Furfural Obtained from Pentoses A Valuable Synthon for Fine Chemistry

Similar documents
N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

Photochemically induced radical addition of tertiary amines to C=C and C=O double bonds: A green chemistry contribution to organic synthesis*

Chapter 17: Carbonyl Compounds II

Chapter 18: Carbonyl Compounds II

Organocatalytic Umpolung via N- Heterocyclic Carbenes. Qinghe Liu Hu Group Meeting August 20 th 2015

Asymmetric Photochemistry

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Use of Cp 2 TiCl in Synthesis

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

"-Amino Acids: Function and Synthesis

Suggested solutions for Chapter 28

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Asymmetric Catalysis by Lewis Acids and Amines

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Synthesis of Resorcinylic Macrolides

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

Denmark Group Meeting. & Electrophilic rearrangement of amides

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Asymmetric Nucleophilic Catalysis

Short Literature Presentation 10/4/2010 Erika A. Crane

Highlights of Schmidt Reaction in the Last Ten Years

Catalytic Asymmetric Total Syntheses of Quinine and Quinidine

Chapter 17 Aldehydes and Ketones

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Homogeneous Catalysis - B. List

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Chiral Brønsted Acid Catalysis

Epoxidation with Peroxy Acids

Functionalized main-group organometallics for organic synthesis*

Zr-Catalyzed Carbometallation

Exam 1 (Monday, July 6, 2015)

Hydrogen-Mediated C-C Bond Formation

KJM 3200 Required Reading (Pensum), Fall 2016

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Electrophilic Carbenes

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Synthetic Organic Chemistry Final Exam Resit (6KM33) Thursday, 26th June, 2014, 9:00 12:00 (3 h)

Short Access to (+)-Lupinine and (+)-Epiquinamide via Double Hydroformylation

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

COURSE UNIT DESCRIPTION. Dept. Organic Chemistry, Vilnius University. Type of the course unit

Total Syntheses of Minfiensine

THE CHEMISTRY OF THE CARBONYL GROUP

mcpba e.g. mcpba (major) Section 7: Oxidation of C=X bonds

PhD research with Prof. Lutz H. Gade at the Univ. of Strasbourg. Postdoc in 2003 with Andreas Pfaltz (Basel Switzerland)

Section Practice Exam II Solutions

Recent Development in. Tandem Radical Reactions (TRR)

C H Activated Trifluoromethylation

Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs)

Chapter 19: Aldehydes and Ketones: Nucleophilic Addition Reactions NOMENCLATURE OF ALDEHYDES AND KETONES NATURAL OCCURRENCE OF ALDEHYDES

Additions to Metal-Alkene and -Alkyne Complexes

Chem 263 Notes March 2, 2006

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Synthetic possibilities Chem 315 Beauchamp 1

Final Exam Version 1. Chemistry 140C. Fall Good Luck! Dec 5, :30 am 2:30 pm This exam accounts for 50% of the final grade.

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

H H H OH OH H OH H O 1 CH 2 OH

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Suggested solutions for Chapter 34

Chapter 20: Aldehydes and Ketones

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

Name: CHEM 633/634 Problem Set 1: Review Due Tues, Aug 29, 2017 (First Lecture!)

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine

2.222 Practice Problems 2003

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

H CH 2 -OH (4) H b. H H (5) (6) a. b.

R or S? oxidation #: hybridization:

SCH 302. Tutorial PART B ORGANIC SYNTHESIS

Organic Electron Donors

Reporter: Yue Ji. Date: 2016/12/26

Answers To Chapter 7 Problems.

Chapter 5 Three and Four-Membered Ring Systems

Rising Novel Organic Synthesis

Score: Homework Problem Set 6 Iverson CH320N Due Friday, March 10. NAME (Print): Chemistry 320N Dr. Brent Iverson 6th Homework March 3, 2017

Suggested solutions for Chapter 40

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage

eatles Oasis - 199

Microwave-promoted synthesis in water

Water as the Green Media for the Synthesis of Isoquinoline Derivatives

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

The Final Learning Experience

Rhodium Catalyzed Alkyl C-H Insertion Reactions

ISCHIA ADVANCED SCHOOL OF ORGANIC CHEMISTRY

Chemistry of Carbonyl Compounds

[3,3]-sigmatropic Processes. [2,3]-sigmatropic Processes. Ene Reactions. Generalized Sigmatropic Processes X,Y=C, N, O, S X,Y=C, N, O, S

