New cases of prototropic tautomerism in substituted pyridines

Similar documents
Basic One- and Two-Dimensional NMR Spectroscopy

Technical Note. Introduction

NMR hide-and-seek challenge

Tautomerism in 1-hydroxy-2-naphthaldehyde Schiff bases: Calculation of tautomeric isomers using carbon-13 NMR

Magnetic Resonance Spectroscopy

Int. J. Mol. Sci. 2005, 6, International Journal of

Three-ring tautomerism of the 2 -isoxazoline - 2 -pyrazoline - 1,3,4-thiadiazine system

Supporting Information

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms

Tautomerism and Keto Enol Equilibrium

Magnetic Nuclei other than 1 H

Spectroscopy 13 (1997) IOS Press. Thomas Junk Hazardous Waste Research Center, Louisiana State University, Baton Rouge, LA 70803, USA

NMR Studies of a Series of Shikimic Acid Derivatives

The Hydrogen Bond and Proton Transfer in Trifluoroacetic Acidisoquinoline. of the Medium

به نام خدا روشهای سنتز مواد آلی

Keywords: azulene, heterocycles, NMR chemical shifts. Considerations on 1 H-NMR spectra

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

Protein dynamics from NMR Relaxation data

molecules ISSN

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY]

SYSTEMWIDE CHEM 2425 FINAL EXAM. Department Of Physical Sciences

CHAPTER 19: CARBONYL COMPOUNDS III

Module 20: Applications of PMR in Structural Elucidation of Simple and Complex Compounds and 2-D NMR spectroscopy

Exemplar for Internal Achievement Standard. Chemistry Level 3

Massachusetts Institute of Technology Organic Chemistry Hour Exam #1. Name. Official Recitation Instructor

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

Anastasia A. Fesenko, Ludmila A. Trafimova, Anatoly D. Shutalev*

Supporting Information. Use of activated enol ethers in the synthesis of pyrazoles: reactions with hydrazine and a study of pyrazole tautomerism

Carbon and Heteronuclear NMR on the Bruker

Tools for Structure Elucidation

Nuclear Magnetic Resonance Spectroscopy (NMR)

Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt. A.V. Simakin and G.A.

DEPARTMENT: Chemistry

AMINES. 4. From your knowledge of the effects involved, predict or explain experimental results. Important areas include:

Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible

Paper 12: Organic Spectroscopy

Relaxation, Multi pulse Experiments and 2D NMR

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Reassignment of the 13 C NMR spectrum of minomycin

CHEM 347 Organic Chemistry II (for Majors) Instructor: Paul J. Bracher. Quiz # 4. Due in Monsanto Hall 103 by: Friday, April 4 th, 2014, 7:00 p.m.

NMR SATELLITES AS A PROBE FOR CHEMICAL

8.2 The Nuclear Overhauser Effect

Construction of Carbon-13 Nuclear Magnetic Resonance Database System with Intensities

NMR SPECTROSCOPY IN ORGANIC CHEMISTRY

Determining Chemical Structures with NMR Spectroscopy the ADEQUATEAD Experiment

2D NMR: HMBC Assignments and Publishing NMR Data Using MNova

Pulsar. Delivering NMR to your benchtop

Module No and Title. PAPER No: 5 ; TITLE : Organic Chemistry-II MODULE No: 25 ; TITLE: S E 1 reactions

T 1, T 2, NOE (reminder)

NMR at UNC: Tips, Tricks, and Techniques

Identification of Lactam-Lactim Tautomers of Aromatic. Heterocycles in Aqueous Solution Using 2D IR Spectroscopy

EXPERIMENT 8. NMR STUDY OF A KETO-ENOL EQUILIBRIUM CONSTANT

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle

AMINES. 3. From your knowledge of the effects involved, predict or explain experimental results. Important areas include:

Synthesis of N-(3(5)-Aryl-1,2,4-triazol-5(3)-yl)-N -carbethoxythioureas and Their Tautomerism in DMSO Solution

NMR NEWS June To find tutorials, links and more, visit our website

SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition

CHEM 343 Principles of Organic Chemistry II Summer Instructor: Paul J. Bracher. Quiz # 3. Monday, July 21 st, :30 a.m.

Chapter 20: Identification of Compounds

1/4/2011. Chapter 18 Aldehydes and Ketones Reaction at the -carbon of carbonyl compounds

10. Amines (text )

Supporting Information for. Silver-catalyzed intramolecular hydroamination of alkynes in

Chemistry 605 (Reich)

CHEM 2220 Organic Chemistry II: Reactivity and Synthesis Prof. P.G. Hultin. FINAL EXAM Winter Session 2017R

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products:

Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

INTERACTION BETWEEN DRUGS AND BIOMEDICAL MATERIALS. I. BINDING POSITION OF BEZAFIBRATE TO HUMAN SERUM ALUBMIN

The study of thione-thiol tautomerism of 4-amino-5-(4-nitrophenyl)- 2,4-dihydro-3H-1,2,4-triazole-3-thione by HPLC-MS method

STRATEGY IAS / IFOS Strategy for Chemistry Optional:- Secret of Scoring Maximum marks:- How to prepare for mains Exam:-

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

NMR = Nuclear Magnetic Resonance

Reaction mechanisms offer us insights into how reactions work / how molecules react with one another.

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Ch 22 Carbonyl Alpha ( ) Substitution

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Organic Chemistry. Alkynes

Analysis of Conformational Influences Within (2R,3R)-butanediol

Introduction to Relaxation Theory James Keeler

Characteristic fragmentation behavior of 5-[1-aryl- 1H-pyrrol-2-yl]-1H-tetrazole by electrospray ionization tandem mass spectrometry

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. HINDERED ROTATION IN N-METHYLFORMAMIDE. A PEPTIDE-BOND MODEL SYSTEM.*t

CM Chemical Spectroscopy and Applications. Final Examination Solution Manual AY2013/2014

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

How to make pyridines: the Hantzsch pyridine synthesis

K ex. Conformational equilibrium. equilibrium K B

Headspace Raman Spectroscopy

Chapter 19. Organic Chemistry. Carbonyl Compounds III. Reactions at the a-carbon. 4 th Edition Paula Yurkanis Bruice

Tautomerism in Alkyl and -OH Derivatives of Heterocycles containing Two Heteroatoms

Chapter 5 N S. Typical Reactivity of Pyridines, Quinolines and Isoquinolines

The use of two-dimensional NMR spectroscopy to determine the rates of and activation parameters for the 3,2-hydride shift in the 2-norboryn cation

5. Carbon-13 NMR Symmetry: number of chemically different Carbons Chemical Shift: chemical environment of Carbons (e- rich or e- poor)

Nuclear Magnetic Resonance

Chem 3372: Organic Chemistry Summer II 2017, M F 3:30 pm 5:20 pm Fondren Sci Bldg 133

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Transcription:

SIFT DESK Journal of Chemical Engineering And Bioanalytical Chemistry New cases of prototropic tautomerism in substituted pyridines Research Author: Talsi Valentine September 2017 Copy rights: This is an Open access article distributed under the terms of Creative Commons Attribution 4. 0 International License. Received Date: 12 th June 2017 Accepted Date: 30 th July 2017 Published Date:04 th Sep 2017 V.P. Talsi, S.N. Evdokimov Institute of Hydrocarbon Processing Problems, Siberian Branch, Russian Academy of Sciences,ul. Neftezavodskaya 54, Omsk, 644040 Russia CORRESPONDENCE AUTHOR V.P. Talsi Email: vtalsi@ihcp.ru ABSTRACT When identifying newly synthesized heterocyclic compounds by the 13C NMR, broadening and disappearance of signals of most quaternary and some tertiary carbons were observed in a number of spectra, which was attributed to prototropic tautomerism. The schemes of tautomeric transformations are proposed and justified. The structural features and other conditions necessary for the occurrence and observability of tautomerism are determined. It is shown that the more informative spectra can be obtained by an increase of the analysis temperature. KEYWORDS: NMR 13 C, 1 H, prototropic tautomerism, substituted pyridines INTRODUCTION Prototropic tautomerism is characteristic quality of some organic compounds to exist in the form of two or more structural modifications tautomers which undergo mutual transformations as a result of proton transfer and redistribution of π-electrons [1]. Keto-enol tautomerism and various types of prototropic tautomerism of heterocyclic nitrogen compounds are particularly well-known [2]. The main method of tautomerism investigation is 1 H, 13 C, 15 N NMR spectroscopy, even 17 O, 31 P NMR being used in some cases. So many articles devoted on identification of tautomers and the determination of the thermodynamic and kinetic parameters of the tautomeric reactions by NMR have been published, that, according to experts on the topic [2], the publication of one more paper on tautomerism should be justified either by the uniqueness of the systems involved or the method of their investigation. Nevertheless we believe to be encountered with the deserving to be issued special cases of tautomerism when analyzing the 13 C NMR spectra of pyridine derivatives provided by the Omsk State University researchers [3]. RESULTS AND DISCUSSION We have already observed the broadening and disappearance of signals in 13 C NMR spectra due to chemical exchange induced by hindered rotation around urethane bond or hindered pyramidal inversion of nitrogen [4, 5] but in our practice the analogous well known phenomenon associated with tautomerism [2] has been observed for the first time. In the case of tautomerism, it is usually desirable to deal with fast or slow chemical exchange conditions when narrow (averaged or individual) NMR signals of the atoms of tautomers are observed. The intermediate ex- WWW.SIFTDESK.ORG 38 Vol-1 Issue-1

Author: Talsi Valentine change rate, when the lifetime of individual tautomers is comparable to the reciprocal of the difference in chemical shifts (expressed in Hz) of the corresponding atoms which belongs to different tautomers, leads to broadening and even complete disappearance in a case of 13 C NMR of the signals [4, 5]. It was disappearance of some signals of 13 C NMR spectra of DMSO-D 6 solutions of 6-oxo-4-phenyl-1,6-dihydro -2,2'-bipyridine-5-carboxamide (1) and 6-oxo-4-phenyl-1,6-dihydro-2,2'-bipyridine-5-carbonitrile (2) (Scheme 1) that we encountered with. The shown random carbon numbering of pyridine derivatives is used in the article for signal assignment in NMR spectra. Figures 1, 2 contain the 1 H, 13 C NMR spectra of compound (1) and the assignment of signals made taking into account two-dimensional correlation spectra obtained with the help of pulse programs HSQC, HMBC, in view. All the protons of compound (1) signals fully correspond to the proposed structural formula (Fig. 1). Initially, the signals of carbon 2 5 in the 13 C NMR spectrum of compound (1) (Fig. 2) were not found. Only after a long (18 h) acquisition it was possible to detect the missing, strongly broadened signals of the carbons. We consider the signals of carbon 2-5 to be broadened as a result of the chemical exchange shown in scheme 1 on a base of the following facts. The phenomenon is not observed in a case of the large number of the similar hindered bulk pyridine derivatives available in the absence of NH protons in molecular structure. In the absence of the second pyridine cycle as the substitute and the second N-atom as a potential target of tautomeric proton transfer no broadening of the signals in the 13 C NMR spectrum occurs. For example 13 C NMR spectrum of 4-(4-methoxyphenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (3) in DMSO-D 6 (Fig. 7, suppl. materials) contains no broadened signals, though lactam-lactim tautomerism is well known [2]. So it is the suggested tautomeric equilibrium (Scheme 1) that provides the conditions for the intermediate exchange rate and causes broadening of the carbons 2-5 signals of compound (1). Though we have no arguments based on spectroscopy (NMR) or mathematic modeling in favor of pictured zwitter ionic structures (scheme 1) they seems to be reasonable. At least the analogues polar structures are included in the published tautomeric equilibrium schemes [2]. WWW.SIFTDESK.ORG 39 Vol-1 Issue-1

SIFT DESK Fig. 1 : 1 H NMR spectrum of compound (1). Fig. 2 : 13 C NMR spectrum of compound (1). WWW.SIFTDESK.ORG 40 Vol-1 Issue-1

Author: Talsi Valentine NMR spectra of compound (2) with the assignment of signals are shown on figures 3, 4. The simple and informative 1 H NMR spectrum (Fig. 3) of the compound (2) fully corresponds to the proposed structure. Alongside with that, in 13 C NMR spectra of compound (2) the signal of carbons 1-6 were not observed at the temperature of 30 and 60 0 C even after 30 hours of acquisition (Fig. 4). The spectra contain only two signals of the carbons 11, 17 of the compound (2). Consequently, the fast exchange (Scheme 1) conditions are realized only for these carbons due to the quite expected small chemical shifts difference in the tautomers. The temperature increase up to 90 C made it possible to create conditions for rapid exchange for other carbons of the compound (2), except for carbons 2, 5. As a result, the signals of carbons 1, 3, 4, 6 broadened to a different degree in the spectrum become observed (Fig. 4). Chemical exchange similar to that depicted in Scheme 1 made it possible to explain the difficulties in obtaining of an adequate 13 C NMR spectrum of methyl [2-chloro-4-(4-methoxyphenyl)pyridin-3-yl]carbamate (4) due to the broadening of several signals (see Scheme 2). Fig. 3 : 1 H NMR spectrum of compound (2). WWW.SIFTDESK.ORG 41 Vol-1 Issue-1

SIFT DESK Fig. 4. 13 C NMR spectrum of compound (2). The 1 H NMR spectrum (Fig. 5) of the compound (4) corresponds to its structural formula. In accordance with the proposed scheme 2, the signals of carbons 1, 2, 3, 5, 6 of the compound (4) in Fig. 6 are several times wider than the signals of carbon 10, 13 of phenyl substitute hardly influenced by suggested tautomerism. It took 12 hours to obtain the spectrum shown in Fig. 6. At the same time, an hour was enough to record the full spectrum of 2-chloro-4-(4-methoxyphenyl) nicotinamide (5) and 4-(4-methoxyphenyl)-2-methylnicotinamide (6), which did not contain any broadened signals (Fig. 8, 9 Suppl. materials). Chemical exchange depicted in Schemes 1 and 2 is probably facilitated when the negative charge which arises at the removing of NH proton during its transfer is stabilized by delocalization. In the case of the compound (4) this delocalization is provided by the carboxylic substitute and in the case of the compounds (1), (2) by the formation of an aromatic system. It could also be necessary that both nitrogen atoms between which the proton moves during tautomeric transformation are in the single conjugation chain and can freely exchange not only protons, but also π-electrons. This condition is satisfied for the compound (4) and is violated in a case of pyridines (5), (6) which gives no broadened signals in 13 C NMR spectra. Another condition for the manifestation of tautomerism depictured on scheme 2 requires the application of prototropic polar solvent (DMSO-D 6 in our case). WWW.SIFTDESK.ORG 42 Vol-1 Issue-1

Fig. 5. 1 H NMR spectrum of compound (4). Fig. 6. 13 C NMR spectrum of compound (4). Completely corresponding to the structural formula, the 13 C NMR spectrum of methyl [4-(4-methoxyphenyl)-2- WWW.SIFTDESK.ORG 43 Vol-1 Issue-1

methylpyridin-3-yl] carbamate (7) in CDCl 3 (Fig. 10, suppl. materials) which differs from compound (4) only by exchange of Cl to CH 3 in its molecule have no broadened signals. It should be noted that the considered tautomerism is manifested in 1 H NMR spectra either. For example, similar proton signals are on average twice more broad in compound (4) than in (5) or (6). But this fact is usually ignored, since there are no problems with identification. Fig. 7 (suppl. mat.) 13 C NMR spectrum of pyridine (3) in DMSO-D 6 The especially demonstrative case of tautomerism has been detected in a case of 1 H, 13 C NMR spectra of CDCl 3 solution of 1-[6-methyl-2-(methylamino)-4-(4-methylphenyl)pyridin-3-yl]ethanone (8). There are spectra of compound (8) and signal assignment in Fig. 11, 12. Essential broadening of several signals in 1 H, 13 C NMR spectra of pyridine (8) is explained reasonably by the suggested scheme 3 of chemical exchange. Close vicinity of N-atoms participating in tautomeric proton transfer in compound (8) can explain its occurrence in not prototropic CDCl 3. WWW.SIFTDESK.ORG 44 Vol-1 Issue-1

Scheme 3 Fig. 8 (suppl. mat.) 13 C NMR spectra of pyridine (5) in DMSO-D 6 WWW.SIFTDESK.ORG 45 Vol-1 Issue-1

Fig. 9 (suppl. mat.) 13 C NMR spectrum of pyridine (6) in DMSO-D 6 Fig. 10 (suppl. mat.) 13 C NMR spectrum of pyridine (7) in CDCl 3 WWW.SIFTDESK.ORG 46 Vol-1 Issue-1

Fig.11 1 H NMR spectrum of pyridine (8) Fig.12. 13 C NMR spectrum of pyridine (8). Several unlabelled very narrow signals belong definitely as was shown experimentally to acquisition artifacts. WWW.SIFTDESK.ORG 47 Vol-1 Issue-1

Conclusion Serious problems of identification of some pyridine derivatives by NMR because of the broadening of signals can be reliably attributed to special cases of prototropic tautomerism. Experimental The 13 C, 1 H spectra of pyridine derivatives (1) - (7) were recorded on an Avance 400 (Bruker) NMR spectrometer using mainly DMSO-D 6 as a solvent and CDCl 3 for deuterium stabilization and as an external standard. To record 13 C NMR spectra, the APT pulse program was applied with a relaxation delay of 6 sec. To exclude saturation as a reason for reducing the intensity of the signals of the carbons, a large relaxation delay (40 s) was employed in a number of experiments. The durations of π/2 pulses were 3μc ( 1 H) and 7μc ( 13 С). The pulse programs HSQC, HMBC (versions with gradient pulses) which are part of the program package of the spectrometer were used to record two-dimensional correlation spectra. The authors are grateful to Dr.Sc. A.S. Fisyk and Ph.D. G.P. Sagitullina for providing spectrally pure samples of heterocyclic compounds. REFERENCES 1. Tautomerism: Methods and Theories, First Edition. Edited by L. Antonov. 2014 Wiley-VCH Verlag GmbH & Co. 2. R.M. Claramunt, C. Lơpez, M.D.Santa María, D. Sanz, J. Elguero, Progress in NMR Spectroscopy, 2006, 49, 169-2006. DOI: 10.1002/chin.200711279 3. G.P.Sagitullina, Chem. Heterocycl. Compd. 2011, 4, 635. 4. V.P Savin,., V.P. Talzi, N.O. Beck, N.O., Zh. Org. Khim.,1984, 20, 1842-1848. 5. V.P. Tаlsi., S.N. Еvdokimov, Zh. Org. Khim. 2017 (in press). Contact Us: SIFT DESK Deerpark Dr, #75, Fullerton,CA,92831,United States. E-mail: helpdesk@siftdesk.org Visit us on the web at: www.siftdesk.org WWW.SIFTDESK.ORG 48 Vol-1 Issue-1