This file is part of the following reference: Access to this file is available from:

Similar documents
The microstructural and metamorphic history. preserved within garnet porphyroblasts

Supplementary Table 1.

In this practical we study the AKF and the Thompson AFM diagrams for pelites.

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

Supplemental Material, Kohn et al., p.1 Mineral compositions from Darondi rocks, central Nepal

This file is part of the following reference: Access to this file is available from:

Investigation of metamorphic zonation and isogrades of Garnet rocks in Hamadan area

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

Previous Tectonic Models for the Eastern Fold Belt, Mt Isa Inlier

SUPPLEMENTARY INFORMATION

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams

Metamorphic Petrology GLY 712 Geothermo-barometry

T6 soil base cation weathering rates

Lecture 14: A brief review

Metaperidotites and Marbles. Marbles and Metaperidotites; Geothermobarometry. Low Grade Reactions in. Metaperidotites

Prograde muscovite-rich pseudomorphs as indicators of conditions during metamorphism: An example from NW Maine

Calculating pressures and temperatures of petrologic events: geothermobarometry

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008

Chapter IV MINERAL CHEMISTRY

Name Petrology Spring Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13

GEOLOGY 285: INTRO. PETROLOGY

Metamorphic Petrology GLY 262 Metamorphic reactions and isograds

Metamorphic Facies. Metamorphic Facies. Metamorphic Facies. ERSC 3P21 Metamorphic Petrology II 03/11/2005. Facies

Real-time AFM diagrams on your Macintosh

Zn-Rich Spinel in Association with Quartz in the Al-Rich Metapelites from the Mashan Khondalite Series, NE China

SECTION B A METHOD FOR CALCULATING EFFECTIVE BULK COMPOSITION MODIFICATION DUE TO CRYSTAL FRACTIONATION IN GARNET-

Cathodoluminescence imaging and titanium thermometry in metamorphic quartz

Grimmer et al. GSA DATA REPOSITORY

Ultrahigh-temperature Metamorphism (1150 C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

Fig. Captions. Fig. 1. Generalized geologic map of eastern Nepal after Akiba et al. (1973), Carosi et al. (1993b),

Dynamic weakening of ring faults and catastrophic caldera collapse

Weathering and mineral equilibria. Seminar at NGU 23 May 2016 Håkon Rueslåtten

APPENDICES. Appendix 1

Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral Fluid Equilibria and Petrogenetic Grids

Metamorphic Petrology GLY 262 Petrogenetic grids and Schreinemakers

The Role of Water Retention in the Anatexis of Metapelites in the Bushveld Complex Aureole, South Africa: an Experimental Study

TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks

Chapter 6: Phase equilibria modelling of complex coronas in pelitic granulites from the Vredefort Dome

UNRAVELING THE FLUID-PRESENT METAMORPHISM OF SCHISTS FROM GARNET COMPOSITIONS IN THE BLACK HILLS, SOUTH DAKOTA. A Thesis presented to

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

ARTICLE IN PRESS. Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II)

RECEIVED JANUARY 3, 2003; ACCEPTED OCTOBER 17, KEY WORDS: garnet microtexture; P---T pseudosection; geochronology;

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration

Zoning of chloritoid from kyanite-facies metapsammites, Alpi Apuane, Italy

Introduction. Antonio Garcõ a-casco á Rafael Luis Torres-Rolda n

What is going on here?

Paper 1: THE ROLE OF FLUORINE IN THE FORMATION OF COLOR ZONING IN RUBIES FROM MONG HSU, MYANMAR (BURMA)

Numerical Modelling in Predictive Mineral Discovery: Geochemical Models

Earth and Planetary Materials

Geology, Alteration and. Petrogenesis

Reactions take place in a direction that lowers Gibbs free energy

Metcalf and Buck. GSA Data Repository

RECEIVED JANUARY 11, 2006; ACCEPTED AUGUST 15, 2006; ADVANCE ACCESS PUBLICATION SEPTEMBER 29, 2006

Diffusion control of garnet growth, Harpswell Neck, Maine, USA

Borojević Šoštarić 1, S., Cvetković 2, V., Neubauer 3, F., Palinkaš 4, LA., Bernroider 3, M., Genser 3, J.

