LOWER HYBRID WAVES* K. S. Theilhaber and A. Bers. PFC/RR-81-5 February 1981

Similar documents
A. Bers, A. K. Ram, and S. D. Schultz. Plasma Science and Fusion Center,

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Scattering of ECRF waves by edge density fluctuations and blobs

Propagation of Radio Frequency Waves Through Fluctuations in Plasmas

13.1 Ion Acoustic Soliton and Shock Wave

A Study of Directly Launched Ion Bernstein Waves in a Tokamak

Measurement of lower hybrid waves using microwave scattering technique in Alcator C-Mod

Plasma heating in stellarators at the fundamental ion cyclotron frequency

Electromagnetic fields and waves

CHAPTER 9 ELECTROMAGNETIC WAVES

Magnetically Induced Transparency and Its Application as an Accelerator

SPECTRUM AND PROPAGATION OF LOWER HYBRID WAVES IN THE ALCATOR C TOKAMAK

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

High-Gradient, Millimeter Wave Accelerating Structure

Supplementary Figure 1: SAW transducer equivalent circuit

Diffusion during Plasma Formation

Dynamics of Drift and Flute Modes in Linear Cylindrical ECR Plasma

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission )

Heating and current drive: Radio Frequency

Problem set 3. Electromagnetic waves

Transport Improvement Near Low Order Rational q Surfaces in DIII D

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method

Electron-Acoustic Wave in a Plasma

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod*

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Improved RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies in Reactor-Relevant Plasmas

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies

PFC/JA-93-5 ANOMALOUS ELECTRON STREAMING DUE TO WAVES IN TOKAMAK PLASMAS. April S. D. Schultz, A. Bers, and A. K. Ram

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018)

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Energetic particle modes: from bump on tail to tokamak plasmas

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

Progress on Quantitative Modeling of rf Sheaths

Space Plasma Physics Thomas Wiegelmann, 2012

Study of Laser Plasma Interactions Using an Eulerian Vlasov Code

Influence of Plasma Opacity on Current Decay after Disruptions in Tokamaks

Electromagnetic Theory for Microwaves and Optoelectronics

Production of Over-dense Plasmas by Launching. 2.45GHz Electron Cyclotron Waves in a Helical Device

Let s consider nonrelativistic electrons. A given electron follows Newton s law. m v = ee. (2)

Note on Group Velocity and Energy Propagation

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES*

plasm-ph/ Feb 1995

Absorption suppression in photonic crystals

Physical Cosmology 12/5/2017

Propagation of Radio Frequency Waves Through Density Filaments

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS

NON LINEAR ANOMALOUS SKIN EFFECT IN METALS

Interaction of an Intense Electromagnetic Pulse with a Plasma

WaFu Notes Discussions around the cold plasma model

Plasma Radiation. Ø Free electrons Blackbody emission Bremsstrahlung

Relativistic laser beam propagation and critical density increase in a plasma

Bursty Transport in Tokamaks with Internal Transport Barriers

Wave-particle interactions in dispersive shear Alfvèn waves

September Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts USA

Coulomb entangler and entanglement-testing network for waveguide qubits

Frozen light in photonic crystals with degenerate band edge

Particle-in-Cell Simulation of Power Coupling of the Grill of the KSTAR 5.0-GHz LHCD Launcher

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

GA A24016 PHYSICS OF OFF-AXIS ELECTRON CYCLOTRON CURRENT DRIVE

J10M.1 - Rod on a Rail (M93M.2)

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas

Guided and defect modes in periodic dielectric waveguides

SciDAC CENTER FOR SIMULATION OF WAVE-PLASMA INTERACTIONS

Destruction of a Magnetic Mirror-Trapped Hot Electron Ring by a shear Alfven Wave

Analytical Study of Formulation for Electromagnetic Wave Scattering Behavior on a Cylindrically Shaped Dielectric Material

Upper Hybrid Resonance Backscattering Enhanced Doppler Effect and Plasma Rotation Diagnostics at FT-2 Tokamak

ION THERMAL CONDUCTIVITY IN TORSATRONS. R. E. Potok, P. A. Politzer, and L. M. Lidsky. April 1980 PFC/JA-80-10

Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media

MHD Simulation of High Wavenumber Ballooning-like Modes in LHD

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator

Power loss in a conducting surface in terms of linear surface current density and surface resistance.

