In Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4)

Similar documents
u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

21.6 Green Functions for First Order Equations

Matrix Eigenvalues and Eigenvectors September 13, 2017

Math Lecture 23

Main topics for the First Midterm

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

The Regulated and Riemann Integrals

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Chapter 6 Techniques of Integration

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

Sturm-Liouville Eigenvalue problem: Let p(x) > 0, q(x) 0, r(x) 0 in I = (a, b). Here we assume b > a. Let X C 2 1

Consequently, the temperature must be the same at each point in the cross section at x. Let:

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

(4.1) D r v(t) ω(t, v(t))

Here we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.

5.5 The Substitution Rule

Chapter 6 Notes, Larson/Hostetler 3e

UniversitaireWiskundeCompetitie. Problem 2005/4-A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that

Notes on length and conformal metrics

Math 360: A primitive integral and elementary functions

The Algebra (al-jabr) of Matrices

Variational Techniques for Sturm-Liouville Eigenvalue Problems

ODE: Existence and Uniqueness of a Solution

Improper Integrals, and Differential Equations

Boolean Algebra. Boolean Algebras

Partial Differential Equations

PARTIAL FRACTION DECOMPOSITION

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

INTRODUCTION TO LINEAR ALGEBRA

Lecture Solution of a System of Linear Equation

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

Elementary Linear Algebra

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

Homework 11. Andrew Ma November 30, sin x (1+x) (1+x)

Math 211A Homework. Edward Burkard. = tan (2x + z)

7.2 The Definite Integral

Bernoulli Numbers Jeff Morton

Matrices and Determinants

1 2-D Second Order Equations: Separation of Variables

Best Approximation in the 2-norm

Bob Brown Math 251 Calculus 1 Chapter 5, Section 4 1 CCBC Dundalk

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

DETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ

Chapter 8: Methods of Integration

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Module 6: LINEAR TRANSFORMATIONS

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

Chapter 3. Vector Spaces

Families of Solutions to Bernoulli ODEs

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

221B Lecture Notes WKB Method

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Mathematics Extension 1

11 An introduction to Riemann Integration

Section 6.1 INTRO to LAPLACE TRANSFORMS

1 1D heat and wave equations on a finite interval

Ordinary Differential Equations- Boundary Value Problem

Bases for Vector Spaces

The Periodically Forced Harmonic Oscillator

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

Chapter 8.2: The Integral

Section 14.3 Arc Length and Curvature

Chapter 2. Determinants

Math 4310 Solutions to homework 1 Due 9/1/16

The Bernoulli Numbers John C. Baez, December 23, x k. x e x 1 = n 0. B k n = n 2 (n + 1) 2

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

Handout: Natural deduction for first order logic

Lecture 3. Limits of Functions and Continuity

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

Session Trimester 2. Module Code: MATH08001 MATHEMATICS FOR DESIGN

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

7. Indefinite Integrals

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

Boolean Algebra. Boolean Algebra

Linear Systems with Constant Coefficients

Things to Memorize: A Partial List. January 27, 2017

Complex, distinct eigenvalues (Sect. 7.6)

Review of Calculus, cont d

Section 4: Integration ECO4112F 2011

The practical version

The Henstock-Kurzweil integral

Logarithmic Functions

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

Fundamental Theorem of Calculus

Transcription:

678 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions 13.1 TWO-POINT BOUNDARY VALUE PROBLEMS In Section 5.3 we considered initil vlue problems for the liner second order eqution P./y C P 1./y C P 2./y D F./: (13.1.1) Suppose P, P 1, P 2, nd F re continuous nd P hs no zeros on n open intervl.; b/. From Theorem 5.3.1, if is in.; b/ nd k 1 nd k 2 re rbitrry rel numbers then (13.1.1) hs unique solution on.; b/ such tht y. / D k 1 nd y. / D k 2. Now we consider different problem for (13.1.1). PROBLEM Suppose P, P 1, P 2, nd F re continous nd P hs no zeros on closed intervl Œ; b. Let, ˇ,, nd ı be rel numbers such tht nd let k 1 nd k 2 be rbitrry rel numbers. Find solution of on the closed intervl Œ; b such tht 2 C ˇ2 nd 2 C ı 2 ; (13.1.2) P./y C P 1./y C P 2./y D F./ (13.1.3) y./ C ˇy./ D k 1 (13.1.4) nd y.b/ C ıy.b/ D k 2 : (13.1.5) The ssumptions stted in this problem pply throughout this section nd won t be repeted. Note tht we imposed conditions on P, P 1, P 2, nd F on the closed intervl Œ; b, nd we re interested in solutions of (13.1.3) on the closed intervl. This is different from the sitution considered in Chpter 5, where we imposed conditions on P, P 1, P 2, nd F on the open intervl.; b/ nd we were interested in solutions on the open intervl. There is relly no problem here; we cn lwys etend P, P 1, P 2, nd F to n open intervl.c; d/ (for emple, by defining them to be constnt on.c; d nd Œb; d/) so tht they re continuous nd P hs no zeros on Œc; d. Then we cn pply the theorems from Chpter 5 to the eqution y C P 1./ P./ y C P 2./ P./ y D F./ P./ on.c; d/ to drw conclusions bout solutions of (13.1.3) on Œ; b. We cll nd b boundry points. The conditions (13.1.4) nd (13.1.5) re boundry conditions, nd the problem is two-point boundry vlue problem or, for simplicity, boundry vlue problem. (We used similr terminology in Chpter 12 with different mening; both menings re in common usge.) We require (13.1.2) to insure tht we re imposing sensible condition t ech boundry point. For emple, if 2 C ˇ2 D then D ˇ D, so y./ C ˇy./ D for ll choices of y./ nd y./. Therefore (13.1.4) is n impossible condition if k 1, or no condition t ll if k 1 D. We bbrevite (13.1.1) s Ly D F, where Ly D P./y C P 1./y C P./y; nd we denote B 1.y/ D y./ C ˇy./ nd We combine (13.1.3), (13.1.4), nd (13.1.5) s B 2.y/ D y.b/ C ıy.b/: Ly D F; B 1.y/ D k 1 ; B 2.y/ D k 2 : (13.1.6)

Section 13.1 Two-Point Boundry Vlue Problems 679 This boundry vlue problem is homogeneous if F D nd k 1 D k 2 D ; otherwise it s nonhomogeneous. We leve it to you (Eercise 1) to verify tht B 1 nd B 2 re liner opertors; tht is, if c 1 nd c 2 re constnts then B i.c 1 y 1 C c 2 y 2 / D c 1 B i.y 1 / C c 2 B i.y 2 /; i D 1; 2: (13.1.7) The net three emples show tht the question of eistence nd uniqueness for solutions of boundry vlue problems is more complicted thn for initil vlue problems. Emple 13.1.1 Consider the boundry vlue problem The generl solution of y C y D 1 is y C y D 1; y./ D ; y.=2/ D : y D 1 C c 1 sin C c 2 cos ; so y./ D if nd only if c 2 D 1 nd y.=2/ D if nd only if c 1 D 1. Therefore y D 1 sin cos is the unique solution of the boundry vlue problem. Emple 13.1.2 Consider the boundry vlue problem Agin, the generl solution of y C y D 1 is y C y D 1; y./ D ; y./ D : y D 1 C c 1 sin C c 2 cos ; so y./ D if nd only if c 2 D 1, but y./ D if nd only if c 2 D 1. Therefore the boundry vlue problem hs no solution. Emple 13.1.3 Consider the boundry vlue problem y C y D sin 2; y./ D ; y./ D : You cn use the method of undetermined coefficients (Section 5.5) to find tht the generl solution of y C y D sin 2 is sin 2 y D C c 1 sin C c 2 cos : 3 The boundry conditions y./ D nd y./ D both require tht c 2 D, but they don t restrict c 1. Therefore the boundry vlue problem hs infinitely mny solutions where c 1 is rbitrry. sin 2 y D C c 1 sin ; 3 Theorem 13.1.1 If 1 nd 2 re solutions of Ly D such tht either B 1. 1/ D B 1. 2/ D or B 2. 1/ D B 2. 2/ D ; then f 1; 2g is linerly dependent. Equivlently; if f 1; 2g is linerly independent, then B 2 1. 1/ C B 2 1. 2/ nd B 2 2. 1/ C B 2 2. 2/ :