Estimation of oxygen fugacity according to amphibole chemical composition in Vash granitoid, NW Natanz(Esfahan,Iran)

S. M. HOMAM ** Faculty of Earth Sciences, Damghan University of Sciences, Cheshmeh-Ali Road, Damghan, I. R. of Iran,

Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4).

The Genesis of Kurišková U-Mo ore deposits. Rastislav Demko, Štefan Ferenc, Adrián Biroň, Ladislav Novotný & Boris Bartalský

CHLORITE-CHLORITOID-GARNET EQUILIBRIA AND GEOTHERMOMETRY IN THE SANANDAJ-SIRJAN METAMORPHIC BELT, SOUTHERN IRAN * M. MOAZZEN

Geochronology of Metasomatic Events (Cha-6) In-situ Characterization of Chronometer Phases

Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs

MET LABS 3 and 4: METABASITES

PII S (99)

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure

XM1/331 XM1/331 BLFX-3 XM1/331

Log Interpretation Parameters Determined by Analysis of Green River Oil Shale Samples: Initial Steps

An Investigation into

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

SUPPLEMENTARY MATERIAL

Trinitite the Atomic Rock

Phase Diagram Problem 0

Shortcuts to mineral formulae

Metasomatism Model. Metasomatism. Fluid Buffers. Volatile Species. C-O-H-S System. Speciation in C-O-H-S fluids

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

GEOSCIENCE FRONTIERS 3(5) (2012) 603e611. available at China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma)

Appendix A2: Detailed description of all results

Mass Transfer during Andalusite Replacement by Kyanite in Al- and Fe-Rich Metapelites in the Yenisei Range

Activity-composition relationships

Two Stages of Sapphirine Formation During Prograde and Retrograde Metamorphism in the Palaeoproterozoic Lewisian Complex in South Harris, NW Scotland

High-pressure Fluid Rock Reactions involving Cl-bearing Fluids in Lower-crustal Ductile Shear Zones of the Flakstadøy Basic Complex, Lofoten, Norway

Petrology of Metamorphic Rocks from the Highland and Kadugannawa Complexes, Sri Lanka

Metamorphic Petrology

Ti-in-biotite geothermometry in non-graphitic, peraluminous metapelites from Crni vrh and Resavski humovi (Central Serbia)

Petrographic Data. Appendix C. Edward F. Stoddard

Metamorphic Petrology GLY 262 Metamorphic fluids

THIS IS A NEW SPECIFICATION

MINERALOGY LABORATORY Metamorphic Rocks and Minerals

METAMORPHISM AS A FUNCTION OF DEPTH IN METASEDIMENTARY ROCKS OF THE OUTOKUMPU DEEP DRILL HOLE

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc.

ANNEX VIII: APPENDIX E MINERALOGY RESULTS

Mutsuko Inui. School of Science and Engineering, Kokushikan University, , Setagaya, Setagaya - ku, Tokyo , Japan

Supporting Information Appendix

Transcription:

ResearchOnline@JCU This file is part of the following reference: Quentin de Gromard, R. (2011) The Paleozoic tectonometamorphic evolution of the Charters Towers Province, North Queensland, Australia. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/22000 The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact ResearchOnline@jcu.edu.au and quote http://eprints.jcu.edu.au/22000

