Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland

Similar documents
Reactivity of Diiron Imido Complexes

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Supporting Information

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

Supporting Information Palladium-catalyzed, ortho-selective C-H halogenation of benzyl nitriles, aryl Weinreb amides and anilides.

Luminescent Cu(I) complexes with bisphosphane and halogen-substituted 2,2'-bipyridine ligands

Halogen bonding of N-bromosuccinimide by grinding

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting Information

Supporting Information

Rapid Cascade Synthesis of Poly-Heterocyclic Architectures from Indigo

Supporting Information

Supporting Information

Synthesis of Vinyl Germylenes

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

Supporting Information

Electronic Supporting Information. for. Group 13 Complexes of Dipyridylmethane, a Forgotten Ligand in Coordination Chemistry

Validation of Experimental Crystal Structures

Supporting Information

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Co(I)-Mediated Removal of Addends on the C60 Cage and Formation of Monovalent Cobalt Complex CpCo(CO)(η 2 -C60)

Synthesis and Unique Optical Properties. of Selenophenyl BODIPYs. and Their Linear Oligomers

organic papers Malonamide: an orthorhombic polymorph Comment

,

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Electronic Supplementary Information

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

Supplemental Information

Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α- Methylidene-β-Lactams

Selective total encapsulation of the sulfate anion by neutral nano-jars

New Journal of Chemistry. Electronic Supplementary Information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Supplementary Information

Supporting Information

Supporting Information. Can Melting Point Trends Help Us Develop New Tools to Control the Crystal Packing of Weakly Interacting Ions?

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Electronic Supplementary Information for Sulfur, Oxygen, and Nitrogen Mustards: Stability and Reactivity

SUPPORTING INFORMATION FOR. Site-Selective Benzannulation of N-Heterocycles in Bidentate Ligands Leads

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

Supplementary Information. Single Crystal X-Ray Diffraction

Supporting Information

Electronic Supplementary Information

A thermoreversible supramolecular polyurethane with excellent healing ability at 45 ºC

Manganese-Calcium Clusters Supported by Calixarenes

Comparison of the Electronic Properties of Diarylamido-Based PNZ Pincer Ligands: Redox Activity at the Ligand and Donor Ability Towards the Metal

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Dynamics of Caged Imidazolium Cation Toward Understanding The Order-Disorder Phase Transition and Switchable Dielectric Constant

Supporting Information

Synthesis and structural characterization of homophthalic acid and 4,4-bipyridine

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Electronic Supplementary Information (ESI)

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

SUPPORTING INFORMATION

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Supporting Information

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules.

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Oxidation of cobalt(ii) bispidine complexes with dioxygen

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2002

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Structural Elucidation of Sumanene and Generation of its Benzylic Anions

The oxide-route for the preparation of

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013.

Supporting Information

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

via Organomercurial Chemistry

Supporting Information

Supplementary Information

(1) Single Crystal XRD Data of 6b and 6c 2-3

Supporting Information

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Anion binding vs deprotonation in colorimetric pyrrolylamido(thio)urea based anion sensors

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

Thienopyrrole and Selenophenopyrrole Donor Fused with Benzotriazole Acceptor: Microwave Assisted Synthesis and Electrochemical Polymerization

Halogen halogen interactions in diiodo-xylenes

Halogen bonded dimers and ribbons from the self-assembly of 3-halobenzophenones Patricia A. A. M. Vaz, João Rocha, Artur M. S. Silva and Samuel Guieu

Stereoselective Synthesis of (-) Acanthoic Acid

Supporting information. for. isatins and α-amino acids

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

metal-organic compounds

Supporting Information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Supporting Information for the Article Entitled

Supporting Information for: Tetramethoxybenzene is a Good Building Block for Molecular Wires: Insights from Photoinduced Electron Transfer

Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Dorota Kowalczyk, and Łukasz Albrecht*

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Supporting Information

Supporting Information. for. Advanced Functional Materials, adfm Wiley-VCH 2007

Supplementary Materials

University of Chinese Academy of Sciences, Beijing , China. To whom correspondence should be addressed :

Supplementary Figure 1. Mass spectrum (top) and 1 H NMR spectrum (bottom, in CDCl 3 ) of [ppy 2 IrNH] + PF 6 -.

