~..,-. W. AD?-lSORYC(NIXiH TiL2 FORAEROPNJrIICS TECHNICAL NOTE 3781 =~- I - BUCKIJNG OF FLAT PLATES. q -e -~d andherbertbecker Xew YarkUniversity

Similar documents
Mechanics of Materials Primer

Chapter Two: Mechanical Properties of materials

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

PLAT DAN CANGKANG (TKS 4219)

INELASTIC BUCKLING ANALYSIS OF AXIALLY COMPRESSED THIN CCCC PLATES USING TAYLOR-MACLAURIN DISPLACEMENT FUNCTION

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

INTRODUCTION TO STRAIN

MECHANICS OF MATERIALS

Chapter 2: Elasticity

Chapter 12 Elastic Stability of Columns

COMPRESSIVE EUCICLING CURVES MR SANDWICH PANELS WITH ISOTROPIC FACINGS AND ISOTROPIC OR ORTI1OTROIPIC CORES. No Revised January 1958

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS

MECHANICS OF MATERIALS

Lecture 4 Honeycombs Notes, 3.054

Lab Exercise #5: Tension and Bending with Strain Gages

3. Using your answers to the two previous questions, evaluate the Mratio

Comb resonator design (2)

Cyby TISIA E. Document No. - "/r ".. TECHNICAL LIBRARY /, Copy No. /- ' E. E. Secher. 2 uut15. No. EM JReport

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

MECHANICS OF MATERIALS

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION

COLUMNS: BUCKLING (DIFFERENT ENDS)

CIV 207 Winter For practice

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

Lecture 7, Foams, 3.054

Mechanical Properties of Materials

Improved Design Formulae for Buckling of Orthotropic Plates under Combined Loading

(laod No \' V,R A " FI- 1 4, <4. ELASTIC STABILITY Of CYLINDRICAL SANDWICH SHELLS UNDER AXIAL AND LATERAL LOAD. July 1955

A L A BA M A L A W R E V IE W

CHAPTER 5. Beam Theory

DISTORTION ANALYSIS OF TILL -WALLED BOX GIRDERS

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

Abstract. I. Introduction

Lecture 11: The Stiffness Method. Introduction

Bending of Simply Supported Isotropic and Composite Laminate Plates

SECTION 7 DESIGN OF COMPRESSION MEMBERS

Problem " Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

MECHANICS OF MATERIALS

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

Lecture 8. Stress Strain in Multi-dimension

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

Tensile stress strain curves for different materials. Shows in figure below

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

MODULE C: COMPRESSION MEMBERS

Buckling Behavior of Long Symmetrically Laminated Plates Subjected to Combined Loadings

Finite Element Modelling with Plastic Hinges

FASTENER SPACING STUDY OF COLD-FORMED STEEL WALL STUDS USING FINITE STRIP AND FINITE ELEMENT METHODS

Comb Resonator Design (2)

December 10, PROBLEM NO points max.

Workshop 8. Lateral Buckling

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

Frequently Asked Questions

ME 243. Mechanics of Solids

Elastic plastic bending of stepped annular plates

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

Stress-Strain Behavior

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

UNIT- I Thin plate theory, Structural Instability:

,. 'UTIS. . i. Univcnity of Technology, Sydney TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES

Exercise: concepts from chapter 8

COMPOSITE PLATE THEORIES

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

Lecture 15 Strain and stress in beams

Design of Beams (Unit - 8)

Elastic Stability Of Columns

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

3. Stability of built-up members in compression

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Thermal buckling and post-buckling of laminated composite plates with. temperature dependent properties by an asymptotic numerical method

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

Introduction to Structural Member Properties

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE

Compression Members Columns II

Theory at a Glance (for IES, GATE, PSU)

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Unit I Stress and Strain

Two problems in finite elasticity

CHAPTER 5 PROPOSED WARPING CONSTANT

Lecture #2: Split Hopkinson Bar Systems

On the geometric and material nonlinearity effects of polymeric thin plates or films on structural performance.