RQ30-matrix Order Mineral/feature identified X-ray maps used Threshold Area Significance of pixels with highest greyscale values (inch 2 % ) values 1 background Inverted sum (Al+Fe+Mg+K+Ti) 253-255 4.29 8.5 Black background 2 Ilmenite Sum (Ti+cumul1) 190-255 0.35 0.7 Minerals containing high Ti 3 Fe oxide Sum (Fe+cumul2) 194-255 0.13 0.3 Minerals contanining high Fe Total remaining iron minerals (TRFe) Min intensity (Fe+cumul3) 23-255 14.41 28.5 Remaining minerals containing Fe 4 Biotite Sum (inverted TRFe+K+cumul3) 216-255 9.64 19.1 Minerals containing high Fe and high K 5 Chlorite Sum (inverted TRFe+Mg+inverted K+cumul4) 157-255 4.52 9.0 Minerals containing high Fe, high Mg and low K 6 Muscovite Sum (K+Al+2*cumul5) 211-255 9.97 19.4 Minerals containing high K and high Al 7 Quartz Sum (inverted Al+cumul6) 210-255 13.46 26.6 Remaining minerals containing no Al 8 Plagioclase Cumul7 128-355 8.33 16.5 Remaining minerals Modal percentage of all minerals normalized to the matrix area Ilmenite 0.7 Fe oxide 0.3 Biotite 20.9 Chlorite 9.8 Muscovite 21.2 Quartz 29.1 Plagioclase 18.0 RQ30-pseudomorph Order Mineral/feature identified X-ray maps used Threshold Area Significance of pixels with highest greyscale values (inch 2 % ) values 1 Background Sum (Al+K+Fe+Mg+Ti) 180-255 1.631 28.5 White background 2 Ilmenite Sum (Fe+Ti+2*cumul1) 149-255 0.034 0.6 Minerals containing high Fe and high Ti 3 Biotite Sum (Fe+K+2*cumul2) 215-255 1.492 26.0 Minerals containing high Fe and high K 4 Chlorite Sum (Fe+Mg+inverted K+cumul3) 190-255 0.384 6.7 Minerals containing high Fe, high Mg and low K 5 Muscovite Sum (K+Al+2*cumul4) 179-255 1.42 24.8 Minerals containing high K and high Al 6 Quartz Sum (inverted Al+cumul 5) 236-255 0.434 7.6 Remaining minerals containing no Al 7 Plagioclase Cumul6 128-255 0.331 5.8 Remaining minerals Modal percentage of all minerals normalized to the pseudomorph area Ilmenite 0.8 Biotite 36.4 Chlorite 9.4 Muscovite 34.7 Quartz 10.6 Plagioclase 8.1 Table 1. Table showing the methodology involved in the production of binary images and the calculation of mineral modes for sample RQ30. Inverted image refers to the inversion of the gray scale values (i.e. 255 minus the original gray scale value). Cumul is a summation of areas of all previously measured minerals resulting in a binary file where the mineral of interest is black. 9

(a) (b) Background Apatite 0.1% Ilmenite 1% Biotite 9.1% Muscovite 22.8% Quartz 10.4% Plagioclase 3.1% Cordierite 53.5% Background Ilmenite 0.8% Garnet 1.2% Biotite 30.4% Muscovite 51.6% Quartz 4.3% Cordierite 1.8% Plagioclase 10% Background (c) Muscovite 42.8% Apatite 0.3% Staurolite 2.5% Ilmenite+Pyrrhotite 2.8% Quartz 22% Biotite 16% Plagioclase 13.6% Figure 7: Binary images showing the modal mineralogy (the mineral of interest is in black) for three isolated areas: (a) the cordierite core, (b) the reaction rim and (c) the matrix. The background corresponds to the area of the map of no interest for mode calculation. Images produced via the routine described in text and in Table 1. Sample IS90. 10

RQ83-matrix Order Mineral/feature identified X-ray maps used Threshold Area Significance of pixels with highest greyscale values (inch 2 % ) values 1 Background Sum (Al+K+Fe+Mg+Ti) 0-1 21.682 36.7 Black background (removed pseudo areas) 2 Ilmenite Sum (Ti+cumul1) 192-255 0.219 0.4 Minerals containing high Ti 3 Fe oxides Sum (Fe+cumul2) 220-255 0.054 0.1 Minerals containing high Fe Total Remaining Iron Minerals (TRFe) Min intensity (Fe+cumul3) 52-255 6.797 11.5 Remaining minerals containing high Fe 4 Chlorite Sum (inverted TRFe+Mg+cumul3) 170-255 6.797 11.5 Minerals containing high Fe and high Mg 5 Muscovite Sum (K+Al+cumul4) 148-255 5,677 9.6 Minerals containing high K and high Al 6 Quartz Sum (inverted Al+Cumul5) 183-255 17.758 30.1 Remaining minerals containing no Al 7 Plagioclase Cumul6 128-255 6.84 11.6 Remaining minerals Modal percentage of all minerals normalized to the matrix area Ilmenite 0.6 Fe oxides 0.1 Chlorite 18.2 Muscovite 15.2 Quartz 47.6 Plagioclase 18.3 RQ83-pseudomorph Order Mineral/feature identified X-ray maps used Threshold Area % Significance of pixels with highest greyscale 1 Background values (inch 2 ) values Sum (Al+K+Fe+Mg+Ti) 0-127 21.682 All pixels containing some Al, K, Fe, Mg and/or Ti Inverted cumul0 128-255 58.0 All pixels containing none of the above elements 3 Ilmenite Sum (Fe+Ti+2*cumul1) 194-255 0.194 0.3 Minerals containing high Fe and high Ti 4 Chlorite Sum (Mg+inverted K+cumul2) 167-255 6.404 11.8 Minerals containing high Mg and low K 5 Muscovite Sum (Al+K+2*cumul3) 210-255 7.567 13.9 Minerals containing high Al and high K 6 Quartz Sum (inverted Al+cumul 4) 183-255 5.45 10.1 Remaining minerals containing no Al 7 Plagioclase Cumul5 128-255 3.228 6.0 Remaining minerals Modal percentage of all minerals normalized to the pseudomorph area Ilmenite 0.7 Chlorite 28.0 Muscovite 33.1 Quartz 24.0 Plagioclase 14.2 Table 2. Table showing the methodology involved in the production of binary images and the calculation of mineral modes for sample RQ83. Inverted image refers to the inversion of the gray scale values (i.e. 255 minus the original gray scale value). Cumul is a summation of areas of all previously measured minerals resulting in a binary file where the mineral of interest is black. 11