Synthesis and Characterization of New 2,3-Disubstituted Thieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials

Transcription:

Charge Transfer Pathways in Three Isomers of Naphthalene-Bridged Organic Mixed Valence Compounds Hauke C. Schmidt, Mariana Spulber, Markus Neuburger, Cornelia G. Palivan, Markus Meuwly,* and Oliver S. Wenger* Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland Table of Contents Complete analytical data for all compounds from Scheme 1 Route of synthesis for the target molecules More detailed illustrations of the resonance structures from Scheme 2 Electrochemistry Gaussian fits of the IVCT bands with resulting parameters Computational Data Crystallographic information S2 S22 S23 S24 S26 S27 S37 S1

Figure S1. 1 H NMR spectrum of compound (N-1,8) in CDCl 3. S2

Figure S2. 13 C NMR spectrum of compound (N-1,8) in CD 2 Cl 2. S3

Figure S3. ESI-HRMS measurement of compound (N-1,8). S4

Figure S4. Elemental analysis report for compound (N-1,8). S5

Figure S5. 1 H NMR spectrum of compound (N-1,5) in CD 2 Cl 2. S6

Figure S6. 13 C NMR spectrum of compound (N-1,5) in CD 2 Cl 2. S7

Figure S7. ESI-HRMS measurement of compound (N-1,5). S8

Figure S8. Elemental analysis of compound (N-1,5). S9

Figure S9. 1 H NMR spectrum of compound (N-2,6) in DMSO-d 6. S10

Figure S10. 13 C NMR spectrum of compound (N-2,6) in DMSO-d 6. S11

Figure S11. ESI-HRMS measurement of compound (N-2,6). S12

Figure S12. Elemental analysis of compound (N-2,6). S13

Figure S13. 1 H NMR spectrum of compound (N-1) in acetone-d 6. S14

Figure S14. 13 C NMR spectrum of compound (N-1) in acetone-d 6. S15

Figure S15. ESI-HRMS measurement of compound (N-1). S16

Figure S16. Elemental analysis of compound (N-1). S17

Figure S17. 1 H NMR spectrum of compound (N-2) in acetone-d 6. S18

Figure S18. 13 C NMR spectrum of compound (N-2) in acetone-d 6. S19

Figure S19. ESI-HRMS measurement of compound (N-2). S20

Figure S20. Elemental analysis of compound (N-2). S21

Route of synthesis for the target molecules Scheme S1. Synthesis of the 5 molecules from Scheme 1 with following reagents and conditions: a).pd(dba) 2, [HP( t Bu) 3 ]BF 4, NaO t Bu, toluene, 85 C, overnight; b) I 2, bis(trifluoroacetoxy)iodobenzene, CH 2 Cl 2, 1 h r.t., 2 h reflux; c) n-buli, 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2- dioxaborolane, THF, -78 C, 2 h, r.t. overnight; d) NaNO 2, KI, H 2 SO 4 (6.9 M), -20 C, 80 C, 5 min; e) NaNO 2, KI, H 2 SO 4 (6.9 M), H 3 COOH, 0 C, r.t., 4 h; f) Pd(PPh 3 ) 4, Na 2 CO 3, THF/H 2 O, reflux, overnight. S22

More detailed illustrations of the resonance structures from Scheme 2 Scheme S2. More detailed illustrations of the mixed valence resonance forms from Scheme 2, including details regarding the R-substituents. S23

Simulated voltammograms and corresponding parameters for di-substituted naphthalenes Table S1. Simulation parameters for cyclic voltammograms. E1 [V] E2 [V] k 0 [cm/s] a f b ca initial [mol/l] c DA [cm 2 /s] d scan rate [V/s] (N-1,8) 0.35 0.18 0.005 0.5 3.6 10-4 2 10-5 0.1 (N-1,5) 0.28 0.22 0.010 0.5 2.7 10-4 1 10-5 0.1 (N-2,6) 0.26 0.19 0.005 0.5 2.7 10-4 1 10-5 0.1 a This is the standard electrochemical rate constant. b This is the transfer coefficient. c Species A is the neutral form; the initial concentrations of species B (monocation) and C (dication) were 0 mol/l in all cases. d The diffusion coefficient was always assumed to be identical for species A, B, and C. The electrode radius was 0.15 cm. Figure S21. Solid black lines: experimental cyclic voltammograms reproduced from Figure 1. Dotted red lines: simulated voltammograms using the EC-Lab software V10.34 from Bio-Logic - Science Instruments and the parameters listed in Table S1. S24

Figure S22. Cyclic voltammograms obtained in dry and de-oxygenated CH 2 Cl 2 with 0.1 M TBABArF 24 at 22 C. The potential sweep rate was 100 mv/s. The waves at -0.53 V vs. Fc + /Fc are due to decamethylferrocene which was added in small quantities for internal potential calibration. S25

Gaussian fits of the IVCT bands with resulting parameters Table S2. Parameters obtained from Gaussian fits to the IVCT bands. a cmpd max [cm -1 ] FWHM [cm -1 ] area [M -1 cm -2 ] (N-1,8) + 4140 5620 3.0 10 6 (N-1,5) + 7550 5300 3.8 10 6 (N-2,6) + 7500 4920 2.9 10 7 a Extracted from Figure S23. max and FWHM are associated with errors of 25 cm -1. Figure S23. Solid black traces: experimental absorption spectra in CH2Cl2 at 22 C. Dotted blue traces: Gaussian fits to the experimental spectra. Dashed red traces: sums of the individual Gaussians. Parameters of the Gaussian functions used to fit the IVCT bands are reported in Table S2. S26

Computational Data Geometry optimization was performed at the B3LYP/6-31+G** level for the monocationic compounds (N-1,8) +, (N-1,5) + and (N-2,6) +. The cartesian coordinates are given in Å. In order to validate the use of B3LYP/6-31+G**, the UV-Vis spectra (Figure S23) and the spin density distribution (Table S3) for (N-1,8) + were also determined from calculations with BMK/6-311++G** [1]. As noted earlier, [1] the BMK hybrid functional is suitable for organic mixed-valence compounds and expected to perform similarly as the BLYP35 hybrid functional. With B3LYP/6-31+G** the experimental UV-Vis spectrum can be described quite well (Figure 23b), specifically for the bands at 370 and 740 nm. However, the shoulder at 860 nm is shifted to 1300 nm and not reproduced reliably at this level. Conversely, BMK/6-311++G** improves the situation as far as the near-infrared band is concerned (Figure 23c). There is a slight blue shift for the high-frequency bands, although the splitting between the two again agrees with the experimental observations. We conclude that both methods are equally well suited for simulation of our experimental UV-Vis spectra. With regard to the calculated spin densities we note that B3LYP/6-31+G** leads to slightly stronger delocalization than BMK/6-311++G**. This manifests itself in somewhat lower spin densities on the triarylamine-n (0.30 vs. 0.39, Table S3) and the triarylamine C in -position to naphthalene (0.17 vs. 0.21, Table S3). However, the key point for our study is the spin density on the naphthalene bridge, and we note that the spin density on this site is independent of the computational approach employed (0.02, Table S3). S27

Figure S24. Optical absorption spectra for (N-1,8) + : a) experimental spectrum (measured in CH2Cl2), b) simulated at B3LYP/6-31+G** level, c) simulated at BMK/6-311++G** level. S28