Fundamentals of Magnetic Island Theory in Tokamaks

2 Relativistic shocks and magnetic fields 17

Pulsed Lasers Revised: 2/12/14 15: , Henry Zmuda Set 5a Pulsed Lasers

Engineering Electromagnetics

Nonlinear processes associated with Alfvén waves in a laboratory plasma

Hydrodynamic theory of plasma ion heating by the beats of oppositely directed electromagnetic waves

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Soliton propagation in an inhomogeneous plasma at critical density of negative ions: Effects of gyratory and thermal motions of ions

Experiments with a Supported Dipole

PFC/JA Particle Confinement Improvement During 2.45GHz Lower-Hybrid Current Drive Experiments

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

GA A25229 FINAL REPORT ON THE OFES ELM MILESTONE FOR FY05

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.

Monoenergetic Proton Beams from Laser Driven Shocks

Lecture 5: Photoinjector Technology. J. Rosenzweig UCLA Dept. of Physics & Astronomy USPAS, 7/1/04

Surface Plasmon Polaritons on Metallic Surfaces

Plasma Processes. m v = ee. (2)

Computational studies on scattering of radio frequency waves by density filaments in fusion plasmas

RELATIVISTIC EFFECTS IN ELECTRON CYCLOTRON RESONANCE HEATING AND CURRENT DRIVE

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

Electron trapping and charge transport by large amplitude whistlers

Transcription:

NONLINEAR COUPLING AND PROPAGATION OF LOWER HYBRID WAVES* K. S. Theilhaber and A. Bers PFC/RR-81-5 February 1981 *To appear in Proceedings of the 4th Topical Conference on RF Heating of Plasma, University of Texas at Austin, February, 1981.

NONLINEAR COUPLING ANI) PR0PAGATION OF LOWER IIYBRII) WAVES K. S. Theilhaber and A. Bers Plasma Fusion Center, MIT Cambridge, NIA 02139 The nonlinear coupling and propagation of lower hybrid waves excited by a waveguide array arc examined numerically in a model of an inhomogencous Tokamak plasma. The nonlinearity is the ponderomnotive force which results in self-modulation of the lower hybrid waves. We evolve self-consistently the fields in time to a steady-state. Both travelling and standing wave excitations are considered. The dependence of reflectivity on the nonlinearity is studied and found to exhibit qualitative behavior seen in experiments. The nonlinearity also produces density "holes" in front of the waveguides, and the accompanying fields are strongly focused. In Fourier space, the parallel wave spectrum is broadened and upshifted. In the travelling wave case the spectrum is broadened but remains unidirectional, that is negative k- are not generated. I. Introduction : Lower hybrid heating experiments with waveguide arrays have involved large incident power densities, sometimes exceeding 10 kw/cm 2 and have shown strong deviations from linear coupling theory [1,2]. At such power levels ponderomotive effects are expected to be large and might explain this nonlinear behavior. In this paper we investigate numerically coupling and propagation of lower hybrid waves in the presence of self-consistent ponderomotive density modulation. The numerical work is focused on a number of representative cases: (i) a travelling wave excitation, with a fairly narrow spectrum in k, space; this might be imposed by a broad waveguide array (at least 4-6 elements) with 1 progressive phasing; (ii) a standing wave excitation, with two narrow peaks in the s)ectrum, obtained by 7r phasing of the array; and (iii) a two-waveguide array excitation, with 0 or 7r phasing. We are principally concerned with two aspects of the coupling, the total power coupled, and the wave spectrum exiting the nonlinear region. II. Propagation Equations : We assume a slab geometry for edge propagation. The coordinate z points in the toroidal direction, and x is the direction of the equilibrium density gradient. We ignore variation in y and take E. = 0. Because of low temperatures near the edge (T < 5-20 cv) we neglect thermal dispersion. We consider waves with frequency UA, Qi < wo < Qe where f 2 i,e are the cyclotron frequencies, and allow for slow time variations by writing: E(r, t) = P(r, t)eu4t + c.c.. We then expand Maxwell's equations, assuming that the elements of the dielectric tensor appear as in the linear case. The density modulation caused by the high frequency fields is n = no(x) exp (- j 2I2/E1,,) where El = 4mew 2 (Te + Tj)/e 2. This density appears in the expressions for the elements of the dielectric tensor. We assume a linear density gradient near the edge. Eliminating k, from the Maxwell equations and neglecting terms in 2 /(t 2, we obtain a single evolution equation fore,: i 92(E aoe) O2E - ( + i)q(e-m l - ao)e) = 0 (1) * Work supported by DOE contract DE-AC02-78ET-51013 1

