Supporting information for: First hyperpolarizability of collagen using the. point dipole approximation

Similar documents
2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7.

Hong Zhou, Guang-Xiang Liu,* Xiao-Feng Wang and Yan Wang * Supporting Information

( ) R kj. = y k y j. y A ( ) z A. y a. z a. Derivatives of the second order electrostatic tensor with respect to the translation of ( ) δ yβ.

LOWELL. MICHIGAN. WEDNESDAY, FEBRUARY NUMllEE 33, Chicago. >::»«ad 0:30am, " 16.n«l w 00 ptn Jaekten,.'''4snd4:4(>a tii, ijilwopa

CHAPTER 8 REPORT ON HIGHER SHG EFFICIENCY IN BIS (CINNAMIC ACID): HEXAMINE COCRYSTAL

Supporting Information. Local decomposition of imaginary polarizabilities. and dispersion coefficients

d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation

First Order Hyperpolarizability and Homo-Lumo Analysis of L-Arginine Maleate (LArM) by Density Functional Theory Methods

NWChem: Hartree-Fock, Density Functional Theory, Time-Dependent Density Functional Theory

Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES

EJL R Sβ. sum. General objective: Reduce the complexity of the analysis by exploiting symmetry. Garth J. Simpson

Computer Laboratory DFT and Frequencies

High-power Broadband Organic THz Generator

LOWELL WEEKI.Y JOURINAL

2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.

Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System

Secondary and sidechain structures

Quantum Chemical Designing of Novel Organic Non-Linear Optical Compounds

Molecular Vibrations C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Contents 1 Introduction 2 Magnetic field calculation inside ALICE detector 3 Methods 4 Results 5 Discussions 6 Conclusion

MANY BILLS OF CONCERN TO PUBLIC

Density Functional Theory Study of Exohedral Carbon Atoms Effect on Electrophilicity of Nicotine: Comparative Analysis

Q-Chem Workshop Tasks

THEORETICAL INVESTIGATION OF ELECTROSTATIC POTENTIAL AND NON LINEAR OPTICAL PROPERTIES OF M NITROACETANILIDE

PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >

Department of Physics, A.V.C. College, Mayiladuthurai, Tamilnadu, India.

Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large- Gap Magnetic Suspension System

G p -metric spaces symmetric and asymmetric

1 Introduction. ISSN , England, UK World Journal of Modelling and Simulation Vol. 14 (2018) No. 1, pp. 3-11

The Time Reversal Invariance Experiment at COSY (TRIC)

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.

W i n t e r r e m e m b e r t h e W O O L L E N S. W rite to the M anageress RIDGE LAUNDRY, ST. H E LE N S. A uction Sale.

H A M M IG K S L IM IT E D, ' i. - I f

.-I;-;;, '.-irc'afr?*. P ublic Notices. TiffiATRE, H. aiety

Growth and Characterization of an Organic Crystal and DFT Studies of 2-amino 5-methyl Pyridinium Salicylate

The linear, nonlinear optical properties and quantum chemical parameters of some sudan dyes

Contents. Chapter 2 Digital Circuits Page 1 of 30

Vibrational spectra, nonlinear optical properties, NBO analysis and thermodynamic properties of N-phenylethanolamine by density functional method

13, Applications of molecular symmetry and group theory

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

1 Partial differentiation and the chain rule

Part IV Multiferroic RMnO 3. Ferroelectric & magnetic ordering SHG spectroscopy SHG topography Identification of multiferroic interactions

arxiv: v1 [nlin.si] 28 Feb 2013

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics

Efficient, High Accuracy ADER-WENO Schemes for Hydrodynamics and Divergence-Free Magnetohydrodynamics

Effects of Solvent Polarity on Solvation Free Energy, Dipole Moment, Polarizability, Hyperpolarizability and Molecular Properties of Metronidazole

Synthesis and structure characterization of two cadmium coordination polymers based on μ 2 -bridging bidentate hydrazine ligand

Xiong Lu. Dissertation. Submitted to the Faculty of the. Graduate School of Vanderbilt University. in partial fulfillment of the requirements

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

SECOND HARMONIC GENERATION IN SI/SIO2 SYSTEMS. Heungman Park. Dissertation. Submitted to the faculty of the. Graduate school of Vanderbilt University