Machine Direction Strength Theory of Corrugated Fiberboard

MECHANICS OF MATERIALS REVIEW

The University of Melbourne Engineering Mechanics

HIGHER-ORDER THEORIES

Elasticity in two dimensions 1

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Local buckling is an extremely important facet of cold formed steel

[8] Bending and Shear Loading of Beams

Transcription:

--e,----- :, -h -- -- - ---, - - -, --- L --i: ~,- W AD?-lSORYC(NXiH TiL2 FORAEROPNJrCS TECHNCAL NOTE 3781 OAR TECHNCAL LBMY AFL2291 --+- -- * =~- - BUCKJNG OF FLAT PLATES q -e -~d andherbertbecker Xew YarkUniversity?* & s Wmngtoil my 1957, - - ---- ---i- - i - -1

TECHLBRARY KAFB,NM llllllllll]llll[lkll~ll! E OLLL+ S!!mlw- -a 1,~ 1N3%C)XJCTOH * S!mKKJJ 13ASZ2PRJC?X L = GeneralRemarks ----- 1 * : ---- ----- 3 ------ ---- 7 -- * ---- 7 F@ilLbriun Dit<=z~alEquation s-- --- i *_~lntegrak dilutions *!3 -? - 10 ~coxmmcxs *2 lkthe=timl~sis -12 Jhticlastic e?lzz-ture l~ SZEESS-STRA12T ~Glii311 YELDRBHON s 5hree-Parameter kcription of Stress-Strain Cum=5=5 K inelasticlkdti * 17 me3asticpoi=$=*sratio 17 ~fx!ry-rxmnz%afxxms *- +19 2Mastic-Ew&Lqj-Stress Equation - 19 J3mrparisoa of55koriesand&pertiintal&ta 2Q Assumptions of ZEelastic-BuckMng Theories - 20 nelastic-bu_!x%eo5es 23 FactorsUsedim C!mqwtations 24 CcLnstmction of 3hndizensionlQ Euckling-s 25 ~m-gremsctjee EwmRs - 33esicPrinciples -- lkrivationof W Stress-Strain Curve -= #2cmpzmL5un ofmeqrysmd Eqerhent - -27 kivations Of ~fied c~g Reduction ~CtC2ZZZ * a e - a- 28!sse1 Ong~y supporte~ pletesincompr~~~ - 26 Csse2 Pkteaums 2g Case3 Longs&k@y supporte~ platesinshear - 2g ~ QFmAT E=2!2K?=ULAR -Pup UN!ERccMmEssm= X&ms 31 3fstoricalEse~ 31 ~cal Values=f C=pressive-13uckMng Coeffic =- =ur Ehtes - -- - - ---,

