Introduction 1. Partie II : Cosmologie

Similar documents
3 The Friedmann-Robertson-Walker metric

The early and late time acceleration of the Universe

Dark Matter and Energy

Today. Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open. Modern Cosmology. Big Bang Nucleosynthesis.

The Expanding Universe

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Physics 133: Extragalactic Astronomy and Cosmology

Lecture 2: Cosmological Background

PAPER 73 PHYSICAL COSMOLOGY

i>clicker Quiz #14 Which of the following statements is TRUE?

PHYM432 Relativity and Cosmology 17. Cosmology Robertson Walker Metric

Ta-Pei Cheng PCNY 9/16/2011

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

Dark Energy and the Accelerating Universe

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

THE PRIMORDIAL UNIVERSE IN A NEW TIME SCALE

Cosmology Distinction Course

Astroparticle physics the History of the Universe

Cosmic Confusion. common misconceptions about the big bang, the expansion of the universe and cosmic horizons.

Type Ia Supernova Observations. Supernova Results:The Context. Supernova Results. Physics 121 December 4, fainter. brighter

The Big Bang. Mr. Mike Partridge Earth & Space Science J.H. Reagan High School, Houston, TX

FRW cosmology: an application of Einstein s equations to universe. 1. The metric of a FRW cosmology is given by (without proof)

Cosmology: The History of the Universe

Week 1 Introduction: GR, Distances, Surveys

Astronomy 182: Origin and Evolution of the Universe

Big Bang Theory PowerPoint

What is the 'cosmological principle'?

The Dark Side of the Higgs Field and General Relativity

PHYSICS 107. Lecture 27 What s Next?

I V E R S U N. The Hot Big Bang I T Y T H E O F E. Andrew Liddle R G. Image: NASA/WMAP Science Team

A Bit of History. Hubble s original redshiftdistance

Isotropy and Homogeneity

Outline. Covers chapter 2 + half of chapter 3 in Ryden

THE DARK SIDE OF THE COSMOLOGICAL CONSTANT

The Cosmological Principle

Cosmological Confusion

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe

Physics 133: Extragalactic Astronomy ad Cosmology

Chapter 17 Cosmology

MIT Exploring Black Holes

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

Cosmology: the History of the Universe

Lab Monday optional: review for Quiz 3. Lab Tuesday optional: review for Quiz 3.

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field

Zero-energy space cancels the need for dark energy Tuomo Suntola

ASTR 101 General Astronomy: Stars & Galaxies

Redshift-Distance Relationships

The first 400,000 years

Tuesday: Special epochs of the universe (recombination, nucleosynthesis, inflation) Wednesday: Structure formation

Electronic class reviews now available.

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire

Third Year: General Relativity and Cosmology. 1 Problem Sheet 1 - Newtonian Gravity and the Equivalence Principle

Cosmology. Big Bang and Inflation

As we saw this is what our universe actually looks like out to ~600 Mpc. But we are going to approximate it as perfectly homogeneous!

Chapter 22: Cosmology - Back to the Beginning of Time

Cosmology. What is Cosmology?

Kinetic Theory of Dark Energy within General Relativity

1. De Sitter Space. (b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum energy (P = ) is

Beginning of Universe

Lecture 24: Cosmology: The First Three Minutes. Astronomy 111 Monday November 27, 2017

The State of the Universe

BASICS OF COSMOLOGY Astro 2299

Astronomy 233 Winter 2009 Physical Cosmology Week 3 Distances and Horizons Joel Primack University of California, Santa Cruz

Cosmology and particle physics

Astrophysics Lecture Notes

Higgs boson may appear to be a technihiggs

Astronomy, Astrophysics, and Cosmology

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data.

v = H o d Hubble s Law: Distant galaxies move away fastest Velocity (v) is proportional to Distance (d):

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

The Universe: What We Know and What we Don t. Fundamental Physics Cosmology Elementary Particle Physics

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe

Clusters: Context and Background

Cosmology: An Introduction. Eung Jin Chun

4 The Big Bang, the genesis of the Universe, the origin of the microwave background

Electronic Class Evaluation now available. Please do this!

An Analytical Estimate of the Hubble Constant

Supernovae explosions and the Accelerating Universe. Bodo Ziegler

Lecture 1 General relativity and cosmology. Kerson Huang MIT & IAS, NTU

Lecture 05. Cosmology. Part I

One of elements driving cosmological evolution is the presence of radiation (photons) Early universe

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6

Derivation of parametric equations of the expansion of a closed universe with torsion. Prastik Mohanraj

Doppler Effect. Sound moving TOWARDS. Sound moving AWAY 9/22/2017. Occurs when the source of sound waves moves towards or away

Modern Physics notes Spring 2005 Paul Fendley Lecture 38

Dark Matter & Dark Energy. Astronomy 1101

Dark Energy vs. Dark Matter: Towards a unifying scalar field?

Chapter 22 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Birth of the Universe Pearson Education, Inc.

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy

Particles, Energy, and Our Mysterious Universe

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Introduction to Cosmology

Relativity, Gravitation, and Cosmology

Astronomy 162, Week 10 Cosmology Patrick S. Osmer Spring, 2006

Introduction to Cosmology (in 5 lectures) Licia Verde

Transcription:

Introduction 1 Partie II : Cosmologie

Introduction 2 Only 5% of universe is ordinary matter! For the first time in human history we believe we have an inventory of the constituents of the universe. Rapid progress in astronomy and cosmology since the late 1970s, culminating in the discovery of the acceleration of the universe in 1998, has lead to a startling discovery Only 5% of the universe is ordinary matter! By ordinary matter we mean that explained by the standard model of particle physics, mostly protons and neutrons but also electrons, electromagnetic radiation and neutrinos and Higgs bosons and other exotic elementary particles in small quantities. The standard model has been extremely successful, agreeing with all experiments done on Earth (mostly large particle accelerator experiments at, for

Introduction 3 example, CERN s Large Hadron Collidor and Fermilab in the USA). The remainder, 95% of the matter of the universe, consists of dark matter and dark energy.

Introduction 3-1 Image taken from http://home.web.cern.ch/about/accelerators/ large-hadron-collider Figure 1 27 km long tunnel of the Large Hadron Colider in France/Switzerland

Introduction 4 Dark matter and dark energy make up 95% of universe! Dark matter is something that we cannot see directly in telescopes, but is needed to explain the dynamics of stars within individual galaxies and the dynamics of the whole universe. We think this dark matter is not ordinary matter because of the results of big bang nucleosynthesis. In the early universe, from a few hundred milliseconds after the BB to a few minutes after the BB, the light elements were produced : deuterium, helium-3, helium-4, and lithium and berylium. It turns out that the ratio of their production depends strongly upon the total amount of matter present. From the luminous matter ratios, we can infer the total amount of ordinary

Introduction 5 matter, and this is much smaller than what is needed to explain the dynamics of the universe. So there must be a lot of non-ordinary matter lying around. Furthermore, in the 1970s it was discovered that the amount of matter needed to explain galaxy dynamics is much larger (by about 5 times) than is available in ordinary matter. Hence astronomers conclude that the dark matter must be the non-ordinary matter inferred from BB nucleosynthesis.

Introduction 6 Figure 2 Spiral galaxy M81

Introduction 7 Dark energy makes up 70% of universe! Dark energy is also something that we cannot see directly with telescopes, but is needed to explain the dynamics of the whole universe. In particular, the expansion of the universe was observed to be accelerating in 1998 by two independent teams of astronomers (Perlmutter et al., 1999; Riess et al., 1998). The lead scientists from these two teams shared the Nobel Prize in physics in 2011.

Introduction 8 Figure 3 From Riess et al. (1998), the figure that won the noble prize. The trend of luminosity versus redshift for Type Ia supernovae is fit best with an accelerating universe with 76% dark energy and 24% matter.

Introduction 9 Particle physics meets cosmology Neither dark matter nor dark energy are not currently well understand. In fact, much of the activity of contemporary cosmology is aimed at understanding dark matter and dark energy. Most of theoretical physics is at least partly linked to the mystery of dark energy and dark matter. Interestingly, for most of their history, the field of cosmology the study of the largest thing, was completely separate from particle physics the study of the smallest building blocks. Only since the discoveries of dark matter in the 1970s have these fields combined. It is no overstatement to say that identifying the dark matter is one of the greatest problems in modern science, (Coutu, 2013).

Introduction 10 To not appreciate these questions is to not appreciate the motivation of much of contemporary physics. Our primary goal in these final seven 2-hour lectures on cosmology is to explain why we believe in the above inventory of the universe.

Introduction 11 Point de départ et bout We will cover Chapter 12 of (Schutz, 2009), the first chapter of Weinberg (2008), and use (Liddle, 2003) for a more elementary explanation. The first half of the course we have introduced General Relativity, Einstein s classical geometric theory of gravitation. We covered the essentials of chapters 1, 2, 4, 6, 7, 8 of (Schutz, 2009). Cours 8 : Introduction à la cosmologie, description de l Univers, métrique de Friedmann-Roberston-Walker( FRW), la loi de Hubble. Cours 9 : Exploration de la métrique FRW. Cours 10 : Les équations de Friedmann-Lemaître : énergie-impulsion, le tenseur d énergie-impulsion, le fluide

Introduction 12 parfait, l équation du champ gravitationnel (l équation du champ d Einstein) Cours 11 : Dynamics of the universe, 3 possible universes, the evidence for Dark Energy. Cours 12 : Dark Matter Cours 13, 14, 15 : Catch up, or cover in more depth earlier subject, e.g. Cosmic Microwave Background.

Introduction 13 Cours 9 : Exploration de la métrique FRW

Introduction 14 La métrique de Friedmann-Robertson-Walker Nous avons trouvé la métrique d un espace-temps avec géométrie du 3-espace homogène et isotrope : ( ) 1 ds 2 = c 2 dt 2 a 2 (t) 1 kr 2 dr2 + r 2 dθ 2 + r 2 sin 2 θdφ 2, = c 2 dt 2 dl 2, (1) dans les coordonnées standards où t est le temps cosmologique, et {r, θ, φ} sont les coordonnées spatial avec r 0, 0 θ π et 0 φ 2π. Le paramètre k est la courbure et prend une valeur discret : k = {0, +1, 1}.

Introduction 15 Coordonnées comobiles Affirmation Une galaxie avec vitesse aléatoire zéro suive une géodésique du genre temps. Démonstration (sur tableau) Remarque Il est donc légitime de nommer les coordonnées r, θ, φ coordonnées comobiles. Tout objet pour lequel les effets locaux (par exemple attraction d une autre galaxie voisine) sont faibles, est comobile. Un observateur dans un référentiel comobile (ayant des coordonnées comobiles constantes) voit toutes les galaxies s éloigner de lui de manière isotrope. (Barrau and Grain, 2016, p. 131)

Introduction 16 La taille de l Univers Affirmation : Dans le cas k = +1, la distance maximale de l Univers est a(t)π/2. Démonstration Remarques : 1. a(t) se nomme «facteur d échelle». 2. il n a le sens d une distance maximale que dans le cas k = 1.

Introduction 17 Trois types d Univers Le paramètre k détermine le type d Univers, c est-à-dire la géométrie du 3-espace homogène et isotrope défini par t = constante.

Introduction 18 L Univers fermé : k = +1 Courbure spatiale positive Changement de la coordonnée radiale : r = sin χ. (2) Exercice immédiat : Démontrer que la partie spatiale de la métrique de FRW devient : dl 2 = a(t) 2 [ dχ 2 + sin 2 (χ)(dθ 2 + sin 2 θdφ 2 ) ] (3) Il s agit d une 3-sphère. Pour le voir, on fait un changement

Introduction 19 des coordonnées w = a cos χ, x = a sin χ sin θ cos φ, y = a sin χ sin θ sin φ, z = a sin χ cos θ, (4) avec 0 χ < π, 0 θ < π, 0 φ < 2π. (5) Exercice immédiat : Vérifier que dl 2 = dw 2 + dx 2 + dy 2 + dz 2, (6) avec w 2 + x 2 + y 2 + z 2 = a 2. (7) Conclusion : Le 3-espace auquel nous nous intéressons peut

Introduction 20 donc être considéré comme une 3-sphère plongée dans un espace quadri-dimensionnel euclidien. Affirmation : Le volume V du 3-espace total est fini, V = 2π 2 a. Exercice immédiat : Démontrer V = 2π 2 a 3.

Introduction 21 L Univers ouvert et plat Courbure spatiale positive, k = 0. La partie spatiale de la métrique de FRW devient : dl 2 = a 2 (t) ( dr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2) (8) Il s agit d espace euclidien tridimensionnel. Pour le voir, on fait un changement des coordonnées avec x = a r sin θ cos φ, y = a r sin θ sin φ, z = a r cos θ sin φ, (9) 0 θ < π, 0 φ < 2π. (10)

Introduction 22 Exercice immédiat : Trouver dl 2 en fonction de x, y, z. Questions à réfléchir : 1. Quelle est la distance maximale dans l Univers plat? 2. Quel est le volume de l Univers plat? 3. Quelle est le nombre de galaxies dans l Univers plat? 4. Quel est le nombre de copies de vous et moi qui à cet instant du temps cosmique sont en train d avoir la même conversation?(ellis and Brundrit, 1979)

Introduction 23 L Univers ouvert et courbe Courbure spatiale positive= k = 1 Changement de la coordonnée radiale : r = sinh χ. (11) Exercice immédiat : Démontrer que la partie spatiale de la métrique de FRW devient : dl 2 = a(t) 2 [ dχ 2 + sinh 2 (χ)(dθ 2 + sin 2 θdφ 2 ) ] (12) Ce 3-espace peut être considéré comme un hyperboloïde tridimensionnel inclus dans l espace-temps de Minkowski quadri-dimensionnel. Pour le voir, on fait un changement des

Introduction 24 coordonnées w = a cosh χ, x = a sinh χ sin θ cos φ, y = a sinh χ sin θ sin φ, z = a sinh χ cos θ sin φ, (13) avec 0 χ <, 0 θ < π, 0 φ < 2π. (14) Exercice immédiat : Vérifier que dl 2 = dw 2 dx 2 dy 2 dz 2 (15) si l on impose la condition w 2 x 2 y 2 z 2 = a 2, (16) ce qui affirme notre affirmation que ce 3-espace peut être

Introduction 25 considéré comme un hyperboloïde tridimensionnel inclus dans l espace-temps de Minkowski quadri-dimensionnel. Le volume du 3-espace total est infini.

Introduction 26 Références Références Barrau, A., and J. Grain (2016), Relativité générale : Cours et exercices corrigés, 2 e édition, Dunod, Paris. Coutu, S. (2013), Positrons galore, Physics, 6, 40, doi :10.1103/Physics.6.40. Ellis, G. F., and G. Brundrit (1979), Life in the infinite universe, Quarterly Journal of the Royal Astronomical Society, 20, 37 41. Liddle, A. (2003), An introduction to modern cosmology, 172 pp., Wiley & Company, Chichester, UK and Hoboken, NJ.

Introduction 27 Perlmutter, S., et al. (1999), Measurements of Omega and Lambda from 42 high-redshift supernovae, Astron. J., 517 (2, Part 1), 565 586, doi :{10.1086/307221}. Riess, A., et al. (1998), Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116 (3), 1009 1038, doi :{10.1086/300499}. Schutz, B. (2009), A first course in General Relativity, Cambridge University Press, Cambridge UK. Weinberg, S. (2008), Cosmology, Oxford, Oxford, UK.