MOLECULAR STRUCTURE, NBO AND HOMO-LUMO ANALYSIS OF QUERCETIN ON SINGLE LAYER GRAPHENE BY DENSITY FUNCTIONAL THEORY

Chapter 7: Exponents

Molecular Interactions between Graphene and Biological Molecules

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday

Institute for Computational Mathematics Hong Kong Baptist University

Second harmonic generation from nanostructured metal surfaces

- Converting Moles (mol.) to grams (g):

Journal of Chemical and Pharmaceutical Research, 2012, 4(6): Research Article

Tu 1,*, , Sweden

Chemistry 1B Fall 2012 Lectures Chemistry 1B. Fall Lectures Classical theories of bonding and molecular geometry (ch 13)

Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation

Atomic decomposition of molecular properties. Ignat Harczuk

control in out in out Figure 1. Binary switch: (a) opened or off; (b) closed or on.

arxiv: v2 [astro-ph.co] 14 Aug 2015

Chemistry 1B Fall 2012

GROWTH, THERMAL, OPTICAL, VIBRATIONAL PROPERTIES AND HYPERPOLARIZABILITY OF PICRATES : ORTHONITROANILINE WITH PICRIC ACID AND IMIDAZOLIUM PICRATE

Available online at WSN 61(2) (2017) EISSN

Physical Chemistry II Recommended Problems Chapter 12( 23)

Density Functional Theory Investigations on Molecular Structure, HOMO, LUMO, NMR, NLO and Vibrational Spectra of N, N -dibenzoylhydrazine

A single crystal investigation of L-tryptophan with Z = 16

Reinvestigation of Hydrogen Bond Effects on the Polarizability and Hyperpolarizability of Urea Molecular Clusters

Magic. The Lattice Boltzmann Method

LOWHLL #WEEKLY JOURNAL.

CHAPTER 5 FT INFRARED, FT RAMAN, VIBRATIONAL ASSIGNMENTS AND QUANTUM CHEMICAL STUDIES OF NICOTINIC ACID (NIASIN)

Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11

Governor Green Triumphs Over Mudslinging

Supporting Information

Two atoms share electrons to make a covalent bond. The differenceof the electronegativites of those two atoms determines how polar that bond is.

HOMOLOGY MODELING. The sequence alignment and template structure are then used to produce a structural model of the target.

Surface second-order nonlinear optical activity

OWELL WEEKLY JOURNAL

Chapter 7: Exponents

Seth B. Harkins and Jonas C. Peters

Invariant Means. Alan Horwitz Penn State University 25 Yearsley Mill Rd. Media, PA /14/00

Lectures Chemistry 1B Fall 2013 Lectures Chemistry 1B. Fall 2013

The Spectroscopic, HOMO-LUMO, NLO Analyses and Thermodynamical Parameters of Octafluoronaphthalene

MULTIDOCK V1.0. Richard M. Jackson Biomolecular Modelling Laboratory Imperial Cancer Research Fund 44 Lincoln s Inn Fields London WC2A 3PX

IR, Raman, First Hyperpolarizability and Computational Study of 1-chloroethyl Benzene

First order molecular hyperpolarizabilities and intramolecular charge transfer from vibrational spectra of NLO material: 2,6-dichloro-4-nitroaniline

Supporting Information

Multipole moments. Dipole moment. The second moment µ is more commonly called the dipole moment, of the charge. distribution and is a vector

A Eşme* Department of Elementary Science Education, Kocaeli University, Kocaeli 41380, Turkey

Chemistry 1B Fall 2013

A Computational Investigation of a Series Ofdimeric and Trimetric Tetrathiafulvalenes Using DFT Method

Spectroscopic investigations, DFT computations and other molecular properties of 2,4-dimethylbenzoic acid

Sectional Solutions Key

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie

Transcription:

Supporting information for: First hyperpolarizability of collagen using the point dipole approximation Ignat Harczuk, Olav Vahtras, and Hans Ågren KTH Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry and Biology, SE-106 91 Stockholm, Sweden E-mail: hagren@theochem.kth.se MFCC procedure Three coordinate files presented in order to demonstrate the MFCC procedure. The ready keyword denotes the residue in which the properties will be added to the final collagen location. The concap will denote the structure for which the properties will be subtracted for the equivalent positions. All the heavy atoms in these structures are those taken from the collagen structure. The extra hydrogens are added to fullfil valency, and their properties are transfered to the closest corresponding heavy atom before the properties of that heavy atom are added or subtracted to or from the final collagen model. In total, the property P a of atom or bond a of the collagen in the MFCC structure i is obtained from the formula P a = i c i p a i (1) where c i is 1 for ready, and -1 for concap. p a i denotes the LoProp distributed property of atom a in structure i, where the properties in our case are the molecular charge, dipole-moment, polarizabil- S1

ity, and hyperpolarizability. A-PRO1-ready.xyz 21 N -1.899696-2.939110 41.741882 H -1.466696-2.018110 41.526882 C -3.139696-2.717110 42.551882 H -3.046696-1.798110 43.165882 H -3.243696-3.569110 43.254882 C -4.334696-2.655110 41.576882 H -4.612696-1.606110 41.366882 H -5.227696-3.137110 42.003882 C -3.865696-3.359110 40.292882 H -4.072696-2.738110 39.400882 H -4.399696-4.310110 40.139882 C -2.344696-3.609110 40.478882 H -2.141696-4.702110 40.614882 C -1.566696-3.072110 39.276882 O -0.937696-2.012110 39.321882 N -1.526696-3.831110 38.117882 C -1.002696-3.262110 36.848882 H 0.056304-2.902110 37.024882 H -2.053012-4.779660 37.935554 H -1.048398-4.076181 36.110505 H -1.622916-2.412152 36.528103 S2

A-PRO2-ready.xyz 26 C -2.344696-3.609110 40.478882 H -2.141696-4.702110 40.614882 C -1.566696-3.072110 39.276882 O -0.937696-2.012110 39.321882 N -1.526696-3.831110 38.117882 C -2.239696-5.116110 37.870882 H -3.335696-4.944110 37.800882 H -2.051696-5.822110 38.703882 C -1.667696-5.625110 36.533882 H -2.452696-6.100110 35.921882 H -0.892696-6.393110 36.704882 C -1.066696-4.402110 35.814882 H -1.685696-4.119110 34.940882 H -0.057696-4.610110 35.402882 C -1.002696-3.262110 36.848882 H 0.056304-2.902110 37.024882 C -1.874696-2.067110 36.397882 O -2.989696-1.820110 36.841882 N -1.254696-1.268110 35.455882 H -0.281696-1.431110 35.168882 C -1.882696-0.049110 34.940882 H -1.066696 0.708890 34.728882 H -2.535696 0.415890 35.724882 H -2.017788-3.116911 41.406714 H -3.422314-3.431987 40.347102 H -2.468311-0.222412 34.025993 S3

A-PRO1-concap.xyz 12 C -2.344696-3.609110 40.478882 H -2.141696-4.702110 40.614882 C -1.566696-3.072110 39.276882 O -0.937696-2.012110 39.321882 N -1.526696-3.831110 38.117882 C -1.002696-3.262110 36.848882 H 0.056304-2.902110 37.024882 H -2.017788-3.116911 41.406714 H -3.422314-3.431987 40.347102 H -2.053012-4.779660 37.935554 H -1.048398-4.076181 36.110505 H -1.622916-2.412152 36.528103 S4

β properties of all atoms and bonds For all QM methods, residues types (GLY/PRO), the sum of all the atomic and bond decomposed properties α zz, β xxx, and β yyy, β xxz, β yyz, β zzz, are tabulated. Labels for the residues can be seen in Figure S1. Figure S1: Labels for the various atoms in collagen. N-PRO denotes N-terminal proline residues, which are 3 in total. C-PRO denotes C-terminal prolines, which are 3 in total. Table S1: TD-HF, Proline, atomic N 584.6-20.3-326.9 63.4-372.0-845.0 H1 1.5-1.1-0.8-4.3-0.1-0.9 CD 429.8 6.2-298.1-12.6-311.4-870.0 HD1 44.3-1.0-44.1-31.5-64.2-74.5 HD2 181.4 11.3-156.6-4.2-163.9-675.4 CG 408.3 4.8 183.0 3.9 179.7 309.3 HG1 96.8-13.0 206.4-22.1 209.8 202.8 HG2 44.0 13.7-112.8 6.8-105.6-16.3 CB 410.6 6.2 334.8-29.7 324.5 1446.2 HB1 213.5 2.6 47.6-10.4 67.0 994.0 HB2 58.6 0.2 96.7-9.2 99.7 151.3 CA 587.3 25.4 7.6 44.8-5.4-315.3 HA 51.5 17.9 15.1 19.7 22.6-84.0 C 513.0-38.9-298.0 55.5-315.0-1343.2 O 238.7-8.3-23.1 30.4-29.4-418.5 OC1 25.4-7.4 3.4-11.4 1.8 29.7 HCO 3.7-20.0-2.8-1.2-5.5-7.0 S5