Background (a) (b) Ilmenite 0.8% Chlorite 9.4% Muscovite 34.7% Background Ilmenite 0.7% Chlorite 9.8% Muscovite 21.2% Biotite 36.4% Quartz 10.6% Fe-oxide 0.3% Quartz 29.1% Plagioclase 8.1% Biotite 20.9% Plagioclase 18% Figure 8: Binary images showing the modal mineralogy (the mineral of interest is in black) for two isolated areas: (a) the pseudomorph and (b) the matrix. The background corresponds to the area of the map of no interest for mode calculation. Images produced via the routine described in text and in Table 2. Sample RQ30. 12

IS90-matrix Order Mineral/feature Threshold Area Significance of pixels with highest X-ray maps used identified values (inch 2 % ) greyscale values 1 Background Sum (Al+K+Fe+Mg+Ca+CP) 150-255 22.276 43.5 White background 2 Apatite Sum (Ca+cumul1) 180-255 0.074 0.2 Minerals containing high Ca 3 Ilmenite and pyrrhotite Sum (Fe+cumul2) 164-255 0.829 1.6 Minerals containing high Fe 4 Biotite Sum (K+Mg+cumul3) 183-255 4.644 9.0 Minerals containing high K and high Mg 5 Muscovite Sum (K+cumul4) 169-255 12.377 24.2 Remaining minerals containing high K 6 Staurolite Sum (Al+cumul5) 203-255 0.71 1.4 Minerals containing high Al 7 Quartz Sum (inverted Al+cumul6) 227-255 6.38 12.4 Remaining minerals containing no Al 8 Plagioclase Sum (Ca+cumul7) 165-255 3.966 7.7 Remaining minerals containing Ca Modal percentage of all minerals normalized to the matrix area Apatite 0.3 FeS and FeTi oxides 2.8 Biotite 16.0 Muscovite 42.8 Staurolite 2.5 Quartz 22.0 Plagioclase 13.6 IS90-reaction rim Order Mineral/feature Threshold Area Significance of pixels with highest X-ray maps used identified values (inch 2 % ) greyscale values 1 Background Sum (Al+K+Fe+Mg+Ca+CP) 176-255 16.444 53.0 White background 2 Ilmenite Sum (Fe+inverted Al+cumul1) 177-255 0.108 0.4 Minerals containing high Fe and no Al 3 Garnet Sum (Fe+inverted K+cumul2) 227-255 0.177 0.6 Minerals containing high Fe and no K 4 Biotite Sum (K+Mg+cumul3) 181-255 4.443 14.3 Minerals containing high K and high Mg 5 Muscovite Sum (K+cumul4) 161-255 7.513 24.2 Remaining minerals containing high K 6 Quartz Sum (inverted Al+cumul5) 209-255 0.621 2.0 Remaining minerals containing no Al 7 Cordierite Sum (Mg+cumul6) 163-255 0.248 0.8 Remaining minerals containing Mg 8 Plagioclase Sum (Ca+cumul7) 128-255 1.456 4.7 Remaining minerals containing Ca Modal percentage of all minerals normalized to the mantle area Ilmenite 0.8 Garnet 1.2 Biotite 30.4 Muscovite 51.6 Quartz 4.3 Cordierite 1.8 Plagioclase 10.0 IS90-cordierite core Order Mineral/feature Threshold Area Significance of pixels with highest X-ray maps used identified values (inch 2 % ) greyscale values 1 Background Sum (Al+K+Fe+Mg+Ca+CP) 187-255 4.33 30.6 White background 2 Apatite Sum (Ca+cumul1) 158-255 0.011 0.1 Minerals containing high Ca 3 Ilmenite Sum (Fe+cumul2) 198-255 0.107 0.7 Minerals containing high Fe 4 Biotite Sum (K+Mg+cumul3) 212-255 0.898 6.3 Minerals containing high K and high Mg 5 Muscovite Sum (K+cumul4) 152-255 2.235 15.8 Remaining minerals containing high K 6 Quartz Sum (inverted Al+cumul5) 206-255 1.019 7.2 Remaining minerals containing no Al 7 Plagioclase Sum (Ca+cumul6) 203-255 0.303 2.1 Remaining minerals containing Ca 8 Cordierite Sum (Mg+cumul7) 137-255 5.251 37.1 Remaining minerals containing Mg Modal percentage of all minerals normalized to the pseudomorph area Apatite 0.1 Ilmenite 1.0 Biotite 9.1 Muscovite 22.8 Quartz 10.4 Plagioclase 3.1 Cordierite 53.5 Table 3. Table showing the methodology involved in the production of binary images and the calculation of mineral modes for sample IS90. Inverted image refers to the inversion of the gray scale values (i.e. 255 minus the original gray scale value). Cumul is a summation of areas of all previously measured minerals resulting in a binary file where the mineral of interest is black. 13