68 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions Proof Recll tht B 1. / D./ C ˇ./ nd 2 C ˇ2. Therefore, if B 1. 1/ D B 1. 2/ D then. ; ˇ/ is nontrivil solution of the system This implies tht 1./ C ˇ 1./ D 2./ C ˇ./ D : 1./ 2./ 1./ 2./ D ; so f 1; 2g is linerly dependent, by Theorem 5.1.6. We leve it to you to show tht f 1; 2g is linerly dependent if B 2. 1/ D B 2. 2/ D. Theorem 13.1.2 The following sttements re equivlenti tht is; they re either ll true or ll flse: () There s fundmentl set f 1; 2g of solutions of Ly D such tht B 1. 1/B 2. 2/ B 1. 2/B 2. 1/ : (13.1.8) (b) If fy 1 ; y 2 g is fundmentl set of solutions of Ly D then B 1.y 1 /B 2.y 2 / B 1.y 2 /B 2.y 1 / : (13.1.9) (c) For ech continuous F nd pir of constnts.k 1 ; k 2 /; the boundry vlue problem Ly D F; B 1.y/ D k 1 ; B 2.y/ D k 2 (d) hs unique solution: The homogeneous boundry vlue problem Ly D ; B 1.y/ D ; B 2.y/ D (13.1.1) (e) hs only the trivil solution y D. The homogeneous eqution Ly D hs linerly independent solutions 1 nd 2 such tht B 1. 1/ D nd B 2. 2/ D : Proof We ll show tht./ H).b/ H).c/ H).d/ H).e/ H)./: () H) (b): Since f 1; 2g is fundmentl set of solutions for Ly D, there re constnts 1, 2, b 1, nd b 2 such tht y 1 D 1 1 C 2 2 (13.1.11) y 2 D b 1 1 C b 2 2: Moreover, ˇˇˇ ˇ 1 2 b 1 b 2 ˇ : (13.1.12) becuse if this determinnt were zero, its rows would be linerly dependent nd therefore fy 1 ; y 2 g would be linerly dependent, contrry to our ssumption tht fy 1 ; y 2 g is fundmentl set of solutions of Ly D. From (13.1.7) nd (13.1.11), B1.y 1 / B 2.y 1 / B 1.y 2 / B 2.y 2 / D 1 2 B1. 1/ B 2. 1/ b 1 b 2 B 1. 2/ B 2. 2/ :

Section 13.1 Two-Point Boundry Vlue Problems 681 Since the determinnt of product of mtrices is the product of the determinnts of the mtrices, (13.1.8) nd (13.1.12) imply (13.1.9). (b) H) (c): Since fy 1 ; y 2 g is fundmentl set of solutions of Ly D, the generl solution of Ly D F is y D y p C c 1 y 1 C c 2 y 2 ; where c 1 nd c 2 re rbitrry constnts nd y p is prticulr solution of Ly D F. To stisfy the boundry conditions, we must choose c 1 nd c 2 so tht (recll (13.1.7)), which is equivlent to k 1 D B 1.y p / C c 1 B 1.y 1 / C c 2 B 1.y 2 / k 2 D B 2.y p / C c 1 B 2.y 1 / C c 2 B 2.y 2 /; c 1 B 1.y 1 / C c 2 B 1.y 2 / D k 1 B 1.y p / c 1 B 2.y 1 / C c 2 B 2.2 2 / D k 2 B 2.y p /: From (13.1.9), this system lwys hs unique solution.c 1 ; c 2 /. (c) H) (d): Obviously, y D is solution of (13.1.1). From (c) with F D nd k 1 D k 2 D, it s the only solution. (d) H) (e): Let fy 1 ; y 2 g be fundmentl system for Ly D nd let 1 D B 1.y 2 /y 1 B 1.y 1 /y 2 nd 2 D B 2.y 2 /y 1 B 2.y 1 /y 2 : Then B 1. 1/ D nd B 2. 2/ D. To see tht 1 nd 2 re linerly independent, note tht 1 1 C 2 2 D 1 ŒB 1.y 2 /y 1 B 1.y 1 /y 2 C 2 ŒB 2.y 2 /y 1 B 2.y 1 /y 2 D ŒB 1.y 2 / 1 C B 2.y 2 / 2 y 1 ŒB 1.y 1 / 1 C B 2.y 1 / 2 y 2 : Therefore, since y 1 nd y 2 re linerly independent, 1 1 C 2 2 D if nd only if B1.y 1 / B 2.y 1 / 1 D : B 1.y 2 / B 2.y 2 / 2 If this system hs nontrivil solution then so does the system B1.y 1 / B 1.y 2 / c1 D B 2.y 1 / B 2.y 2 / c 2 : This nd (13.1.7) imply tht y D c 1 1 C c 2 2 is nontrivil solution of (13.1.1), which contrdicts (d). (e) H) (). Theorem 13.1.1 implies tht if B 1. 1/ D nd B 2. 2/ D then B 1. 2/ nd B 2. 1/. This implies (13.1.8), which completes the proof. Emple 13.1.4 Solve the boundry vlue problem 2 y 2y C 2y 2 3 D ; y.1/ D 4; y.2/ D 3; (13.1.13) given tht f; 2 g is fundmentl set of solutions of the complementry eqution Solution Using vrition of prmeters (Section 5.7), you cn show tht y p D 3 is solution of the complementry eqution 2 y 2y C 2y D 2 3 D :

