PARAMETER IDENTIFICATION IN THE FREQUENCY DOMAIN. H.T. Banks and Yun Wang. Center for Research in Scientic Computation

Similar documents
Actuators. September 6, Abstract. levels in a 2-D cavity with a exible boundary (a beam) is investigated. The control

MODELLING OF FLEXIBLE MECHANICAL SYSTEMS THROUGH APPROXIMATED EIGENFUNCTIONS L. Menini A. Tornambe L. Zaccarian Dip. Informatica, Sistemi e Produzione

NON-SYMMETRIC DAMPING AND SLOWLY TIME. Abstract. In this paper a model reference-based adaptive parameter

PDE-BASED CIRCULAR PLATE MODEL 1. Center for Research in Scientic Computation Department of Mathematics

quantitative information on the error caused by using the solution of the linear problem to describe the response of the elastic material on a corner

DYNAMIC WEIGHT FUNCTIONS FOR A MOVING CRACK II. SHEAR LOADING. University of Bath. Bath BA2 7AY, U.K. University of Cambridge

VIBRATION SUPPRESSION WITH APPROXIMATE FINITE COMPUTATIONAL METHODS AND EXPERIMENTAL RESULTS 1. Center for Research in Scientic Computation

Linear Regression and Its Applications

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

using the Hamiltonian constellations from the packing theory, i.e., the optimal sphere packing points. However, in [11] it is shown that the upper bou

Intrinsic diculties in using the. control theory. 1. Abstract. We point out that the natural denitions of stability and

Dynamic Green Function Solution of Beams Under a Moving Load with Dierent Boundary Conditions

Congurations of periodic orbits for equations with delayed positive feedback

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Richard DiSalvo. Dr. Elmer. Mathematical Foundations of Economics. Fall/Spring,

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton D

294 Meinolf Geck In 1992, Lusztig [16] addressed this problem in the framework of his theory of character sheaves and its application to Kawanaka's th

Lifting to non-integral idempotents

STOCHASTIC DIFFERENTIAL EQUATIONS WITH EXTRA PROPERTIES H. JEROME KEISLER. Department of Mathematics. University of Wisconsin.

SEMIGROUP APPROACH FOR PARTIAL DIFFERENTIAL EQUATIONS OF EVOLUTION

UNIVERSITY OF VIENNA

WELL-POSEDNESS OF INVERSE PROBLEMS FOR SYSTEMS WITH TIME DEPENDENT PARAMETERS

3rd Int. Conference on Inverse Problems in Engineering. Daniel Lesnic. University of Leeds. Leeds, West Yorkshire LS2 9JT

Shayne Waldron ABSTRACT. It is shown that a linear functional on a space of functions can be described by G, a

Gantry Type Coordinate Measuring Machines 27 frequencies of a CMM. Vermeulen [5] generated highaccuracy 3-D coordinate machines using a new conguratio

CRACK-TIP DRIVING FORCE The model evaluates the eect of inhomogeneities by nding the dierence between the J-integral on two contours - one close to th

INTRODUCTION TO NETS. limits to coincide, since it can be deduced: i.e. x

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Contractive metrics for scalar conservation laws

Ole Christensen 3. October 20, Abstract. We point out some connections between the existing theories for

NON LINEAR BUCKLING OF COLUMNS Dr. Mereen Hassan Fahmi Technical College of Erbil

Pointwise convergence rate for nonlinear conservation. Eitan Tadmor and Tao Tang

Weak Formulation of Elliptic BVP s

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

ON THE DESIGN OF MODAL ACTUATORS AND SENSORS

2 Garrett: `A Good Spectral Theorem' 1. von Neumann algebras, density theorem The commutant of a subring S of a ring R is S 0 = fr 2 R : rs = sr; 8s 2

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ScienceDirect. The Stability of a Precessing and Nutating Viscoelastic Beam with a Tip Mass

Super-resolution via Convex Programming

Modelling mechanical systems with nite elements

Article published by EDP Sciences and available at or

EFFECT OF A CRACK ON THE DYNAMIC STABILITY OF A FREE}FREE BEAM SUBJECTED TO A FOLLOWER FORCE

C.I.BYRNES,D.S.GILLIAM.I.G.LAUK O, V.I. SHUBOV We assume that the input u is given, in feedback form, as the output of a harmonic oscillator with freq