CHEM 234: Organic Chemistry II Reaction Sheets

Aziridine Carboxylates, Carboxamides and Lactones: New Methods for Their Preparation and Their Transformation into α- and β-amino Acid Derivatives

EWG EWG EWG EDG EDG EDG

Roxanne Atienza Short Literature Presentation January 24, 2011

Total synthesis of Spongistatin

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Transcription:

Université de eims Champagne-Ardenne Furfural btained from Pentoses A Valuable Synthon for Fine Chemistry orbert offmann CS, Université de eims ICM Équipe de Photochimie eims, France

Production of Furfural Pentose containing biomass, hemicelluloses Cyclodehydration Furfural Worldwide production: Production in China: > 280 000 tpa 200 000 tpa J.-. wang et al. Biofuels, Bioprod. Bioref. 2008, 2, 438. B. Kamm, P.. Gruber, M. Kamm (Eds.), Biorefineries Industrial Processes and Products. Wiley-VC, Weinheim, 2006. J.. Chheda, G. W. uber, J. A. Dumesic, Angew. Chem. Int. Ed. 2007, 46, 7164.

eduction of Furfural Me Me 2 2 2 Br n www.furan.com J.. Chheda, G. W. uber, J. A. Dumesic, Angew. Chem. Int. Ed. 2007, 46, 7164.

xydation of Furfural Furoic Acid ' C 3 2 sens ' Pyranone V(acac) 2 t-bu 86% 2 /cat 2 2 C 2 51% or 1 2 91% ydroxyfuranone Furanone

Pyranones as Versatile Synthons monosaccharides, KD liposaccharides, glycosides, antibiotics, (e.g. vineomycin, aclacinomycin, nogalamycin) annulated pyranosides e.g. antibiotics actinobolin, forskolin 2 1 3 2 1 3 4 aminosugars, thiosugars, sugaryl aminoacids, azasugars (e.g. indolizidines) 2 1 penicilic acid derivatives X 1 3 frontalin, multistriatin disaccharides, antibiotics (e.g. tirantamycin) eactions with Diene Conversion to levoglucosenones 2 1 3 eaction with Michael and/or suaryl donors antimicrobials antifungals anticoccidials antitumors cardiac stgeroids pesticides herbicides ther reactions Conversion to other synthetic building blocks (Wittig coupling) 2 1 3 4 5 (cyclopropanation) chrysanthemo carboxylic acids 2 1 3 4 Conversion to pyrones benzodiazepinones, thiazepinones, etc. ther natural products e.g. pseudomonic acid, styryl lactones, aspertin, spirolactones pheromones and antibiotics Conversion to polyhudroxylated chains e.g. monocrotalic acid 2 1 3 macrolide and ionophoric antibiotics 3 1 Prelog-Djerassilactone cyclopentanones 1 2 butenolides E. A. Couladouros, A. T. Strongilos, Angew. Chem. Int. Ed. 2002, 41, 3677

ydroxyfuranone as a Versatile Synthon PhS C 2 Me 2 C 2 C 2 C 2 Me C 2 F Me 2 2 C C 2 Ac Insecticides, fungicides, quick-drying varnishes X C C 2 C C 2

Menthyloxyfuranone as a Versatile Chiral Synthon alkene Michael acceptor ester acid 5 allyllic group aldehyde chiral acetale

Menthyloxyfuranone as a Versatile Chiral Synthon X ( ) n Y Ar Me Me MeC Me C C ' Br Br C C Me Me Me C 2 3 Cl - ( ) n 1 2 1 Ph 2 P PPh 2 1 n 1 2 Bu 2 1 3 X 2 1 C 2 1 C X X C

Synthesis of (5)- and (5S)-((-)-Menthyloxy)-2[5]-furanone C 2, sens, Me 91% (-)-Menthol 3 3 1' 1' 5 5 mp = 79 C mp = 41 C (5)-(l)-Menthyloxyfuran-2[5]-on (5S)-(l)-Menthyloxyfuran-2[5]-on S. Marinkovic, C. Brulé,. offmann, E. Prost, J.-M. uzillard, V. Bulach, J. rg. Chem. 2004, 69, 1646

adical-tandem-eaction with (5)- and (5S)-((-)-Menthyloxy)-2[5]-furanone 5 sens. Aceton 91% de 5 21 : 1 5 78% 5 S sens. Aceton 5 53% de S 3.3 : 1 44% 5 S S. Marinkovic, C. Brulé,. offmann, E. Prost, J.-M. uzillard, V. Bulach, J. rg. Chem. 2004, 69, 1646 24%

Conformation Analysis of (5)- and (5S)-((-)-Menthyloxy)-2[5]-furanone S

Double Induction with (5)- and (5S)-((-)-Menthyloxy)-2[5]-furanone 5 5 P(syn) / P(anti) : 21 / 1 P'(syn) / P'(anti) : 3 / 1 S Matched Mismatched ln (P(syn) / P(anti)) = -(ΔΔG a ΔΔG menth ) / T ln (P'(syn) / P'(anti)) = -(ΔΔG a - ΔΔG menth ) / T ΔΔG a = - 1.24 kcal.mol -1 ΔΔG menth = - 0.58 kcal.mol -1

adical Addition of Tertiary Amines to Electron Deficient Alkenes (λ=350nm) sens. 94% Φ = 4 1 : 1.2 sens. : Me Me Me 2 Me 2 S. Bertrand,. offmann, J.-P. Pete, Eur. J. rg. Chem. 2000, 2227. A. G. Griesbeck,. offmann, K.-D. Warzecha, Acc. Chem. es. 2007, 40, 128

Comparing ew and Conventional Sensitizers ew Sensitizers igh yields (>90%) Fast reactions (15g after 5min of irradiation) Catalytic amounts ecovery up to 80% after the reaction Conventional Sensitizers (benzophenone, acetophenone) Modest yields (~40%) Slow reactions At least stoechiometric amounts Degradation of the sensitizer Formation of many side products. offmann, J. Photochem. Photobiol. C: Photochem. ev. 2008, 9, 43 See also:. offmann,. Görner, Chem. Phys. Lett. 2004, 383, 451

Mechanism of the adical Addition of tertiary Amines to Electron Deficient Alkenes I II Me Me Me Me S. Bertrand,. offmann, J.-P. Pete, Eur. J. rg. Chem. 2000, 2227. See also: S. Bertrand,. offmann, S. umbel, J.-P. Pete, J. rg. Chem. 2000, 65, 8690.. offmann, Chem. ev. 2008, 108, 1052.

Asymmetric Synthesis of ecines and Indolizidines /sens. 94% /sens. 46% Menth Menth Menth ab 4 80% ab 4 83% ab 4 79% =t-bu TFA/C 2 Cl 2 79% =Me; /DCA /DCA 81% LiCl 4 /MeC LiCl 4 /MeC 83% LiAl 4 86% LiAl 4 78% LiAl 4 88% (-)-Isoretronecanol 23% ()-Laburnin 27% 27% S. Bertrand,. offmann, J.-P. Pete, Eur. J. rg. Chem. 2000, 2227.

Semiconductor Catalyzed adical Addition of Tertiary Amines with Electron Deficient Alkenes SC Menth Menth 1 : 1.2 Semiconductor a c(furanone) [mol/l] c(amine) [mol/l] Time of Irradiation [h] Conversion [%] Yield b [%] Ti 2 10-2 4.10-1 9 59 25 ZnS 10-2 4.10-1 9 68 28 Ti 2 10-2 solvent 2.5 100 53 ZnS 10-2 solvent 2.5 100 59 Ti 2 5.10-2 solvent 2.5 73 90 Ti 2 10-1 solvent 2.5 50 39 a) 2 mol-% with respect to the furanone. b) Based on conversion of the furanone. S. Marinkovic,. offmann, Chem. Commun. 2001, 1576 S. Marinkovic,. offmann, Intern. J. Photoenergy 2003, 5, 175

Semiconductor Catalyzed adical Addition of Tertiary Amines with Electron Deficient Alkenes ' Ti 2 ' ' 1 : 1.2 Time of Irradiation [h] Conversion [%] Yield a [%] Et 2 90 64 2 100 98 b 3.5 100 90 Menth 13 20 76 a) Based on conversion of the α,β-unsaturated lactone. b) The starting concentration was 10-2 mol/l. S. Marinkovic,. offmann, Chem. Commun. 2001, 1576 S. Marinkovic,. offmann, Intern. J. Photoenergy 2003, 5, 175

Mechanism of the Semiconductor Catalyzed adical Addition of Tertiary Amines with Alkenes Conduction band e -, e - ecombination Valence band h -e -, - Semiconductor particle S. Marinkovic,. offmann, Chem. Commun. 2001, 1576 S. Marinkovic,. offmann, Intern. J. Photoenergy 2003, 5, 175

adical Tandem eaction of Aromatic Tertiary Amines with Electron Deficient Alkenes λ=350nm Menth Menth sensitizer: Me 2 Me 2 38% 1.7% Menth 18% 7% Menth Menth S. Bertrand,. offmann, S. umbel, J.-P. Pete, J. rg. Chem. 2000, 65, 8690. offmann, S. Bertrand, S. Marinkovic, J. Pesch, Pure Appl. Chem. 2006, 78, 2227

Me 2 sens Me 2 3 sens * Me 2 Me 2 Menth Menth Menth Menth Menth eplace by an oxydant Menth Menth

adical Tandem eaction of Aromatic Tertiary Amines with Electron Deficient Alkenes λ=350nm sensitizer acetone Menth Menth 74% 3% λ=350nm sensitizer acetone Menth 56% 90% de λ=350nm sensitizer acetone Menth Menth 39% 32% λ=350nm sensitizer acetone Menth Menth 48% 26% S. Bertrand,. offmann, S. umbel, J.-P. Pete, J. rg. Chem. 2000, 65, 8690

' ' " Ester γ-aminobutytique Pyrrolidines Pipéridines Tetrahydroquinolines Pyrrolizidines Indolizidines n n Azasteroïdes Benzoindolizidines Benzoquinolizidines Perhydroazazulènes

Conclusions Furfural obtained from pentose containing biomass is a versatile synthon for the production of a large variety of fine chemicals Key intermediates are obtained by reduction and oxidation of furfural. ydroxyfuranones obtained by photochemical oxidation of furfural can easily be transformed into numerous biologically active target compounds such as nitrogen containing heterocycles. Transformations of products such as furfural from renewable resources in combination with environmentally friendly processes such as photochemical reactions provide perspectives for a sustainable chemical industry.

Thanks Dr. Emmanuel iguet Dr. Samuel Bertrand Dr. Céline Verrat Dr. Siniša Marinković Dr. Jens Pesch Dr. Abdoulaye Gassama Ali Youssef abih Jahjah ussein Mathieu Queste Dr. Frédéric Dumur Dr. Frédéric Canonne Dr. Cédric Brulé Dominique arakat Financial Support -CS -Ministère de l enseignement supérieure et de la recherche -égion Champagne-Ardenne -DFG/CS -ADEME/AGICE -EGIDE -Syngenta Crop Protection AG -Pôle de compétitivité, Industries & Agro-esources, IA Prof. Axel G. Griesbeck (Universität zu Köln) Prof. Manabu Abe (University of iroshima) Prof. Yoshihisa Inoue Dr. Tadashi Mori (University of saka) Prof. Louis Giraudet Dr. livier Simonetti (Laboratoire des ME, Université de eims) Dr. Jacques Lalevee Prof. Xavier Allonas (Université aute Alsace, Mulhouse) Prof. Stephan Landgraf (Technische Unversität Graz) Dr. elmut Görner (MPI für Bioanorganische Chemie, Mülheim/uhr) Dr. Cédric Ernenwein (Agro-Industrie echerches et Développements) Dr. Patrice Sellès (Syngenta Crop Protection AG) Dr. Michael elgemöller (Dublin City University/James Cook University) Dr. Philippe Gros (UM 7565, Université enri Poincaré, ancy) Dr. Jean-Marc uzillard, Elise Prost (UM 6013, Université de eims) Dr. Véronique Bulach (Institut Le Bel, Université Louis Pasteur, Strasbourg)