682 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions Therefore the solution of (13.1.13) cn be written s y D 3 C c 1 C c 2 2 : Then y D 3 2 C c 1 C 2c 2 ; nd imposing the boundry conditions yields the system c 1 C c 2 D 3 c 1 C 4c 2 D 9; so c 1 D 7 nd c 2 D 4. Therefore is the unique solution of (13.1.13) y D 3 C 7 4 2 Emple 13.1.5 Solve the boundry vlue problem y 7y C 12y D 4e 2 ; y./ D 3; y.1/ D 5e 2 : Solution From Emple 5.4.1, y p D 2e 2 is prticulr solution of y 7y C 12y D 4e 2 : (13.1.14) Since fe 3 ; e 4 g is fundmentl set for the complementry eqution, we could write the solution of (13.1.13) s y D 2e 2 C c 1 e 3 C c 2 e 4 nd determine c 1 nd c 2 by imposing the boundry conditions. However, this would led to some tedious lgebr, nd the form of the solution would be very unppeling. (Try it!) In this cse it s convenient to use the fundmentl system f 1; 2g mentioned in Theorem 13.1.2(e); tht is, we choose f 1; 2g so tht B 1. 1/ D 1./ D nd B 2. 2/ D 2.1/ D. It is esy to see tht 1 D e 3 e 4 nd 2 D e 3.1/ e 4.1/ stisfy these requirements. Now we write the solution of (13.1.14) s y D 2e 2 C c 1 e 3 e 4 C c 2 e 3.1/ e 4.1/ : Imposing the boundry conditions y./ D 3 nd y.1/ D 5e 2 yields Therefore nd 3 D 2 C c 2 e 4.e 1/ nd 5e 2 D 2e 2 C c 1 e 3.1 e/: y D 2e 2 C c 1 D 3 e.1 e/ ; c 2 D e4 e 1 ; 3 e.1 e/.e3 e 4 / C e4 e 1.e3.1/ e 4.1/ /: Sometimes it s useful to hve formul for the solution of generl boundry problem. Our net theorem ddresses this question.