Table S3. DFT-calculated spin densities for different portions of the radical cations (N-1,8) + at different levels. (N-1,8) + B3LYP/6-31+G** BMK/6-311++G** triarylamine 0.98 0.98 triarylamine N atoms 0.30 0.39 triarylamine C atoms in α- position to naphthalene 0.17 0.21 naphthalene bridging unit 0.02 0.02 S29

Table S3. Cartesian coordinates and absolute energy value for the optimized geometry of (N-1,8) +. Total energy: -2340.84010806 hartree Symbol X Y Z C 2.274302-3.538066-0.11583 C 1.069059-3.521212 0.613412 C 0.296049-4.68927 0.674694 C 0.700636-5.848145 0.017842 C 1.902522-5.858233-0.707432 C 2.685852-4.689962-0.763119 N 0.652671-2.338908 1.286055 C 1.602296-1.606284 2.044341 C 2.556932-2.27328 2.827363 C 3.500039-1.563692 3.564437 C 3.498223-0.160076 3.538346 C 2.541551 0.51342 2.756356 C 1.61247-0.196797 2.017118 O 4.36302 0.628923 4.216659 C 5.355862 0.015904 5.037149 O 2.392222-6.924968-1.378726 C 1.653471-8.145049-1.3676 C -0.689267-1.913351 1.209618 C -1.302795-1.271632 2.304257 C -2.622154-0.853487 2.219644 C -3.385914-1.044061 1.052551 C -2.767562-1.700156-0.028604 C -1.448425-2.123581 0.039802 C -4.83274-0.690614 1.035043 C -5.482803 0.084672 0.005291 C -6.924641 0.106165 0.00719 C -7.65173-0.503286 1.063518 C -7.000814-1.141911 2.088093 C -5.59703-1.249717 2.051245 C -7.63561 0.737555-1.047169 C -6.968175 1.355236-2.074021 C -5.561744 1.420323-2.041145 C -4.811895 0.839105-1.026441 C -3.355148 1.148022-1.047886 C -2.714771 1.785794 0.031594 C -1.385904 2.176333-0.042028 C -0.637913 1.949673-1.216082 C -1.27434 1.329834-2.31034 C -2.602778 0.943015-2.219889 S30

N 0.716873 2.329696-1.296757 C 1.182914 3.485778-0.611392 C 2.396067 3.446533 0.103874 C 2.857307 4.571726 0.764526 C 2.118624 5.769632 0.734467 C 0.908997 5.815627 0.023633 C 0.453525 4.682683-0.645142 O 2.656513 6.807 1.414919 C 1.965854 8.054856 1.429254 C 1.635948 1.568343-2.065542 C 2.607351 2.206435-2.851951 C 3.523451 1.468824-3.595528 C 3.478028 0.065941-3.571155 C 2.503947-0.578697-2.786325 C 1.601499 0.15924-2.041157 O 4.313974-0.748526-4.255469 C 5.324829-0.165597-5.075912 H -5.096337-1.839606 2.812677 H -7.556118-1.600496 2.899959 H -8.721303 0.719368-1.021874 H -7.511476 1.830375-2.884487 H -8.736402-0.451597 1.041302 H -5.046052 1.996619-2.802961 H -3.273223 1.976433 0.941809 H -0.919155 2.664774 0.80569 H -0.727003 1.1756-3.233069 H -3.074199 0.468203-3.074795 H -3.079711-0.37167 3.078156 H -0.74183-1.114097 3.218286 H -0.993552-2.61351-0.813597 H -3.337493-1.884712-0.932963 H 2.877546-2.638416-0.174776 H 3.609046-4.714356-1.33181 H 0.086292-6.737044 0.09024 H -0.624325-4.693126 1.248652 H 2.553471-3.356953 2.866632 H 4.21796-2.10865 4.164637 H 2.557903 1.597843 2.738105 H 0.887887 0.332839 1.408951 H 2.965646 2.524256 0.14167 H 3.787016 4.552655 1.322729 H 0.327803 6.727805-0.028632 H -0.472636 4.729795-1.207797 H 2.640989 3.28979-2.8853 H 4.254425 1.991873-4.199454 H 2.485645-1.663106-2.771122 S31

H 0.866322-0.348513-1.427034 H 5.921419 0.835226 5.480185 H 4.900161-0.58368 5.833437 H 6.029887-0.61311 4.444265 H 2.573819 8.722732 2.038873 H 1.871282 8.469474 0.419037 H 0.971499 7.955053 1.879586 H 5.866699-1.001551-5.517481 H 4.887273 0.44588-5.873359 H 6.016323 0.444379-4.483291 H 2.228731-8.845-1.972942 H 1.55322-8.540974-0.350455 H 0.659196-8.012806-1.80965 Table S4. Cartesian coordinates and absolute energy value for the optimized geometry of (N-1,5) +. Total energy: -2340.8476898 hartree Symbol X Y Z C -7.38888 2.237183-0.902241 C -7.890892 1.273853-0.008935 C -8.95189 1.633689 0.828888 C -9.511276 2.912296 0.779238 C -8.993619 3.865876-0.103859 C -7.923685 3.516822-0.940965 N -7.34238-0.039686 0.031537 C -8.223008-1.158437 0.035161 C -9.304846-1.221113-0.849766 C -10.189462-2.301594-0.835674 C -9.986383-3.35732 0.059349 C -8.898933-3.307558 0.943789 C -8.037859-2.219685 0.939508 O -10.780405-4.466852 0.153301 C -11.885302-4.572956-0.728511 O -9.453886 5.147482-0.228706 C -10.52593 5.555422 0.60452 C -5.936969-0.22925 0.072874 C -5.353046-1.312359-0.58498 C -3.970798-1.495446-0.544111 C -3.144506-0.599252 0.15256 C -3.746775 0.484269 0.814235 S32

C -5.128515 0.667304 0.774039 C -1.681302-0.852522 0.233722 C -0.699748 0.150451-0.079753 C 0.697805-0.15564 0.084079 C 1.062412-1.438748 0.576516 C 0.106509-2.389295 0.847122 C -1.261482-2.098171 0.666735 C -1.064346 1.433132-0.573425 C -0.108329 2.383235-0.84523 C 1.259605 2.09244-0.663882 C 1.679416 0.847129-0.229878 C 3.141895 0.593983-0.14101 C 3.743849-0.494222-0.795243 C 5.124797-0.68156-0.747323 C 5.932757 0.21542-0.046174 C 5.349174 1.302795 0.604695 C 3.96773 1.490157 0.55635 N 7.333443 0.028828 0.002738 C 8.20437 1.150389-0.019713 C 8.00587 2.203186-0.930745 C 8.862611 3.294262-0.952662 C 9.958585 3.355157-0.079414 C 10.174682 2.307723 0.822464 C 9.29437 1.224086 0.853968 O 10.738195 4.455994-0.189583 C 11.868391 4.586873 0.666313 C 7.891521-1.273694 0.023188 C 7.338738-2.282421 0.832735 C 7.884973-3.557582 0.852458 C 9.017941-3.857896 0.082335 C 9.587638-2.859226-0.714603 C 9.01791-1.584651-0.746598 O 9.476844-5.127284 0.181554 C 10.625802-5.504211-0.570045 H 2.004482 2.836314-0.930439 H -0.402823 3.358615-1.221424 H -2.111084 1.65516-0.742868 H -2.006159-2.850804 0.908069 H 0.401053-3.365287 1.221685 H 2.109163-1.660856 0.745586 H 3.124957-1.182652-1.362749 H 5.571209-1.524026-1.267934 H 5.968946 2.00642 1.153187 H 3.515892 2.334636 1.068492 H -3.518863-2.337057-1.060847 H -5.972965-2.014696-1.134954 S33

H -5.574881 1.507446 1.298433 H -3.12743 1.171536 1.382657 H -9.462177-0.410896-1.554162 H -11.017821-2.311625-1.534087 H -8.758054-4.128869 1.638756 H -7.208531-2.185856 1.638336 H -9.3503 0.90279 1.524931 H -10.334804 3.152081 1.441346 H -7.537529 4.263353-1.627209 H -6.570559 1.974032-1.564501 H 7.17145 2.158455-1.622945 H 8.711988 4.109325-1.65289 H 11.009824 2.326993 1.51254 H 9.463222 0.418383 1.5609 H 9.459035-0.81857-1.375756 H 10.461651-3.059803-1.322875 H 7.458831-4.338146 1.474132 H 6.47161-2.057929 1.445289 H -10.729006 6.596234 0.347971 H -11.429753 4.958123 0.426288 H -10.260966 5.491769 1.667982 H -12.373725-5.518636-0.488674 H -12.600618-3.752404-0.585367 H -11.566935-4.588588-1.779048 H 12.338103 5.535947 0.403682 H 11.576459 4.610384 1.724345 H 12.590398 3.773916 0.513954 H 10.808006-6.554505-0.337551 H 10.457917-5.398574-1.649827 H 11.507961-4.914783-0.28752 Table S5. Cartesian coordinates and absolute energy value for the optimized geometry of (N-2,6) +. Total energy: -2340.83331528 hartree Symbol X Y Z C 8.577582-2.419904-0.188467 C 8.933282-1.104246-0.526257 C 9.988289-0.894709-1.428659 C 10.674283-1.979214-1.97151 C 10.312053-3.286617-1.641444 C 9.257757-3.498067-0.75079 N 8.243706 0.003375 0.041995 S34

C 8.997571 1.11352 0.514951 C 10.165622 0.908392 1.267153 C 10.914649 1.995333 1.712683 C 10.506603 3.301534 1.435717 C 9.340259 3.508658 0.696664 C 8.59452 2.428224 0.230099 O 11.252024 4.383041 1.891464 C 10.629154 5.606641 1.46775 O 10.993171-4.365771-2.193654 C 10.43543-5.591452-1.692359 C 6.840762-0.001928 0.138219 C 6.190365 0.613215 1.220362 C 4.802607 0.611059 1.306022 C 4.00529-0.013995 0.3317 C 4.668763-0.64014-0.737718 C 6.054822-0.628653-0.842744 C 2.532672-0.012395 0.425283 C 1.884649-0.01169 1.696647 C 0.515004-0.013677 1.801454 C -0.310208-0.017388 0.644024 C 0.325518-0.01416-0.638453 C 1.740109-0.012062-0.712147 C -0.49969-0.003871-1.795846 C -1.869334-0.001701-1.691028 C -2.517363-0.008604-0.419675 C -1.724783-0.014796 0.717729 C -3.989795-0.007394-0.326037 C -4.785748 0.620092-1.299882 C -6.173747 0.619171-1.218045 C -6.825938-0.001774-0.140277 C -6.041299-0.631071 0.840144 C -4.654958-0.639152 0.738981 N -8.22948 0.002509-0.046928 C -8.918701-1.112286 0.504658 C -9.982019-0.916618 1.400346 C -10.667377-2.009654 1.926638 C -10.296134-3.311962 1.586554 C -9.233624-3.509644 0.70254 C -8.553953-2.422718 0.156613 O -10.959002-4.370572 2.107196 C -10.587589-5.698803 1.758222 C -8.98036 1.119877-0.503535 C -8.568068 2.429782-0.20956 C -9.313022 3.518359-0.657914 C -10.487685 3.324299-1.387331 C -10.905011 2.022935-1.672958 S35

C -10.156995 0.927944-1.245726 O -11.213361 4.384699-1.811434 C -10.792903 5.711586-1.51691 H -2.189473 0.00912 1.699717 H -2.475971-0.025357-2.591066 H -0.02841-0.009476-2.775363 H 2.491318-0.038018 2.596589 H 0.043721-0.024366 2.780928 H 2.204782 0.019263-1.693934 H 4.328907 1.114857 2.1432 H 6.778979 1.102413 1.988978 H 6.537873-1.116231-1.682661 H 4.088638-1.158584-1.495003 H -4.310754 1.131616-2.131637 H -6.761132 1.1088-1.987312 H -6.52562-1.12475 1.675755 H -4.075683-1.156246 1.497838 H 10.268546 0.11906-1.694089 H 11.488-1.798886-2.668197 H 8.969241-4.509289-0.478406 H 7.771801-2.588681 0.518024 H 10.483253-0.104164 1.491926 H 11.81557 1.817629 2.293056 H 9.013334 4.518721 0.466575 H 7.700602 2.595448-0.361104 H -10.269135 0.093221 1.673362 H -11.487741-1.840172 2.618233 H -8.938109-4.516764 0.422567 H -7.741562-2.580574-0.544815 H -10.478853-0.080588-1.482271 H -11.812666 1.855377-2.245807 H -8.978881 4.524473-0.420994 H -7.664327 2.586873 0.369361 H -11.503385 6.419946-1.940424 H -10.745807 5.846244-0.437295 H -9.807687 5.884208-1.947575 H -11.234903-6.404764 2.276416 H -10.690734-5.833834 0.68256 H -9.552822-5.874537 2.048559 H 11.213019 6.45375 1.824722 H 10.580776 5.631662 0.380112 H 9.621608 5.661851 1.87729 H 10.968871-6.436627-2.124841 H 10.5322-5.617536-0.60798 H 9.382517-5.649116-1.964331 S36

Crystallographic information Figure S25. X-ray crystallographic structure of compound (N-1,8) with thermal ellipsoids drawn at the 50% probability level. S37

Crystal data for hsch1: formula C 50 H 42 N 2 O 4, M = 734.89, F(000) = 3104, colorless block, size 0.040 0.110 0.190 mm 3, orthorhombic, space group F d d 2, Z = 8, a = 15.6972(4) Å, b = 37.1771(11) Å, c = 12.9487(4) Å, α = 90, β = 90, γ = 90, V = 7556.6(4) Å 3, D calc. = 1.292 Mg m -3. The crystal was measured on a Bruker Kappa Apex2 diffractometer at 123K using graphite-monochromated Cu K α - radiation with λ = 1.54178 Å, Θ max = 68.426. Minimal/maximal transmission 0.93/0.97, μ = 0.644 mm -1. The Apex2 suite [2] has been used for data collection and integration. From a total of 17915 reflections, 3415 were independent (merging r = 0.028). From these, 3395 were considered as observed (I>2.0σ(I)) and were used to refine 255 parameters. The structure was solved by the charge flipping method using the program Superflip [3]. Least-squares refinement against F was carried out on all non-hydrogen atoms using the program CRYSTALS [4]. R = 0.0237 (observed data), wr = 0.0260 (all data), GOF = 1.1238. Minimal/maximal residual electron density = -0.12/0.12 e Å -3. Chebychev polynomial weights [5] were used to complete the refinement. Plots were produced using Mercury [6]. Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Center, the deposition number is 1049596. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk]. [1] Parthey, M.; Kaupp, M.; Chem. Soc. Rev. 2014, 43, 5067-5088. [2] Bruker Analytical X-ray Systems, Inc., 2006. Apex2, Version 2 User Manual, M86-E01078, Madison, WI. [3] Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790. [4] Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. & Watkin, D.J. (2003). J. Appl. Cryst. 36, 1487. [5] Watkin D.J. (1994). Acta Cryst, A50, 411-437. [6] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez- Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Cryst., 41, 466-470, 2008. S38