Background Ilmenite 0.7% (a) Quartz 24% Background (b) Chlorite 28% Plagioclase 14.2% Ilmenites 0.6% Muscovite 15.2% Muscovite 33.1% Fe oxide 0.1% Quartz 47.6% Chlorite 18.2% Plagioclase 18.3% Figure 9: Binary images showing the modal mineralogy (the mineral of interest is in black) for two isolated areas: (a) the pseudomorph and (b) the matrix. The background corresponds to the area of the map of no interest for mode calculation. Images produced via the routine described in text and in Table 3. Sample RQ83. 14

Ilmenite+Pyrrhotite Quartz Biotite Muscovite Plagioclase Cordierite Figure 10: Reconstructed binary images showing the distribution of each mineral over the whole pseudomorph plus matrix area for sample IS90. 15

Ilmenite Biotite Chlorite Muscovite Quartz Plagioclase Figure 11: Reconstructed binary images showing the distribution of each mineral over the whole pseudomorph plus matrix area for sample RQ30. 16

Ilmenite Chlorite Quartz Muscovite Plagioclase Figure 12: Reconstructed binary images showing the distribution of each mineral over the whole pseudomorph plus matrix area for sample RQ83. 17

Cordierite Biotite Muscovite Staurolite cc rr cc rr m cc rr m SiO 2 48.75 48.80 36.62 36.76 36.28 47.29 46.98 46.46 27.67 TiO 2 0.01 0.00 1.25 1.29 1.46 0.24 0.45 0.37 0.57 Al 2 O 3 31.46 32.03 19.62 19.54 19.19 36.85 36.36 36.13 52.90 FeO 6.68 6.47 16.25 16.54 16.76 0.60 0.57 0.53 12.88 MnO 0.47 0.50 0.14 0.14 0.16 0.01 0.01 0.02 0.52 MgO 8.30 8.33 11.67 11.83 11.52 0.45 0.49 0.47 1.83 CaO 0.02 0.02 0.01 0.01 0.01 0.01 Na 2 O 0.84 0.76 0.31 0.33 0.32 1.12 1.19 1.29 K 2 O 0.01 0.00 8.09 8.12 7.97 7.25 7.65 8.04 Total 96.53 96.90 93.95 94.55 93.69 93.82 93.71 93.31 96.38 Si 5.09 5.07 5.50 5.50 5.49 6.23 6.22 6.20 7.78 iv Al 0.91 0.93 2.50 2.50 2.51 1.77 1.78 1.80 0.22 (iv) 6.00 6.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 vi Al 2.97 2.99 0.98 0.94 0.91 3.95 3.89 3.88 17.30 Ti 0.14 0.14 0.17 0.02 0.04 0.04 0.12 Fe 0.58 0.56 2.04 2.07 2.12 0.07 0.06 0.06 3.03 Mn 0.04 0.04 0.12 Mg 1.29 1.29 2.61 2.64 2.60 0.09 0.10 0.09 0.77 1.92 1.90 5.78 5.79 5.80 4.13 4.10 4.07 Ca Na 0.17 0.15 0.09 0.10 0.09 0.29 0.31 0.33 K 1.55 1.55 1.54 1.22 1.29 1.37 0.17 0.16 1.64 1.65 1.64 1.51 1.60 1.70 Total 11.06 11.05 15.42 15.44 15.43 13.64 13.70 13.77 29.34 Table 4. Table showing representative analyses of cordierite, biotite, muscovite and staurolite from sample IS90. cc cordierite core; rr reaction rim; m matrix 18

Biotite Muscovite Chlorite Plagioclase p m p m p m p m c r c r SiO 2 37.13 37.61 48.79 48.76 30.40 27.32 61.33 62.35 62.16 62.27 TiO 2 0.85 1.15 0.16 0.31 0.08 0.08 0.02 0.00 0.06 0.01 Al 2 O 3 19.04 18.27 37.77 37.53 22.21 19.97 24.14 24.26 24.09 24.05 FeO 17.14 16.83 0.76 0.97 20.75 27.37 0.15 0.19 0.18 0.18 MnO 0.15 0.16 0.01 0.00 0.23 0.20 0.02 0.01 MgO 11.21 11.27 0.48 0.58 14.26 12.48 0.01 0.00 CaO 0.17 0.08 0.02 0.08 0.25 0.28 6.24 5.79 5.98 5.64 Na 2 O 0.18 0.07 1.11 1.04 0.02 0.04 8.23 8.20 8.39 8.59 K 2 O 7.81 8.45 6.07 5.49 1.17 0.84 0.06 0.08 0.07 0.08 Cl 0.02 0.02 0.01 Total 93.68 93.90 95.18 94.76 89.36 88.57 100.17 100.87 100.97 100.83 Si 5.61 5.67 6.28 6.29 6.08 5.77 2.72 2.74 2.74 2.74 iv Al 2.39 2.33 1.72 1.71 1.92 2.23 1.26 1.26 1.25 1.25 (iv) 8.00 8.00 8.00 8.00 8.00 8.00 vi Al 1.00 0.93 4.01 3.99 3.31 2.74 Ti 0.10 0.13 0.02 0.03 0.01 0.01 Fe 2.16 2.12 0.08 0.10 3.47 4.83 Mn 0.02 0.02 0.04 0.04 Mg 2.52 2.53 0.09 0.11 4.25 3.93 (vi) 5.80 5.73 4.20 4.24 11.09 11.55 Ca 0.03 0.01 0.00 0.01 0.05 0.06 0.30 0.27 0.28 0.27 Na 0.05 0.02 0.28 0.26 0.01 0.01 0.71 0.70 0.72 0.73 K 1.50 1.63 1.00 0.90 0.30 0.23 Cl (xii) 1.59 1.66 1.28 1.17 0.36 0.31 Total 15.39 15.40 13.48 13.41 19.44 19.86 5.00 4.98 5.00 5.00 An 29.53 28.07 28.26 26.62 Ab 70.47 71.93 71.74 73.38 Table 5. Table showing representative analyses of biotite, muscovite, chlorite and plagioclase from sample RQ30. m matrix, p pseudomorph, c core, r - rim 19

Biotite Muscovite Chlorite m p m p m SiO 2 37.93 53.11 47.45 25.43 25.08 TiO 2 1.06 0.04 0.05 0.06 0.09 Al 2 O 3 18.48 34.19 37.19 23.23 23.42 FeO 16.54 1.12 1.69 23.22 23.74 MnO 0.14 0.02 0.34 0.34 MgO 10.29 0.51 0.44 15.85 15.74 CaO 0.22 0.04 0.06 0.08 0.06 Na 2 O 0.14 0.94 1.51 0.01 0.01 K 2 O 8.33 5.76 6.59 0.03 0.01 Cl 0.02 0.01 0.01 Total 93.15 95.74 94.98 88.26 88.50 Si 5.75 6.75 6.19 5.26 5.19 iv Al 2.25 1.25 1.81 2.74 2.81 (iv) 8.00 8.00 8.00 8.00 8.00 vi Al 1.05 3.87 3.92 2.92 2.90 Ti 0.12 0.00 0.01 0.01 0.01 Fe 2.10 0.12 0.18 4.01 4.11 Mn 0.02 0.06 0.06 Mg 2.33 0.10 0.08 4.88 4.85 (vi) 5.62 4.10 4.19 11.88 11.93 Ca 0.04 0.01 0.01 0.02 0.01 Na 0.04 0.23 0.38 0.00 0.01 K 1.61 0.93 1.10 0.01 0.00 Cl 0.01 (xii) 1.69 1.17 1.49 0.03 0.02 Total 15.31 13.27 13.68 19.91 19.95 Table 6. Table showing representative analyses of biotite, muscovite and chlorite from sample RQ83. m matrix, p - pseudomorph 20

Garnet Plagioclase rr m cc rr m c r c r c r c r c r SiO 2 37.91 37.91 37.88 37.83 63.15 62.68 63.51 63.62 63.58 63.85 TiO 2 0.02 0.02 0.03 0.03 0.04 0.00 0.01 0.00 0.00 0.02 Al 2 O 3 21.01 21.01 21.08 21.05 22.67 22.91 22.57 22.38 22.58 21.95 FeO 29.13 29.13 29.36 29.38 0.10 0.13 0.06 0.11 0.02 0.02 MnO 7.83 7.83 7.64 8.06 0.02 0.01 0.01 0.00 0.00 0.01 MgO 3.10 3.10 3.15 2.87 0.00 0.01 0.00 0.00 0.00 0.00 CaO 1.30 1.30 1.09 1.02 4.13 4.73 4.10 4.02 3.99 3.64 Na 2 O 0.06 0.06 0.02 0.02 8.74 8.30 8.00 8.20 7.73 8.26 K2O 0.02 0.02 0.00 0.00 0.03 0.03 0.06 0.05 0.04 0.04 Total 100.37 100.37 100.24 100.26 98.88 98.79 98.31 98.36 97.93 97.78 Si 3.03 3.03 3.03 3.03 2.81 2.80 2.84 2.84 2.84 2.86 Al 1.98 1.98 1.99 1.99 1.19 1.21 1.19 1.18 1.19 1.16 Ti 0.00 0.00 0.00 0.00 Fe 1.95 1.95 1.96 1.97 Mn 0.53 0.53 0.52 0.55 Mg 0.37 0.37 0.38 0.34 Ca 0.11 0.11 0.09 0.09 0.20 0.23 0.20 0.19 0.19 0.17 Na 0.76 0.72 0.69 0.71 0.67 0.72 Total 7.98 7.98 7.97 7.97 4.97 4.96 4.92 4.93 4.90 4.92 X alm 0.66 0.66 0.67 0.67 X py 0.12 0.12 0.13 0.12 X spess 0.18 0.18 0.18 0.19 X gross 0.04 0.04 0.03 0.03 An 20.75 23.96 22.07 21.31 22.18 19.59 Ab 79.25 76.04 77.93 78.69 77.82 80.41 Table 7. Table showing representative analyses of garnet and plagioclase from sample IS90. cc cordierite core, rr reaction rim, m matrix, c core, r - rim 21

Fe+Mg+Mn+Ti 0.38 0.33 0.28 0.23 0.18 (a) 0.13 3.73 3.78 3.83 3.88 3.93 3.98 4.03 VI Al K 1.65 1.55 1.45 1.35 1.25 1.15 1.05 0.95 (b) 0.85 0.15 0.20 0.25 0.30 0.35 0.40 0.45 Na Fe+Mg+Mn+Ti 5.15 5.05 4.95 4.85 4.75 4.65 4.55 4.45 (c) 4.35 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 VI Al K 1.80 1.70 1.60 1.50 1.40 1.30 (d) 1.20 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 Na 9.20 30 Fe+Mg+Mn+Ti 8.80 8.40 8.00 7.60 (e) 7.20 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 VI Al An 28 26 24 22 20 18 (f) 16 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 Si 0.69 0.20 0.19 0.18 X Mg 0.68 Na 0.17 0.16 (g) 0.67 5.06 5.07 5.08 5.09 5.10 5.11 5.12 Si 0.15 (h) 0.14 5.06 5.07 5.08 5.09 5.10 5.11 5.12 Si Legend RQ30 pseudomorph RQ30 matrix RQ30 pseudomoprh/matrix boudary IS90 cordierite core IS90 reaction rim IS90 matrix RQ83 pseudomorph RQ83 matrix IS104 pseudomorph IS104 matrix 22

Figure 13: Diagrams showing the relationship between VIAl and Fe+Mg+Mn+Ti (a) and Na and K (b) in muscovite. Diagrams showing the relationship between VIAl and Fe+Mg+Mn+Ti (c) and Na and K (d) in biotite. Diagram showing the relationship between VIAl and Fe+Mg+Mn+Ti in chlorite (e). Diagram showing the relationship between Si and An content in plagioclase (f). shaded areas represents plagioclase core analysis, the arrows indicate the transition from plagioclase core (shaded) to rim. Diagram showing the relationship between Si and XMg (g) and Si and Na (h) in cordierite. 23

P (kbar) 7 6 Pattison 92TP a H2 O = 1 Ky Sil Ms Als Kfs 5 4 3 Ky And P Als Chl Crd Bt 0.4 0.3 0.2 0.9 0.8 0.7 0.6 0.5 Mg-Bt Sil Mg-Crd 2 0.1 Sil 1 0 (a) And 400 500 600 700 800 T (ºC) Fe-Bt Als Fe-Crd P (kbar) 7 6 5 Holdaway 71TP a H2 O = 1 Ky Sil Ms Als Kfs 4 3 2 Ky And 0.3 H Als Chl Crd Bt 0.3 0.2 0.9 0.8 0.7 0.6 0.5 0.4 Mg-Bt Sil Mg-Crd 1 0 (b) 0.1 Sil And 400 500 600 700 800 T (ºC) P-T region of reaction (1) (Ms+Qtz+Crd+Als+Bt) assemblages Isopleths of Mg/(Mg+Fe) in Bt in reaction (1) Qtz + H2O in excess; Ms in excess below reaction Ms=Als+Kfs Figure 14: Contours of Mg/(Mg+Fe) in biotite plotted on petrogenetic grids of Pattison et al. (2002) for the Pattison 1999 triple point (a) and the Holdaway 1971 triple point (b). Reaction 1: 2Ms + 3Crd = 2Bt + 8Als + 7Qtz +3n H2O. 24

0.4 700 o C 0.3 Ti (apfu) 0.2 600 o C 500 o C IS90 RQ30 0.1 RQ83 0.4 0 (a) 0.3 0.4 0.5 0.6 0.7 0.8 Mg/(Mg+Fe) 0.3 700 o C Ti (apfu) 0.2 0.1 600 o C 500 o C IS90-matrix IS90-reaction rim RQ30-matrix RQ30-pseudomorph 0 (b) 0.3 0.4 0.5 0.6 0.7 0.8 Mg/(Mg+Fe) Figure 15: Ti-in-biotite thermometer grid of Henry et al. (2005). (a) Ti/XMg plot for all biotite analysis for samples IS90, RQ30 and RQ83. (b) Ti/XMg plot for the average biotite composition from the pseudomorph and from the matrix for samples IS90 and RQ30. 25

(a) (b) (c) Legend: Matrix: Qz + Bt + Ms + Pl Reaction rim: Ms + Bt + Pl Cordierite Idioblastic biotite Deformed biotite Muscovite Quartz Plagioclase Ilmenite Crack Fluid Figure 16: Series of sketches showing the inferred textural and mineralogical evolution of mica rich pseudomorph after cordierite. (a) Cordierite porphyroblast at the onset of pseudomorphing process. Microcracks start to develop from the margin of the cordierite porphyroblast towards the core. Some cracks develop due to the replacement of quartz by plagioclase by fluid infiltration and diffusion. Another series of cracks develop by increase strain rate during exhumation. Both crack types are filled by micas. (b) The process advances until the entire rim of the cordierite porphyroblast is replaced by micas resulting in the reaction rim. Continuous replacement of quartz by plagioclase and increase strain rate contributes to further microcracking of the reaming cordierite. (c) The process continues until the whole cordierite porphyroblast is replaced. 26