with the normalizations: = Q 1 / 0, = -z, =, ao = 2/3 and E = The parameter a is proportional to the density gradient, a In general the parameter a is large, a - 1000, so that we can neglect terms in ao. The function (E) allows for temperature inhoiogeneity, 3(E) = (To + TO/T() + Ti(O)). E'q.(1) is not dynamically correct because we took the density modulation to be instantaneous, while in fact it is created at a rate involving the transit of ion acoustic waves. Thus only the steady-state equation is physically correct, and time C\olution is principally an artifice for obtaining the steady-state. In the steadystate. c9/r = 0, eq.(1) has a conservation law. The total E-dircted Poynting flux is conserved, P(E) =. Re(- IEIH*)d = constant, where H, the normalized H, is found by solving: (-, + 1)H = i46e. Consider, for instance, PETULA-like parameters, with frequency f = 1.25 Giz and edge temperatures Ti < T, ~ 5 ev [2]. We assume the coupling region ends at the edge of the limiter shadow, zmax ~.1 cm, beyond which the temperature rises and reduces nonlinearity. Taking a ~ 1000, we find that x= 2.6. In the experiments, as much as 10 kw/cm 2 were fed into the waveguides, for which we have Emax 3.3. We integrate eq.(l) with these maximum values in mind. III. Numerical Solutions : Eq.(l) is solved by a finite difference, implicit scheme. The computational region is a rectangle, with, typically 0 < E < E, = 3.5 and -19.5 = -- rt < <?m = 19.5. A reasonable mesh size is N, X N, = 27 x 256, and this is obtained with AE = 0.135 and A = 0.15. The time step used is Ar ~- 0.25, and roughly 100-200 time steps are necessary to reach the steady-state after the excitamion at ( = 0 is turned on. At ( =, a numerical radiation boundary condition is implemented. At the boundaries ( =, periodic or zero boundary conditions are applied. The nonlinear region, where #(E) = 1, extends to dm = 2.0. To avoid aliasing problems with the nonlinearity, a digital filter was used. This filter introduces artificial dissipation in n.,,_ > n 1. For n,, < nj, the dissipation is negligible. The "harm" done to larger Fourier components can be gauged by the total power lost, that is P(E,,,,K) - P(0), as waves propagate from the source to the far boundary. In most nins nj - 6, and power loss was under 10%. IV. Trai'elling Wave Excitation : The simplest numerical "experiment" involves a travelling-wave excitation, with a narrow spectrum at the edge. We impose: E(0, = E) Eb e ( -, where o > lr/vo. This simulates a long array with 7r/2 phasing, with each waveguide of width 7r/. The power coupled for an infinite travelling wave can be found from a one-dimensional model [3,4]. If we refine this model by averaging over the finite envelope, we obtain excellent agreement with the 21) numerical resulks, even when the "array" is fairly small, containing only 4-6 elements. The main feature is that the power coupled "saturates" at large amplitudes at the edge. When the waveguide impedance is taken into account, there may be regions where the coupling improves because the impedance mismatch between plasma and waveguide decreases. The linear field structure (EO < 1) consists of a single resonance cone, almost symmetrical about its axis. The spectrum changes little in amplitude as the fields penetrate the plasma, each n" Fourier component picking up the phase of an Airy function. In the nonlinear regime the field structure is changed in two ways. The resonance cone is shifted away from the magnetic field and penetrates faster into the plasma; and a "shock"- like steepening forms on the edge farthest from the magnetic field axis. in Fourier space, this steepening results in a broadening of the spectrum. 'Tlhis broadening is directed toward larger positive n.'s and we see little generation of negative n.'s, which would correspond to nonlinear reflection in the resonance cone. The overall nonlinear effect on the power spectrum is modest. For instance in one run we'have vo = 2.0 and o = 4.0. If we define 0 as the center of gravity of the power spectrum in n, > 0, then as E increases to 3.0 2