Table S2: TD-HF, Proline, Bond N 299.5-17.1-332.3 52.0-366.2-1007.1 N-H1 1.6-2.4-1.5-5.7-0.1-4.2 N-CD 62.7-5.5-164.7 17.9-169.1-120.1 N-CA 505.9 1.4 177.0 10.5 157.6 448.5 CD 35.9-3.7-130.7 6.8-126.9-320.9 CD-HD1 59.3 4.2-63.7-41.0-89.6-118.3 CD-HD2 263.5 11.1-176.4-11.5-186.3-780.2 CD-CG 402.4 10.2 69.8-4.1 76.1-79.6 HD1 14.7-3.1-12.2-11.0-19.4-15.4 HD2 49.7 5.8-68.5 1.5-70.7-285.3 CG 13.4 2.7 67.5 8.6 64.6 72.7 CG-HG1 135.8-15.9 258.5-28.5 260.5 171.5 CG-HG2 57.1 17.5-140.5 8.4-128.8 63.5 CG-CB 194.4-7.5 43.3 14.8 22.6 317.7 HG1 28.9-5.1 77.2-7.8 79.6 117.1 HG2 15.5 5.0-42.6 2.6-41.2-48.1 CB 37.9 3.6 202.6-22.3 190.6 471.7 CB-HB1 313.3 3.6-1.8-9.9 23.5 1184.6 CB-HB2 87.0-1.6 138.8-13.1 142.2 270.0 CB-CA 150.8 10.9 84.2-6.5 79.5 176.9 HB1 56.9 0.8 48.5-5.5 55.2 401.7 HB2 15.1 1.0 27.3-2.6 28.6 16.3 CA 92.6 4.4-99.1 23.5-101.3-461.0 CA-HA 42.3 25.9-24.0 27.6-8.1-10.1 CA-C 290.4 3.8-23.8 11.0-37.2-323.8 HA 30.4 5.0 27.1 5.9 26.7-78.9 C 311.1-29.8-305.0 44.3-307.0-1161.8 C-O 76.9 10.9 57.2 4.0 49.3 25.8 O 200.2-13.8-51.7 28.4-54.1-431.4 C-OC1 31.8-9.1-17.7 9.4-23.1-62.3 C-HCO 4.7-23.9-1.6-2.1-5.1-2.5 OC1 9.5-2.9 12.3-16.1 13.3 60.9 HCO 1.3-8.1-2.0-0.2-3.0-5.8 S6

Table S3: TD-B3LYP, Proline, atomic N 713.4-16.5-176.1 78.8-230.2-404.4 H1 1.6-2.1-1.5-6.0-1.5-2.2 CD 467.8 14.3-514.9-17.8-536.7-1458.7 HD1 46.5-1.6-16.6-37.0-41.9-71.8 HD2 181.6 13.0-187.4-3.2-192.2-693.3 CG 442.6 18.1 363.7-7.0 352.0 599.6 HG1 99.2-13.3 222.4-23.0 227.7 220.7 HG2 45.8 15.5-105.1 4.3-98.5 1.7 CB 445.6 30.9 713.4-76.8 680.5 2363.6 HB1 215.1 3.9 46.5-14.8 67.5 1020.2 HB2 61.5 1.9 113.5-12.9 115.3 190.6 CA 698.2 51.3 62.5 82.4 34.0-256.1 HA 57.5 17.7 26.6 25.3 33.3-142.1 C 642.4-61.5-300.4 73.9-311.6-1566.1 O 264.4-15.5-73.3 36.6-70.3-594.2 OC1 27.1-13.0 2.5-15.4 3.2 74.4 HCO 3.8-24.7-3.7-1.7-6.6-8.8 S7

Table S4: TD-B3LYP, Proline, Bond N 383.6-14.5-249.7 67.0-281.1-794.5 N-H1 1.5-4.0-2.3-7.7-1.6-2.8 N-CD 67.6-3.0-203.9 21.7-212.5-157.4 N-CA 590.4 3.1 353.4 9.6 315.9 940.4 H1 0.9-0.1-0.3-2.1-0.7-0.8 CD 58.2-3.5-354.4 9.1-354.3-874.9 CD-HD1 60.8 6.1-36.5-48.6-69.4-113.9 CD-HD2 263.7 12.2-220.8-12.8-228.6-799.4 CD-CG 427.1 20.2 140.2-14.2 145.8-96.9 HD1 16.0-4.7 1.6-12.7-7.2-14.9 HD2 49.8 6.9-77.0 3.2-77.9-293.6 CG 25.4 9.2 171.8 3.0 167.7 224.6 CG-HG1 139.1-16.3 289.5-30.1 293.5 185.9 CG-HG2 58.9 20.4-130.3 6.1-118.7 115.2 CG-CB 209.2-6.4 84.4 18.2 47.9 545.7 HG1 29.7-5.1 77.7-8.0 81.0 127.7 HG2 16.4 5.3-40.0 1.3-39.2-55.9 CB 61.7 16.0 505.1-58.8 480.6 1176.0 CB-HB1 316.0 5.3-14.2-15.0 13.2 1230.8 CB-HB2 91.4-0.2 171.6-19.5 172.4 348.4 CB-CA 151.1 31.2 174.8-19.6 166.3 250.1 HB1 57.1 1.3 53.6-7.3 60.9 404.8 HB2 15.8 2.0 27.7-3.1 29.1 16.5 CA 128.2 18.1-174.9 56.6-178.4-701.3 CA-HA 43.6 26.8-42.7 37.6-25.8-25.0 CA-C 354.9 5.5-10.7 24.0-31.7-275.1 HA 35.7 4.3 48.0 6.5 46.2-129.6 C 404.8-44.5-278.5 52.2-276.6-1430.6 C-O 83.2 2.4-9.9 11.5-7.7 30.9 O 222.8-16.7-68.3 30.9-66.5-609.7 C-OC1 32.4-12.7-21.4 10.5-24.9-23.0 C-HCO 4.8-29.4-1.9-2.7-5.7-3.8 OC1 10.9-6.7 13.1-20.7 15.7 85.9 HCO 1.4-10.0-2.8-0.4-3.7-6.9 S8

Table S5: TD-CAMB3LYP, Proline, atom N 676.3-20.2-279.3 74.4-331.8-670.7 H1 1.6-1.7-1.2-5.2-1.1-1.3 CD 456.1 8.9-449.9-14.4-467.6-1272.4 HD1 46.1-1.6-25.4-34.3-48.2-71.2 HD2 180.4 12.1-171.6-3.5-176.7-671.7 CG 431.9 10.1 277.3 1.5 268.7 477.6 HG1 98.6-12.9 206.2-22.1 210.4 206.0 HG2 45.6 14.2-105.4 5.8-98.7-5.8 CB 434.7 21.1 572.7-55.8 548.8 2028.7 HB1 213.8 3.4 45.7-13.3 65.4 990.7 HB2 60.8 1.2 103.6-11.0 106.0 170.8 CA 663.3 39.9 26.6 72.3 3.0-351.3 HA 56.5 17.6 28.4 22.7 35.0-120.7 C 609.0-57.4-341.8 71.2-355.1-1591.8 O 262.6-16.8-79.4 38.1-79.0-579.3 OC1 26.7-11.7 4.3-15.8 4.8 70.8 HCO 3.8-22.5-3.5-1.2-6.2-9.2 S9

Table S6: TD-CAMB3LYP, Proline, Bond N 363.0-16.3-312.2 61.2-346.4-928.7 N-H1 1.6-3.5-2.0-6.7-1.1-3.1 N-CD 65.5-5.8-193.8 20.7-200.8-139.8 N-CA 559.5 1.5 261.7 12.3 231.1 658.9 CD 54.5-3.9-276.0 8.1-274.6-694.9 CD-HD1 60.4 5.2-46.6-45.0-76.1-118.9 CD-HD2 261.4 11.3-200.0-12.3-207.9-774.9 CD-CG 415.8 15.0 92.6-8.5 98.7-121.4 HD1 15.9-4.2-2.1-11.8-10.1-11.8 HD2 49.7 6.5-71.6 2.6-72.7-284.2 CG 24.4 5.2 127.4 7.7 123.6 172.5 CG-HG1 137.8-16.0 265.1-28.8 267.8 168.6 CG-HG2 58.5 18.6-130.7 7.6-119.2 98.3 CG-CB 202.7-7.7 72.8 17.2 42.9 464.8 HG1 29.7-5.0 73.6-7.7 76.5 121.7 HG2 16.4 4.9-40.1 2.0-39.1-54.9 CB 56.6 11.6 400.3-44.1 381.1 935.4 CB-HB1 313.5 4.7-11.0-13.2 14.8 1192.2 CB-HB2 90.1-0.8 156.5-16.5 158.5 316.6 CB-CA 149.7 22.7 126.5-10.9 119.3 212.9 HB1 57.1 1.0 51.2-6.7 58.0 394.6 HB2 15.7 1.6 25.4-2.7 26.8 12.5 CA 120.8 11.6-156.5 44.9-159.6-631.0 CA-HA 43.3 26.3-27.2 33.3-10.9-18.2 CA-C 332.4 6.1 5.0 20.0-14.4-294.0 HA 34.8 4.5 42.0 6.0 40.5-111.6 C 382.8-41.9-323.9 51.5-323.7-1430.9 C-O 83.2 1.0-20.7 12.9-21.3-2.5 O 221.0-17.3-69.0 31.6-68.4-578.1 C-OC1 32.0-11.4-18.1 8.6-21.5-20.9 C-HCO 4.8-26.7-2.0-2.0-5.5-4.3 OC1 10.7-6.0 13.3-20.1 15.6 81.3 HCO 1.4-9.1-2.5-0.2-3.5-7.1 S10

Table S7: TD-HF, Glycine, Atom N 185.5 15.3-69.5 12.0-62.8-383.8 CA 236.9 9.2-158.0 21.1-163.7-295.4 C 217.1 3.6-316.1 1.3-337.6-370.3 O 113.0-1.1-117.2-10.3-126.4 11.2 H 19.3 7.8 31.7 0.7 30.6 32.7 HA1 21.2 5.8 30.4 5.4 27.0-6.0 HA2 57.8 1.5-52.7 6.5-54.6-152.8 Table S8: TD-HF, Glycine, Bond N 135.0 9.9-135.2 3.9-131.8-422.6 N-CA 73.5-0.5 93.4 14.5 100.7 43.4 CA 27.1 4.3-150.0 7.2-152.6-224.3 CA-C 245.6 0.6-83.4 3.3-87.3-71.0 C 71.3 4.0-200.5-9.4-217.0-259.2 C-O 46.0-1.4-147.8 18.2-154.0-151.3 O 90.0-0.4-43.3-19.4-49.4 86.9 N-H 27.7 11.2 38.0 1.6 37.2 34.2 H 5.4 2.2 12.7-0.1 12.0 15.6 CA-HA1 21.0 6.5 41.6 3.1 34.7-36.8 CA-HA2 79.5 3.3-67.7 6.9-70.5-77.8 HA1 10.7 2.6 9.6 3.9 9.6 12.4 HA2 18.0-0.2-18.9 3.1-19.4-113.9 Table S9: TD-B3LYP, Glycine, Atom N 221.9 24.5 95.0 20.1 106.0-288.2 CA 288.4 17.9-305.8 50.1-307.4-898.6 C 268.5 4.9-371.2 0.8-390.3-598.8 O 123.5 0.5-154.9-16.0-162.4-166.9 H 22.0 11.1 57.6-0.7 55.9 84.5 HA1 23.4 6.9 23.3 8.2 20.0-28.6 HA2 61.4 2.8-63.4 7.5-65.6-208.6 S11

Table S10: TD-B3LYP, Glycine, Bond N 162.1 17.2-29.1 5.3-24.6-384.5 N-CA 88.9-1.9 176.8 29.6 191.6 91.9 CA 44.4 10.8-294.6 26.5-297.0-734.2 CA-C 294.1 2.8-142.0 4.3-144.0-199.7 C 98.7 4.1-217.0-8.7-233.7-310.6 C-O 45.7-1.2-166.3 14.8-169.2-376.7 O 100.6 1.1-71.7-23.4-77.8 21.4 N-H 30.8 16.5 71.4-0.1 69.6 100.6 H 6.6 2.9 21.9-0.6 21.1 34.1 CA-HA1 21.7 7.9 29.9 5.5 22.2-74.5 CA-HA2 83.3 5.5-87.1 7.7-90.6-146.6 HA1 12.5 2.9 8.3 5.4 8.9 8.7 Table S11: TD-CAMB3LYP, Glycine, Atom N 213.0 21.0 4.2 16.9 13.6-334.6 CA 273.0 14.9-253.7 37.5-257.7-623.6 C 254.2 4.9-358.4-5.1-380.7-482.5 O 122.6 0.8-131.1-19.6-139.5-90.4 H 21.3 9.4 42.5-0.1 41.2 63.7 HA1 22.8 6.2 27.0 7.2 23.8-20.2 HA2 60.5 2.6-57.4 7.2-59.4-178.7 Table S12: TD-CAMB3LYP, Glycine, Bond N 156.1 14.6-87.5 5.1-83.4-408.1 N-CA 83.7-1.0 131.9 22.9 143.6 71.8 CA 40.4 8.6-242.0 18.3-244.9-533.5 CA-C 278.3 1.5-113.7 3.4-117.4-89.1 C 92.2 4.5-232.9-11.5-251.6-301.9 C-O 45.7-0.6-137.3 9.4-140.9-272.1 O 99.8 1.1-62.5-24.3-69.0 45.7 N-H 30.0 13.9 51.5 0.7 50.3 75.1 H 6.3 2.5 16.8-0.4 16.0 26.2 CA-HA1 21.4 7.0 35.8 4.6 28.5-62.5 CA-HA2 82.0 5.2-77.2 7.3-80.3-100.4 HA1 12.2 2.7 9.1 4.9 9.6 11.0 S12

Properties of the collagen hyperpolarizability tensor Table S13: β Collagen components for the atomic additive model method β xxx β xxy β xxz β xyy β xyz β xzz β yyy β yyz β yzz β zzz TD-HF 20.4-4.6-1020.0 35.9 39.8-74.4 124.6-1154.8-33.4-2681.2 TD-B3LYP 87.0-25.8-547.2 55.5 40.7-87.4 155.9-719.8-39.2-2832.4 TD-CAMB3LYP 43.6-13.8-919.5 48.8 43.3-93.5 153.3-1080.9-46.8-3067.0 Table S14: β Collagen components for the atomic point model, i.e. no damping. method β xxx β xxy β xxz β xyy β xyz β xzz β yyy β yyz β yzz β zzz TD-HF 11.1 40.6-2383.9 34.2 100.0-209.3 154.9-2627.2-195.3-26113.7 TD-B3LYP 43.8 37.7-498.5 49.0 179.9-181.9 378.7-797.9-294.7-42116.5 TD-CAMB3LYP 20.4 53.9-2529.5 43.8 152.8-251.9 262.7-2861.6-345.8-45940.5 Table S15: β Collagen components for the bond point model, i.e. no damping. method β xxx β xxy β xxz β xyy β xyz β xzz β yyy β yyz β yzz β zzz TD-HF 41.9 39.9-2680.6 35.7 125.0-228.3 149.9-3035.3-262.7-36046.0 TD-B3LYP 77.8 44.6-367.6 49.3 242.8-106.8 409.9-912.0-537.5-70079.5 TD-CAMB3LYP 59.7 60.1-3143.5 45.7 204.4-247.1 262.6-3689.3-546.0-72749.1 S13

Table S16: β Collagen components for the atomic damped thole model method β xxx β xxy β xxz β xyy β xyz β xzz β yyy β yyz β yzz β zzz TD-HF 2.8 28.8-1554.9 26.7 79.5-164.6 143.5-1734.9-126.6-14559.2 TD-B3LYP 45.7 20.2-21.7 41.2 123.4-168.2 296.1-225.5-137.3-17328.3 TD-CAMB3LYP 14.9 31.3-1264.4 36.8 108.5-203.1 228.9-1481.7-179.9-20199.4 Table S17: β Collagen components for the bond damped thole model method β xxx β xxy β xxz β xyy β xyz β xzz β yyy β yyz β yzz β zzz TD-HF 15.9 33.8-1925.0 28.5 109.9-199.1 156.2-2192.9-180.8-23580.9 TD-B3LYP 53.1 23.8 346.1 41.7 184.0-161.2 365.4 2.2-248.1-32906.4 TD-CAMB3LYP 27.3 39.8-1631.5 38.8 161.2-233.2 263.5-1987.6-297.7-37334.4 S14