E(t,z) H(t,z) z 2. z 1

Lectures 15: Parallel Transport. Table of contents

Introduction to Finite Element Method. Dr. Aamer Haque

Quantum logics with given centres and variable state spaces Mirko Navara 1, Pavel Ptak 2 Abstract We ask which logics with a given centre allow for en

OPERATORS ON TWO BANACH SPACES OF CONTINUOUS FUNCTIONS ON LOCALLY COMPACT SPACES OF ORDINALS

Simultaneous boundary control of a Rao-Nakra sandwich beam

On ows associated to Sobolev vector elds in Wiener spaces: an approach à la DiPerna-Lions

Table 1: BEM as a solution method for a BVP dierential formulation FDM BVP integral formulation FEM boundary integral formulation BEM local view is ad

ON THE ASYMPTOTIC STABILITY IN TERMS OF TWO MEASURES FOR FUNCTIONAL DIFFERENTIAL EQUATIONS. G. Makay

Garrett: `Bernstein's analytic continuation of complex powers' 2 Let f be a polynomial in x 1 ; : : : ; x n with real coecients. For complex s, let f

A GALERKIN METHOD FOR LINEAR PDE SYSTEMS IN CIRCULAR GEOMETRIES WITH STRUCTURAL ACOUSTIC APPLICATIONS 1. Ralph C. Smith. Department of Mathematics

1 Solutions to selected problems

Damping: Hysteretic Damping and Models. H.T. Banks and G.A. Pinter

2 J JANSSEN and S VANDEWALLE that paper we assumed the resulting ODEs were solved exactly, ie, the iteration is continuous in time In [9] a similar it

Elementary 2-Group Character Codes. Abstract. In this correspondence we describe a class of codes over GF (q),

Abstract Minimal degree interpolation spaces with respect to a nite set of

FOR FINITE ELEMENT MODELS WITH APPLICATION TO THE RANDOM VIBRATION PROBLEM. Alexander A. Muravyov 1

EVALUATION OF THE NON-LINEAR DYNAMIC RESPONSE TO HARMONIC EXCITATION OF A BEAM WITH SEVERAL BREATHING CRACKS

Elec4621 Advanced Digital Signal Processing Chapter 11: Time-Frequency Analysis

and the nite horizon cost index with the nite terminal weighting matrix F > : N?1 X J(z r ; u; w) = [z(n)? z r (N)] T F [z(n)? z r (N)] + t= [kz? z r

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always

A note on continuous behavior homomorphisms

Riesz bases and exact controllability of C 0 -groups with one-dimensional input operators

FINITE ELEMENT METHOD: APPROXIMATE SOLUTIONS

2 JOSE BURILLO It was proved by Thurston [2, Ch.8], using geometric methods, and by Gersten [3], using combinatorial methods, that the integral 3-dime

Numerical Integration exact integration is not needed to achieve the optimal convergence rate of nite element solutions ([, 9, 11], and Chapter 7). In

19.2 Mathematical description of the problem. = f(p; _p; q; _q) G(p; q) T ; (II.19.1) g(p; q) + r(t) _p _q. f(p; v. a p ; q; v q ) + G(p; q) T ; a q

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers

From Fractional Brownian Motion to Multifractional Brownian Motion

Existence and uniqueness of solutions for nonlinear ODEs

Vibration Analysis of Coupled Structures using Impedance Coupling Approach. S.V. Modak

1 Introduction In this paper we present results for approximation of parameter estimation problems governed by nonlinear parabolic partial dierential

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Semi-strongly asymptotically non-expansive mappings and their applications on xed point theory

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.