Section 13.1 Two-Point Boundry Vlue Problems 683 Theorem 13.1.3 Suppose the homogeneous boundry vlue problem Ly D ; B 1.y/ D ; B 2.y/ D (13.1.15) hs only the trivil solution: Let y 1 nd y 2 be linerly independent solutions of Ly D such tht B 1.y 1 / D nd B 2.y 2 / D ; nd let W D y 1 y 2 y 1 y 2: Then the unique solution of is y./ D y 1./ Ly D F; B 1.y/ D ; B 2.y/ D (13.1.16) Z P.t/W.t/ dt C y 2./ dt: (13.1.17) P.t/W.t/ Proof where In Section 5.7 we sw tht if y D u 1 y 1 C u 2 y 2 (13.1.18) u 1 y 1 C u 2 y 2 D u 1 y 1 C u 2 y 2 D F; then Ly D F. Solving for u 1 nd u 2 yields which hold if u 1./ D u 1 D Fy 2 P W nd u 2 D Fy 1 P W ; dt nd P.t/W.t/ u 2./ D Z P.t/W.t/ dt: This nd (13.1.18) show tht (13.1.17) is solution of Ly D F. Differentiting (13.1.17) yields Z y./ D y1./ P.t/W.t/ dt C y 2./ dt: (13.1.19) P.t/W.t/ (Verify.) From (13.1.17) nd (13.1.19), B 1.y/ D B 1.y 1 / P.t/W.t/ dt D becuse B 1.y 1 / D, nd B 2.y/ D B 2.y 2 / P.t/W.t/ dt D becuse B 2.y 2 / D. Hence, y stisfies (13.1.16). This completes the proof. We cn rewrite (13.1.17) s where y D 8 y 1.t/y 2./ ˆ< P G.; t/ D.t/W.t/ y 1./y 2.t/ ˆ: P.t/W.t/ G.; t/f.t/ dt; (13.1.2) ; t ; : ; t b:

684 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions This is the Green s function for the boundry vlue problem (13.1.16). The Green s function is relted to the boundry vlue problem (13.1.16) in much the sme wy tht the inverse of squre mtri A is relted to the liner lgebric system y D A; just s we substitute the given vector y into the formul D A 1 y to solve y D A, we substitute the given function F into the formul (13.1.2) to obtin the solution of (13.1.16). The nlogy goes further: just s A 1 eists if nd only if A D hs only the trivil solution, the boundry vlue problem (13.1.16) hs Green s function if nd only the homogeneous boundry vlue problem (13.1.15) hs only the trivil solution. We leve it to you (Eercise 32) to show tht the ssumptions of Theorem 13.1.3 imply tht the unique solution of the boundry vlue problem is y./ D Ly D F; B 1.y/ D k 1 ; B 2.y/ D k 2 Emple 13.1.6 Solve the boundry vlue problem G.; t/f.t/ dt C k 2 B 2.y 1 / y 1 C k 1 B 1.y 2 / y 2: y C y D F./: y./ C y./ D ; y./ y./ D ; (13.1.21) nd find the Green s function for this problem. Solution Here B 1.y/ D y./ C y./ nd B 2.y/ D y./ y./: Let f 1; 2g D fcos ; sin g, which is fundmentl set of solutions of y C y D. Then nd Therefore B 1. 1/ D.cos sin /ˇˇD D 1 B 2. 1/ D.cos C sin /ˇˇD D 1 B 1. 2/ D.sin C cos /ˇˇD D 1 B 2. 2/ D.sin cos /ˇˇD D 1: B 1. 1/B 2. 2/ B 1. 2/B 2. 1/ D 2; so Theorem 13.1.2 implies tht (13.1.21) hs unique solution. Let nd y 1 D B 1. 2/ 1 B 1. 1/ 2 D cos sin y 2 D B 2. 2/ 1 B 2. 1/ 2 D cos C sin : Then B 1.y 1 / D, B 2.y 2 / D, nd the Wronskin of fy 1 ; y 2 g is W./ D cos sin cos C sin ˇ sin cos sin C cos ˇ D 2: Since P D 1, (13.1.17) yields the solution y./ D Z cos sin 2 cos C sin C 2 Z F.t/.cos t C sin t/ dt F.t/.cos t sin t/ dt:

Section 13.1 Two-Point Boundry Vlue Problems 685 The Green s function is 8.cos t sin t/.cos C sin / ˆ< ; t ; G.; t/ D 2.cos sin /.cos t C sin t/ ˆ: ; t : 2 We ll now consider the sitution not covered by Theorem 13.1.3. Theorem 13.1.4 Suppose the homogeneous boundry vlue problem Ly D ; B 1.y/ D ; B 2.y/ D (13.1.22) hs nontrivil solution y 1 ; nd let y 2 be ny solution of Ly D tht isn t constnt multiple of y 1 : Let W D y 1 y2 y 1 y 2: If dt D ; (13.1.23) P.t/W.t/ then the homogeneous boundry vlue problem Ly D F; B 1.y/ D ; B 2.y/ D (13.1.24) hs infinitely mny solutions; ll of the form y D y p C c 1 y 1 ; where nd c 1 is constnt: If y p D y 1./ then (13.1.24) hs no solution: Proof P.t/W.t/ dt C y 2./ dt ; P.t/W.t/ Z P.t/W.t/ dt From the proof of Theorem 13.1.3, y p is prticulr solution of Ly D F, nd y p./ D y 1./ P.t/W.t/ dt C y 2./ Therefore the generl solution of (13.1.22) is of the form where c 1 nd c 2 re constnts. Then y D y p C c 1 y 1 C c 2 y 2 ; Z P.t/W.t/ dt: B 1.y/ D B 1.y p C c 1 y 1 C c 2 y 2 / D B 1.y p / C c 1 B 1.y 1 / C c 2 B 1 y 2 D B 1.y 1 / D c 2 B 1.y 2 / P.t/W.t/ dt C c 1B 1.y 1 / C c 2 B 1.y 2 / Since B 1.y 1 / D, Theorem 13.1.1 implies tht B 1.y 2 / ; hence, B 1.y/ D if nd only if c 2 D. Therefore y D y p C c 1 y 1 nd B 2.y/ D B 2.y p C c 1 y 1 / D B 2.y 2 / D B 2.y 2 / P.t/W.t/ dt; P.t/W.t/ dt C c 1B 2.y 1 / since B 2.y 1 / D. From Theorem 13.1.1, B 2.y 2 / (since B 2.y 1 D ). Therefore Ly D if nd only if (13.1.23) holds. This completes the proof.

686 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions Emple 13.1.7 Applying Theorem 13.1.4 to the boundry vlue problem y C y D F./; y./ D ; y./ D (13.1.25) eplins the Emples 13.1.2 nd 13.1.3. The complementry eqution y C y D hs the liner independent solutions y 1 D sin nd y 2 D cos, nd y 1 stisfies both boundry conditions. Since P D 1 nd W D ˇ sin cos cos sin ˇ D 1; (13.1.23) reduces to Z F./ sin d D : From Emple 13.1.2, F./ D 1 nd Z F./ sin d D Z sin d D 2; so Theorem 13.1.3 implies tht (13.1.25) hs no solution. In Emple 13.1.3, nd Z F./ D sin 2 D 2 sin cos Z F./ sin d D 2 sin 2 cos d D 2 3 sin3 ˇ so Theorem 13.1.3 implies tht (13.1.25) hs infinitely mny solutions, differing by constnt multiples of y 1./ D sin. D ; 13.1 Eercises 1. Verify tht B 1 nd B 2 re liner opertors; tht is, if c 1 nd c 2 re constnts then B i.c 1 y 1 C c 2 y 2 / D c 1 B i.y 1 / C c 2 B i.y 2 /; i D 1; 2: In Eercises 2 7 solve the boundry vlue problem. 2. y y D, y./ D 2, y.1/ D 1 3. y D 2 3, y./ D, y.1/ y.1/ D 4. y y D, y./ C y./ D 3, y.1/ y.1/ D 2 5. y C 4y D 1, y./ D 3, y.=2/ C y.=2/ D 7 6. y 2y C y D 2e, y./ 2y./ D 3, y.1/ C y.1/ D 6e 7. y 7y C 12y D 4e 2, y./ C y./ D 8, y.1/ D 7e 2 (see Emple 13.1.5) 8. Stte condition on F such tht the boundry vlue problem y D F./; y./ D ; y.1/ y.1/ D hs solution, nd find ll solutions.