the shift in 0 is only about 0.1. V. Standing Wave Excitation The next complication is to introduce a standing wave excitation, of the form E(O, = E4) 0 cos(vu') -. This simulates a large array with alternate zero 7r phasing. An example of linear field structure is shown in fig.(1 ). In this run, V() = 1.7 and g = 6.0. The excitation results in two smooth resonance conies exiting the coupling region. The nonlinear structure is shown in fig.(2), with E) = 3.0. h'le resonance cones are now split into several parallel channels. In Fourier space, we see coupling to odd harmonics of vo, with subsidiary peaks of the spectrum forming at nz ~ 5.1, 8.5,..., and it is the beating of these harmonics which results in filamentation of each resonance cone. Such an effect can be predicted qualitatively from the equation for an infinite cosine excitation. The higher harmonics do not carry very much power. For instance, with E = 3.0, we find that A0 ~ 0.15, a small shift in the center of the positive power spectrum. Tlhe nonlinear effect on the total power coupled is large however, and we have found a one-dimensional model to predict it. Because higher harmonics are small in the immediate vicinity of the excitation, we neglect them in doing a Fourier expansion of the fields in harmonics of e""". The coupling equation for the amplitude of eivor is: % + (v3-1)eq( E 2 )EI = 0 where Q(y) = e-'(io(y) - II(y)), Ei(0) = E and radiation is required at large E. This equation ressembles the one for the travelling wave excitation, and the same power saturation occurs. Of course, the harmonic generation and filamentation in propagation are not described by this simplified equation. fiq.(i)fiq.(2) VI. Waveguide Coupling The sources considered above are idealized versions of large arrays We now consider a more finite excitation, that of two phased waveguides. Our computations are done with only the dominant modes in the waveguides. In each run, we measure 2 the plasma admittance Yp, and then calculate the reflection coefficient according to: R 2-1. Some results are shown in fig.(3) where R 2 is plotted against the self-consistent incident power. We considered a PETULA like array, with waveguide width b = 1.0 in nonrmalized units. Both 0 = 0 and 0 = 7r phasings are considered, for density gradients of a = 540 and a = 64. Power densities are obtained assuming an edge temperature T, = 5 ev. When the normalized amplitude is E = 1, the power density is 0.93 kw/cm 2. For both density gradients there is convergence and crossing of the reflection coefficients with increasing 3

i power. This is the result of a steady decrease in the plasma admittance Yp. The field structure is also changed considerably. We see the formation of narrow channels in front of the waveguidc mouths where the density is strongly depressed. At the end of this channel the fields seperate into resonance cones which themselves are filamented as in fig.(2). 0..0 1.0 0..z 4 41 0...... 1. -:40 -- --..... C "9. 3 4 5 6 7 6406 In Fourier space, the spectrum of the excitation fig. (3) is shifted and broadened by the nonlinear effects. In particular, we see growth of Fourier components about v = 2ir/b for both phasings. The shift of the center of gravity of the power spectrum is again modest. For instance, with P. (kw) b = 1.5, we found a shift AC = 0.2 for 0 = lflcl 7r and AO = 0.5 for # = 0, as Eo increases to 3.0. On the other hand the broadening of the spectrum may suffice to shift a considerable amount of power above accessibility. This is particularly true for # = 0 phasing. The linear spectrum has less than 10% power above v = P (kw) 2.0, and this is increased to over 50% when inc - E = 2.0. VI. Conclusions : We analyzed the nonlinear excitation of lower hybrid waves with models of waveguide arrays. Our focus was on predicting the total power coupled into the plasma and how it is distributed in the nonlinear power spectrum. We found that power coupled from large arrays (at least 4-6 waveguides), for travelling or standing wave excitations, can be found by solving one-dimensional equations. The nonlinear effects o the power coupled are strong, with saturation at large powers.. However, when matching to the waveguide impedance is taken into account, the coupling may improve in some range of incident power. The spectrum generated inside the plasma is not drastically changed, in part because of the finite length in x of the nonlinear region. With the standing wave, Fourier modes at odd spatial harmonics are generated but do not carry very much power. In real space, the nonlinear effects are more striking and result in the distortion or filamentation of the resonance cones. We also considered a two-waveguide excitation. Again, the nonlinear effects on the coupling are strong, with the reflection coefficients for 0 and 7r phasing changing considerably. In real space, straight narrow channels form in front of the waveguides. In Fourier space the spectrum is broadened. When accessibility effects are taken into account, the nonlinear modification of power which reaches the plasma interior may be considerable. In particular, these results suggest that a linearly "poor" coupler (i.e. a single waveguide) may be improved by nonlinear effects, both because its matching to the plasma is improved and because a large amount of its spectrum is pushed above accessibility. 4

References [1] Nagashima, T., Fujisawa, N., Lower Hybrid Heating Experiment in JFT-2 Tokarnak, Proc. of Joint Varenna-Grenoble Symposium on Heating in Toroidal Plasmas, Grenoble, 1978. [21 Briffod, G., Review of I ower Hybrid Results in the WEGA and PIETULA Tokamaks, IAEA Metting, Nagoya Plasma Physics Conf., April 1980. [3] Chan, V., Chiu, S., Phys. of Fluids, 22, 1724 (1979) [4] Fukuyamna, A., Morishita, T., Furutani, Y., Plasma Phys., 22, 565 (1980). [5] Krapchev, V. B., Theilhaber, K., Ko., K. C., Bers, A., M [1' Report PFC/JA-80-20, Jan. 1980. 5