An introduction to some aspects of functional analysis

Average Reward Parameters

The Fattorini-Hautus test

8 Singular Integral Operators and L p -Regularity Theory

COPYRIGHTED MATERIAL. Index

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems

2 Section 2 However, in order to apply the above idea, we will need to allow non standard intervals ('; ) in the proof. More precisely, ' and may gene

WELL-POSEDNESS FOR HYPERBOLIC PROBLEMS (0.2)

MULTIGRID PRECONDITIONING FOR THE BIHARMONIC DIRICHLET PROBLEM M. R. HANISCH

FUNCTION BASES FOR TOPOLOGICAL VECTOR SPACES. Yılmaz Yılmaz

Plan of Class 4. Radial Basis Functions with moving centers. Projection Pursuit Regression and ridge. Principal Component Analysis: basic ideas

A new nite-element formulation for electromechanical boundary value problems

A Concise Course on Stochastic Partial Differential Equations

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Hilbert Spaces. Contents

Université de Metz. Master 2 Recherche de Mathématiques 2ème semestre. par Ralph Chill Laboratoire de Mathématiques et Applications de Metz

1 Introduction It will be convenient to use the inx operators a b and a b to stand for maximum (least upper bound) and minimum (greatest lower bound)

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Numerical Computation of Solitary Waves on Innite. Cylinders

Free vibration analysis of elastically connected multiple-beams with general boundary conditions using improved Fourier series method

Transcription:

PARAMETER IDENTIFICATION IN THE FREQUENCY DOMAIN H.T. Banks and Yun Wang Center for Research in Scientic Computation North Carolina State University Raleigh, NC 7695-805 Revised: March 1993 Abstract In this paper, we introduce a method to carry out parameter identication in the frequency domain for distributed parameter systems. Theoretical results related to convergence of approximation ideas for the techniques are presented. An application of the method is illustrated via numerical results for a beam experiment. 1 Introduction In studying vibrations of exible structures, estimation of system parameters using observations in the time domain gave poor results when the observations contained several vibration modes. In response to this diculty in using time domain optimization techniques, we attempted to carry out identication in the frequency domain. The underlying idea for this procedure involves taking the discrete Fourier transform (DFT) of the data and dening the cost function by using this transformed data and transforms of the model solution. In this paper we outline the theoretical foundations for general frequency domain parameter estimation techniques for second order systems described in terms of sesquilinear forms and operators in a Hilbert space. To illustrate the ideas and techniques, we apply them to the problem of estimating Research supported in part by the Air Force Oce of Scientic Research under grant AFOSR{ 90{0091.

damping parameters in Timoshenko beams. The Abstract Problem Let V and H be complex Hilbert spaces satisfying V,! H = H,! V (see [16] for the construction of this so-called Gelfand triple), where we denote their topological duals by V and H, respectively. Let Q be the admissible parameter metric space with metric d. We consider the parameter dependent second order abstract inhomogeneous initial value problem in V u(t) + B(q) _u(t) + A(q)u(t) = f(t) u(0) = u 0 _u(0) = u 1 ; (:1) where A(q) and B(q) are parameter dependent dierential operators and q Q. The corresponding variational formulation is given by < u(t); > V ;V + 1 (u(t); ) + ( _u(t); ) =< f(t); > V ;V for V u(0) = u 0 _u(0) = u 1 ; (:) with < ; > V ;V denoting the duality product [16]. We assume that the sesquilinear forms 1 (q) and (q), where i (q) : V V! Cl, satisfy the following conditions: (A1) Boundedness. There exist c i > 0; i = 1; such that for q Q j i (q)(; )j c i jj V j j V for ; V ; (A) V-Coercivity. There exist k i > 0 and i > 0; i = 1; such that for q Q Re i (q)(; ) k i jj V? i jj H; V ; (A3) Continuity. For q; ~q Q and i = 1; j i (q)(; )? i (~q)(; ) j d i (q; ~q)jj V j j V ; ; V; where d i (q; ~q)! 0 as d(q; ~q)! 0: If (A1) holds, then 1 ; dene operators A(q); B(q) L(V; V ) by 1 (q)(; ) = < A(q) ; > V ;V (q)(; ) = < B(q) ; > V ;V for ; V :