Section 13.1 Two-Point Boundry Vlue Problems 687 9. () Stte condition on nd b such tht the boundry vlue problem y C y D F./; y./ D ; y.b/ D (A) hs unique solution for every continuous F, nd find the solution by the method used to prove Theorem 13.1.3 (b) In the cse where nd b don t stisfy the condition you gve for (), stte necessry nd sufficient on F such tht (A) hs solution, nd find ll solutions by the method used to prove Theorem 13.1.4. 1. Follow the instructions in Eercise 9 for the boundry vlue problem y C y D F./; y./ D ; y.b/ D : 11. Follow the instructions in Eercise 9 for the boundry vlue problem y C y D F./; y./ D ; y.b/ D : In Eercises 12 15 find formul for the solution of the boundry problem by the method used to prove Theorem 13.1.3. Assume tht < b. 12. y y D F./, y./ D, y.b/ D 13. y y D F./, y./ D, y.b/ D 14. y y D F./, y./ D, y.b/ D 15. y y D F./, y./ y./ D, y.b/ C y.b/ D In Eercises 16 19 find ll vlues of! such tht boundry problem hs unique solution, nd find the solution by the method used to prove Theorem 13.1.3. For other vlues of!, find conditions on F such tht the problem hs solution, nd find ll solutions by the method used to prove Theorem 13.1.4. 16. y C! 2 y D F./, y./ D, y./ D 17. y C! 2 y D F./, y./ D, y./ D 18. y C! 2 y D F./, y./ D, y./ D 19. y C! 2 y D F./, y./ D, y./ D 2. Let f 1; 2g be fundmentl set of solutions of Ly D. Given tht the homogeneous boundry vlue problem Ly D ; B 1.y/ D ; B 2.y/ D hs nontrivil solution, epress it eplicity in terms of 1 nd 2. 21. If the boundry vlue problem hs solution for every continuous F, then find the Green s function for the problem nd use it to write n eplicit formul for the solution. Otherwise, if the boundry vlue problem does not hve solution for every continuous F, find necessry nd sufficient condition on F for the problem to hve solution, nd find ll solutions. Assume tht < b. () y D F./, y./ D, y.b/ D (b) y D F./, y./ D, y.b/ D (c) y D F./, y./ D, y.b/ D (d) y D F./, y./ D, y.b/ D

688 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions 22. Find the Green s function for the boundry vlue problem y D F./; y./ 2y./ D ; y.1/ C 2y.1/ D : (A) Then use the Green s function to solve (A) with () F./ D 1, (b) F./ D, nd (c) F./ D 2. 23. Find the Green s function for the boundry vlue problem 2 y C y C. 2 1=4/y D F./; y.=2/ D ; y./ D ; (A) given tht y 1./ D cos p nd y 2./ D sin p re solutions of the complementry eqution. Then use the Green s function to solve (A) with () F./ D 3=2 nd (b) F./ D 5=2. 24. Find the Green s function for the boundry vlue problem 2 y 2y C 2y D F./; y.1/ D ; y.2/ D ; (A) given tht f; 2 g is fundmentl set of solutions of the complementry eqution. Then use the Green s function to solve (A) with () F./ D 2 3 nd (b) F./ D 6 4. 25. Find the Green s function for the boundry vlue problem 2 y C y y D F./; y.1/ 2y.1/ D ; y.2/ D ; (A) given tht f; 1=g is fundmentl set of solutions of the complementry eqution. Then use the Green s function to solve (A) with () F./ D 1, (b) F./ D 2, nd (c) F./ D 3. In Eercises 26 3 find necessry nd sufficient conditions on, ˇ,, nd ı for the boundry vlue problem to hve unique solution for every continuous F, nd find the Green s function. 26. y D F./, y./ C ˇy./ D, y.1/ C ıy.1/ D 27. y C y D F./, y./ C ˇy./ D, y./ C ıy./ D 28. y C y D F./, y./ C ˇy./ D, y.=2/ C ıy.=2/ D 29. y 2y C 2y D F./, y./ C ˇy./ D, y./ C ıy./ D 3. y 2y C 2y D F./, y./ C ˇy./ D, y.=2/ C ıy.=2/ D 31. Find necessry nd sufficient conditions on, ˇ,, nd ı for the boundry vlue problem y y D F./; y./ C ˇy./ D ; y.b/ C ıy.b/ D (A) to hve unique solution for every continuous F, nd find the Green s function for (A). Assume tht < b. 32. Show tht the ssumptions of Theorem 13.1.3 imply tht the unique solution of Ly D F; B 1.y/ D k 1 ; B 2.y/ D f 2 is y D G.; t/f.t/ dt C k 2 B 2.y 1 /y 1 C k 1 B 1.y 2 / y 2: