution i tabl if h > hh - h3 > h3( hh -h3)- hh 4 > h 4 >. 6 THEORETICAL FREQUENCY RESPONSE SOLUTION Th ronant frquny rpon quation of th main ytm (39) ith NS ontrollr (4) ar olvd numrially. Th rult ar hon in Fig. (3) (4) hih rprnt th variation of th tady tat amplitud a againt th dtuning paramtr σ rptivly for diffrnt valu of th othr paramtr. Fig. (3) ho th thortial frquny rpon urv of th main ytm to primary ronan a. It an b notd from Fig. (3b-3d) (3g) that tady tat amplitud inra a ah of th natural frquny ω th linar damping offiint µ th nonlinar offiint β δ dra. Th inra in th quinti nonlinar paramtr β bnd th frquny rpon urv to th right ith trivial fft on th tady tat amplitud a hon in Fig. (3). Fig. (3f) indiat that a th xitation for amplitud f inra th branh of th rpon urv divrg aay th amplitud inra. Th fft of th gain i hon in Fig. (3h). Fig. (4) illutrat th ronant frquny rpon urv of th NS ontrollr to ubharmoni intrnal ronan for variou paramtr. Eah figur onit of to urv that ithr divrg aay hn th gain ρ th tady tat amplitud of th plant inra Fig.(4b 4f). Or thy onvrg to ah othr a th natural frquny ω th linar damping ζ ar drad a hon in Fig.(4 4d). Th urv in Fig. (4) ar hiftd to th right a th dtuning paramtr σ inra. (a) Bai a (b) Th natural frquny () Th damping offiint (d) Th ubi nonlinar offiint 6

973 () Th quinti nonlinar offiint (a) Bai a (f) Th foring amplitud (b) Th gain (g) Nonlinar offiint () Th damping offiint (h) Th gain Fig. 3 Thortial ronant frquny rpon urv of th plant hn: =.7 b = 5. d =.3 m =.5 b = 5. f =.4 a= 3 t =.. (d) Th natural frquny 6

974 [4] L. un H. Hongxing S. Rongying Saturation-bad ativ aborbr for a non-linar plant to prinipal xtrnal xitation Mhanial Sytm Signal Proing (3) 98-489 (7). [5] L. un L. Xiaobin H. Hongxing Ativ nonlinar aturation-bad ontrol for uppring th fr vibration of a lf-xitd plant Communiation in Nonlinar Sin Numrial Simulation 5 7-79(). [6] M. Eia W.A.A. El-Ganaini Y. S. Hamd On th aturation phnomna ronan of non-linar diffrntial quation Mnufiya ournal of Eltroni Enginring Rarh (MEER) 5 73-84 (5). [7] M. Eia W.A.A. El-Ganaini Y. S. Hamd Saturation tability ronan of non-linar ytm Phyia A 356 34-358(5). () Th dtuning paramtr [8] M.K. Kak S. Ho Ativ vibration ontrol of mart grid trutur by multi-input multi-output poitiv poition fdbak ontrollr ournal of Sound Vibration 34 45-3(7). [9] M. SiSi U. H. Hgazy Homolini bifuration hao ontrol in MEMS Ronator Applid Mathmatial Modlling 35() 5533-555(). [] M. Eia Y.A. Amr Vibration ontrol of a antilvr bam ubjt to both xtrnal paramtri xitation Applid mathmati omputation 5 6-69(4). [] M. Yaman S. Sn Vibration ontrol of a antilvr bam of varying orintation Intrnational ournal of Solid Strutur 44 -(7). [] M.F. Golnaraghi Rgulation of flxibl trutur via non-linar oupling" Dynami Control (4)45-48(99). (f) Th tady tat amplitud of th plant [3] S.S. Ouni C. M. Chin A.H. Nayfh Dynami of a ubi nonlinar vibration aborbr Nonlinar Dynami 83-95(999). [4] S. El-Srafi M. Eia H. El-Shrbiny T.H. El-Gharb On paiv Fig. 4 Thortial ronant frquny rpon urv of th (NS) Ativ ontrol of vibrating ytm" Intrnational ournal of ontrollr hn: =.7 x =. =. a =. Applid Mathmati 8 55 58 (5). [5] S.A. El-Srafi M.H. Eia H. M. El-Shrbiny T.H. El-Gharb r =.. Comparion btn paiv ativ ontrol of a non-linar dynamial ytm apan ournal of Indutrial Applid Mathmati 3 39-6(6). 7 CONCLUSIONS [6] U. H. Hgazy Dynami Control of a Slf-utaind Eltromhanial Simograph With Tim-Varying Stiffn Th ontrol tability of a nonlinar diffrntial quation Mania 44 355-368(9). [7] U. H. Hgazy Singl-Mod Rpon Control of a Hingdrprnting th on-dgr-of-frdom nonlinar inlind Hingd Flxibl Bam Arhiv of Applid Mhani 79 335- bam ar tudid. Th inlind bam ha ubi quinti 345(9). nonlinariti ubjtd to xtrnal paramtri xitation [8] W. A.A. El-Ganaini N. A. Sad M. Eia Poitiv poition for. To ontrollr thniqu hav bn applid to th fdbak (PPF) ontrollr for upprion of nonlinar ytm inlind bam ytm undr diffrnt ronan ondition vibration Nonlinar Dynami 7(3) 57-537(3). th rult of numrial Rung-Kutta intgration ho that NS ontrollr i th mot fftiv. Th analytial olution of th plant ith NS ontrollr ar obtaind applying th multipl al prturbation thniqu. Th tability of th oupld ytm i invtigatd applying th frquny rpon quation for variou valu of th paramtr of th plant NS ontrollr. In addition a good ritrion of both tability hao i th pha plan. REFERENCES [] A. R. F. Elhfnay A. F. El-Baiouny Nonlinar tability hao in ltrodynami Chao Soliton & Fratal 3 89-3 (5). [] E. E. El Bhady E. R. El-Zahar Vibration rdution tability tudy of a dynamial ytm undr multi-xitation for via ativ aborbr Intrnational ournal of Phyial Sin 48 63-69 (). [3]. Warminki M. Bohnki W. arzyna P. Filipk M. Augutyniak Ativ upprion of nonlinar ompoit bam vibration by ltd ontrol algorithm Communiation in Nonlinar Sin Numrial Simulation 6(5)37-48 (). 6