In this manner, we have the equivalence of (.) and (.1). The conditions (A1)-(A3) are sucient to establish well posedness and continuous dependence results for (.1) and (.). Theorem 1 If the sesquilinear forms 1 and satisfy conditions (A1)-(A3) with 1 symmetric and f L ((0; T ); V ), then, for each w 0 = (u 0 ; u 1 ) H = V H, the initial value problem (.) has a unique solution w(t) = (u(t); _u(t)) L ((0; T ); V V ). Moreover, this solution depends continuously on f and w 0 in the sense that the mapping fw 0 ; fg! w = (u; _u) is continuous from HL ((0; T ); V ) to L ((0; T ); V V ). We have in Theorem 1 stated the well posedness of the system (.) in a weak variational setting. We can take an alternative (but, as we shall see, equivalent) approach using the theory of semigroups [11], [1]. We can rewrite the second order system (.1) as a rst order system for w(t) = (u(t); _u(t)) T on a product space. We dene the product space V = V V that V = V V be written as in addition to H = V H above and observe in the Gelfand triple V,! H,! V. The rst order system can _w(t) = A w(t) + F (t) in V w(0) = w 0 ; (:3) where F (t) = (0; f(t)) T V ; w 0 = (u 0 ; u 1 ) T H and A = 0 I?A?B! L(V; V ): (.4) With the assumptions on 1 and given in Theorem 1, the operator A is the innitesimal generator of an analytic semigroup T (t) on V by denition, mild solutions of (.3) in V w(t; q) = T (t) w 0 + Z t 0 are given by (see [4] or []). Then, T (t? s) F (s) ds : (.5) Theorem Suppose w 0 = (u 0 ; u 1 ) T H = V H, f L ((0; T ); V ), and sesquilinear forms 1 and are given as in Theorem 1. Then (.) has a unique solution in L ((0; T ); V V ) and it is given by the mild solution (.5). For the proofs of both Theorem 1 and Theorem see [4]. For computational eorts in control and estimation of these systems, it is an important result to note that the weak formulation and the semigroup formulation 3

yield the same solutions. In actuality, this equivalence can be given under weaker assumptions on than (A). If one relaxes the assumption on to H-semiellipticity, one can show that the operator A of (.4) denes a C 0 -semigroup on H which can be extended to a space Y, a proper subset of V which contains elements of the form (0; v ); v V. Then (.5) can still be used to dene mild solutions and the equivalence of solutions from Theorem.1 with mild solutions can be established (see [4] for details). 3 The Optimization Problem We formulate the estimation problem as a least squares t to observations. We seek q Q which minimizes J(u; z; q) = C ~ ~C1 fu(t i ; ~x; q)g? fz(t i )g : (3.1) In (3.1), u(t i ; q) is the solution to (.) (or the rst component of the state vector w(t; q) in (.5)) evaluated at t i, z(t i ) are pointwise time and pointwise space measurements. The operator ~ C 1 may be in the form of the identity, time dierentiation d=dt, or time dierentiation twice d =dt, each followed by pointwise evaluation in time and space (at x = ~x). The operator ~ C may be the identity (corresponding to time domain identication procedures) or the Fourier transform (corresponding to identication in the frequency domain). In this paper we only treat the operator ~ C in form of the Fourier transform. If the measurements are taken with xed sampling time, i.e., t = t i? t i?1 = t i+1? t i for all i and with a total of N samples at the xed space position x = ~x (this is often the case in experiments), then the Fourier series coecients for 0 i N are given by n ~C o ~C1 fu(t i ; ~x; q)g = U(k; q) = 1 XN?1 k N ~C fz(t i )g k = Z(k) = 1 XN?1 N i=0 i=0 ~C 1 fu(t i ; ~x; q)g e?jk(= N) i ; (3.) z(t i ) e?jk(= N ) i ; (3.3) where t i = it and k = 0; 1; : : : ; N?1. In (3.), we use the generic symbol U(k; q) to represent the Fourier coecients of the transform of ~ C 1 fu(; ~x; q)g for all three forms of ~ C1. With t as the sampling time, the k th to the k th coecient is given by value of the frequency corresponding f k = 1 t N k (3.4) 4

and the corresponding magnitudes are given by ju(k; q)j and jz(k)j. We assume that there are a nite and distinct number (< N ) of \spikes" among the Z(k). Since each spike can be described by its frequency (corresponding to its index), magnitude and width of the spike, we will make some modications to the cost function (3.1) when C ~ is the Fourier transform. Let N M be the number of spikes among the Z(k). We shall assume (A4) The number of spikes of the solution U(k; q) is the same as N M. After reindexing coecients of spikes among the Z(k) and U(k; q) and denoting the indices by k z, k ù for = 1; : : : ; N M with 0 k z ; k ù N? 1, the frequency domain cost function can be more appropriately expressed by ^J(q) = ^J(u; z; q) (3.5) = N M X =1 1 fk u (q)? f k z + XN j=?n j ju(k ù + j; q)j? jz(k z + j)j j ; where 1 ; are weight constants, and n; N are certain lower and upper limits associated with the width (or the support) of the th spike. The rst part of the cost function (3.5) is related to the frequencies and the second part is related to the magnitude and the width of each spike. The limits n and N depend on the th spike and are chosen so that n and N are the last i and last j respectively, for which the following conditions are satised: jz(k k? i)j 0%jZ(kz )j for i = 1; ; : : : ; n, and jz(k z + j)j 0%jZ(k z )j for j = 1; ; : : : ; N. The motivation behind our choice related to the width of the spike is that in traditional modal analysis, the width at approximately 30% of the peak value of the spike is used to estimate the damping ratio for the th mode. Hence taking a conservative approach and using the width at 0% of the peak value should guarantee the inclusion of substantial damping information in the Fourier coecients. If the parameter q minimizes (3.5), then we shall take q as the estimate of the parameter which best describes the system in the frequency domain, i.e. the least squares t of the model to data in the frequency domain sense. Hereafter, we interpret (3.1) as (3.5) whenever C ~ is the Fourier transform. 5

4 Approximation Technique The minimization in our parameter estimation problem involves an innite dimensional state space governed by (.1). For computational purpose, nite dimensional approximations are necessary. To make these approximations, we rst select a sequence of nite dimensional spaces H N which are subspaces of H. We dene orthogonal projections P N H : H! H N, P N V : V! H N, and choose the nite dimensional spaces H N = H N H N. We denote the orthogonal projections of H = V H onto H N by P N H. For convenience, we will hereafter restrict our consideration to the case where f C 1 ([0; T ]; V ). Then the approximating estimation problems with nite dimensional state spaces can be stated as nding q Q which minimizes or J N (u N ; z; q) = C ~ ~C1 fu N (t i ; ~x; q)g? fz(t i )g ; (4:1) ^J(q) = ^J N (u N ; z; q) (4.) = N M X =1 1 f k u N In (4.1) and (4.), u N (q)? f k z X + N j=?n ju N (k un + j; q)j? jz(k z + j)j : is an approximate solution which satises a readily-solved nite dimensional system approximating (.1) given by u N (t) + B N (q) _u N (t) + A N (q) u N (t) = P N H f(t) u N (0) = P N V u 0 _u N (0) = P N H u 1; (4:3) or equivalently the rst coordinate of the state vector w N (t; q) = T N (t) P N H w 0 + Z t 0 T N (t? s) P N H F (s) ds : (4.4) Here A N and B N are Galerkin approximations to A and B, respectively, and T N (t) is the obvious corresponding approximation to T (t), the semigroup of (.5) generated by the operators of (.4). Moreover, U N (k; q), for k = 0; 1; : : : ; N?1, in (4.) is given by U N (k; q) = 1 XN?1 N i=0 ~C 1 fu N (t i ; ~x; q)g e?jk(= N) i ; (4:5) and f k u is dened in the same manner as f N k. u In (4.), we have assumed that the number of \spikes" present in the approximate solution is the same as N M, the number of \spikes" in the data z. If one chooses 6

N such that N NM, then this assumption, which is (A4) for the approximation problems, is guaranteed. Solving the estimation problems with nite dimensional state spaces, we obtain a sequence of estimates fq N g. To obtain parameter estimate convergence and continuous dependence (with respect to the observations fz(t i )g) results, when ~ C the Fourier transform operator, it has been shown in [1], [5] that it suces, under the assumption that Q is a compact set, to argue: for arbitrary fq N g Q with q N! q, we have for each t. ~C ~ C1 u N (t; q N )! ~ C ~ C1 u(t; q) We rst observe that the \solutions" U N (k; q N ) corresponding to the approximating systems provide approximate solutions to the original system \solutions" U(k; q). Theorem 3 Suppose fq N g Q is an arbitrary sequence with q N! q as N! 1. Let U N (k; q N ) denote the Fourier series coecients for ~ C 1 fu N (t; q N )g where u N the solution to the initial value problem (4.3) corresponding to q N is is and let U(k; q) denote the Fourier series coecients for ~ C1 fu(t; q)g where u is the solution to the initial value problem (.1) corresponding to q. If ~ C 1 fu N (t; q N )g! ~ C 1 fu(t; q)g in V norm, and pointwise evaluation is continuous in the V norm, then N M X =1 1 as N! 1. f k u N (q N )? f k u (q) X + N j=?n ju N (k un + j; q N )j? ju(k ù + j; q)j! 0 Now we are ready to state the main theorem for parameter estimation in the frequency domain formulation. Theorem 4 Assume that the parameter space Q is a compact subset of Euclidean space. Then each of the approximating estimation problems for (4.) has a solution q N. Moreover, the sequence fq N g Q admits a convergent subsequence fq N j g with q N j! q Q as j! 1. If for each q Q, U(k; q) is dened as in Theorem 3, then q is a solution to the original optimization problem for (3.5). For the proof of both these theorems, see [7]. Continuous dependence of parameter estimates on observations (an analogue of the \method stability" of [1], [5]) can be established for frequency domain estimation problems using the ideas above with the arguments given in [1], [5] and [7]. 7

Next we consider conditions under which ~ C1 fu N (t; q N )g would converge to ~C 1 fu(t; q)g in V -norm. For the following theorems, some assumptions on the nite dimensional spaces H N are required. We assume (A5) H N V H. (A6) For each z V, there exists ^z H N such that jz? ^z N j V! 0 as N! 1. Theorem 5 Suppose both 1 (q) and (q) in (.) satisfy the conditions (A1)-(A3) and that conditions (A5)-(A6) hold. Let q N be arbitrary such that q N! q in Q. Then T N (t; q N )P N H! T (t; q); H; t > 0 and A N (q N ) T N (t; q N )P N H! A(q) T (t; q); H; t > 0 in V norm, with the convergence being uniform in t on compact subintervals. Here T N (t; q) and T (t; q) are the analytic semigroups generated by A N (q) and A(q), respectively. For a proof of this theorem, see [3], [6]. Corollary 1 Let A N (q) and A(q) be the innitesimal generators of the analytic semigroups T N (t; q) and T (t; q), respectively, and f C 1 ([0; T ]; V ). Then for C ~ 1 in one of the forms: identity, d=dt or d =dt we have ~C 1 fu N (t; q N )g! C1 ~ fu(t; q)g in V -norm, where u N (t; q N ) and u(t; q) are the rst coordinate of (4.4) and (.5) respectively. This corollary follows from Theorem 5. For the detailed proof when C1 ~ = d =dt see [6]. Before concluding this section, some comments on the assumption (A4) are appropriate. All our parameter estimation investigations have shown (and simple analysis of nd order damped scalar systems suggest) that the frequencies of the vibration of a beam are primarily determined by parameters representing stiness, mass density of the beam and mass of the tip body, whereas the magnitude of each excited mode is determined by the damping parameters (as well as the excitation force, of course). Stiness and mass can be measured and calculated quite accurately through the experiments and these values can be used in the process of parameter 8

identication (ID). That is, those measured quantities can be used as initial values to begin optimization. Using (4.) as a cost function, we have carried out our parameter ID using the following three steps to ensure that (A4) was satised. First, we x damping parameters with values from our knowledge of previous experience with experimental congurations similar to the one being studied. We use the measured stiness and mass as initial values and optimize on those parameters. Then we x the stiness and mass parameters at the optimal values resulting from the rst step and optimize on the damping parameters. Finally, we proceed to carry out an optimization on all parameters using the optimal values of the parameters from the previous steps as an initial guess. Our numerical eorts with such a procedure here (and in previously reported ndings) have proved most satisfactory. The basic mathematical model that we have considered in connection with the eorts discussed in this paper is the Timoshenko equations for a cantilevered beam with tip body. We shall describe the model in some detail in the next section. 5 Example As an example, we apply the techniques outlined above to the exural vibrations of elastic beams represented by models that include the eects of rotary inertia and shear deformation. We consider a cantilevered beam with tip body, internal or material damping, and an applied transverse force. The partial dierential equation together with boundary conditions based on the Timoshenko theory in terms of the bending moment M(t; x) and the shear force S(t; x) are given by (see [8], [9], [13], [14] and [15]) @ u @S @u (t; x)? (t; x) + @t @x @t (t; x) = f(t; ~ x); r @ @M (t; x)? (t; x)? S(t; x) = 0; 0 < x < ; t > 0 ; @t @x mc @ u @t (t; ) + (J o + mc ) @ (t; ) + M(t; ) = 0; t > 0 ; @t m @ u @t (t; ) + mc@ (t; ) + S(t; ) = 0; t > 0 ; @t u(t; 0) = (t; 0) = 0; t > 0 : (5:1) Here is the linear mass density, u(t; x) is the transverse displacement, (t; x) is the rotation of the beam cross section, f(t; ~ x) is the external applied transverse forces, r = I=A where I is the moment of inertia of the cross sectional area A and is 9

the length of the beam. In (5.1), viscous (air) damping has been taken into account with as damping coecient. We have assumed that the tip body has mass m and moment of inertia J o about its center of mass which is assumed to be located at a distance c from the tip of the beam along the beam's axis or centerline. The bending moment and shear force with Kelvin-Voigt damping are given by M(t; x) = EI @ @x (t; x) + c DI @ (t; x) ; @t@x (5.) @ S(t; x) = AG (t; x) + Ac s (t; x) ; @t (5.3) where G is the shear modulus, is a correction factor, the shear distortion (t; x) is dened by @u(t; x)=@x? (t; x), c D I is the bending damping coecient, and c s represents resistance related to shear strain rate. The possible parameters of the system to be considered are q = (; A; G; EI; m; c; J o ; ; c D I; c s ) Q lr 10. In view of the physical meaning of each parameter, the admissible parameter set will be taken to be a compact subset of lr 10 with c; 0 and each of ; A; G; EI; m; J o ; c D I; c s bounded below by some positive constants. The Hilbert spaces H and V are dened by H = lr H 0 (0; ) H 0 (0; ) with inner product for = ( 1 ; ; 1 ; ), = ( 1 ; ; 1 ; ) H < ; > H = < ( 1 ; ) ; ( 1 ; ) > lr + < 1 ; 1 > + < r ; > (5.4) where is given by =! m mc ; (5:5) mc mc + J o and V = f( 1 ; ; 1 ; ) H j i H 1 L(0; ); i = i (); i = 1; g with inner product for ; V < ; > V = < (D 1? ) ; (D 1? ) > + < D ; D > : (5:6) Here we use the notation D = @=@x and H 1 L(0; ) = f H 1 (0; )j(0) = 0g. A normalized variational form of (5.1) has the same form as (.) < z(t) ; > V ;V + 1(q)(z(t); ) + (q)( _z(t); ) = < f(t) ; > H 8 V z(0) = 0 _z(0) = 0; 10

with z(t) = (u(t; 1); (t; 1); u(t; ); (t; )) = ( 1 (1); (1); 1 ; ) f(t) = (0; 0;?1 ~ f(t; ); 0); and 1 (q)(z(t); ) = < AG (Du? ) ; (D 1? ) > + < EI D ; D > ; (5.7) (q)( _z(t); ) = < Ac s (D _u? _) ; (D 1? ) > +< c D I D _ ; D > + < _u ; 1 >: (5.8) The rst order abstract form of (5.1) for w(t) = (z(t); _z(t)) T is where with A(q)z(t) = B(q) _z(t) = _w(t) = A(q)w(t) + F (t); A(q) = 0 I?A(q)?B(q)!?1 (?AG((1)? Du(1)); EI D(1)); (5.9)?1 D(AG(? Du)); (r )?1 (D(EI D)? AG(? Du)) ;?1 (?Ac s ( _(1)? D _u(1)); c D I D _(1)); (5.10)?1 D(Ac s ( _? D _u)) +?1 _u; (r )?1 (D(c D I D _)? Ac s ( _? Du)) : The domain of A(q) is dened by dom(a(q)) = f = (; ) V H j V; EI D + c D ID H 1 (0; 1); AG(? D 1 ) + Ac s (? D 1 ) H 1 (0; 1)g: With the chosen parameter space, both 1 (q) and (q) satisfy (A1)-(A3) hence A(q) generates an analytic semigroup. A Galerkin method can be applied in developing an approximation scheme (see [3], [15] for details) with cubic splines chosen to generate a set of basis elements 11