, 1 r- %16;-, n -: Sup~rtedPlate,E~cesElasiicQ>-?==T== -==== &=illst Rotation ------------- -- =- 32 PlatesWithUnequalFklgeRoLLLZZ-L ~ --- - - - - 33 Supported klangeswithelastic:~ - ====%===-=int 33 Effectof ateralrestminton ~~? --~- - - 3% l?-:: EUCKLWJOF FiiTRECTAXXJLAR PJ== ===== ==== WADS = - - ~~ Historical hckground ------------ ---- = 35 Symmetric andantisyrmetric M&-= - - - - - 3%5 Eumerical Valuesof Shear-~cUq 2== --=: - - - - - - - = - - Effectof PlateLengthon BuckltLK,i&kfEZL*2s?- 36 KXKGNGOFFATFWTANGULMPLATESEZZ=T LSXJ=XG 3JMDS - - - - 36 Historical l?ackgroun d ----------- -- ~----% Numsrical Vah~esof Bending-Ewxz%l$-~ _Z~ ;&s*- e---* - 36 HJCHJN3OF Phil RECTMGULARPrA!i55Q3KK==--* ~--?mms ------ 37 ~ne~~~c~o~a --37 BiaxialCo-=pression ------------ ------ t--3t Shearan&HoxmalS+xess % BendingandNormalStress----------- ----39 Bending,and ShearStress -------------- -=---$x Ber~ing,Shear,andTransverse -*** ---- kl Longittiinal Benin, Longitud+= S -==-, and Transverse Coxzpression 42 Combined~elasticStresses ---------- & EETK?l? OF PRESSUREON KHKDG = E%===== = -T-T= - - - - &3?kmgeofPublished Results ~~ Longitudiral%f Compressed aw ~!= ~Plates Lmgitudini CoqressedLcmz~ +iz%~ * SPECALC AS:3 * -,-----------* - -- -* Useof Elastic-Eucklin6-%ress ~ %*=-Z- - & AxiallyCoqressedPlateWithW=----- --~~ and!mclmess # AxiallyCompressed P:lte Withm-i=+- 2 =3 Cond=nt l%ickne= - ---------- --------o- Par&Llelogmm Panels4LnCmp~-- ------------- - :; ParaUelogram Platesm ------------ --- =-~ Triangular Plates -- a --------- -----== APPEWDXA - APPlzT4ToNsEtmmN-- --- m--- = ntr&uction= - j----------- --------~ PhysicalProperties ofmaterial= -- - @ Compressive Eucklinc ---------< ----~~ -, ----- - - --- -

, - --:- m PRteE FlsrAes PlateColuzms 9xwrB~ckling _* %in~ Buckling C!cmbir~& Lading RL3RJCH TEtiAEs* - - - --, - - - - - ---- - *- - - - ---- ---- - -= - -- FKXZELZS s --, -, -, -*- ** - &- 1 1 1 - t -, - -

, ;,,-, 1- :, - : :,,,, :c-:r,-, - - -- T~A:~[!i ~~~ ~{ ~~ ~ fij~ HN21PC)OK OF osnjczjll SYYLKCLi Y PART1 - PLJCKLRG OFFATPL4TSS ~ GeorgzGerarda&EerLertBecker SUMMARY A Thevariousfactorsgoverninz bucklirgof flatplatesarecritically retie-~ed andtheresultsaresumarizedina coqrehensive series of charts acd+&blesnumerical valuesarepresented forbuc kling coefficients of flatplateswithvariousboundaryconditions andappliedloadingsthe effectsof plasticity areinco~ratedinnondimensional bucklingcharts utilizingthethree-parazeter description of stress-strain curves NTRODUCTON His kmdbook of StmcturalStability presentsa rathercoqrekensiveretiewandco~ilation of theories&ailexperi=iental datarelstingt-o thebucklingaridfailureof plateelementsencountered in theairf~ ~ =et theanticipateii ceedsof thosewhowouldusethisrewe~:aadcorripilation,it appearedbesttq adopta handbookstyleof presentation Thersterialisnotintendedas a textbookinwhichtf&ez@elslsis often on ther~themticaldevelowentof dif~erent typesof relatedproblenz Neitheris it intendedto>orpetetiththef~ar aircraft-c&pany structures mcualswhichgenerdjypresentdesigninfo?nr~tion, empirical data,andmetkaisof extending resultsbeyondthescopeof theoriginal report Thishandbookattezptsto coverthegenerally neglected areabetween thetext-k andthestxwctures ranualnoattemptistie topresentan exhaustive coverageof mathematical techniques whichareof greatimportancen thesolutionof bucklingprablers This=terialhaBbeenwell presentedin severalexcellent booksandpaperswhichareincludedin the reference listthesubjectof colunnsis comprehensively treatedin severalbooksand,therefore, theinclusion of suchmaterialin this reviewdidnotappearto bewarranted Thispresentation primrilyconstitutes a criticalretiewof developwsntsconcerning bucklingandfailureof,plat ele=ntssincethe early1940 sthisdatehnebeenselectedsincethelastcomprehensive reviewof thisnature(ref1) appearedat tlwttime $ r - 7 ----- - _

ntheraintextof thi~report,thevariousfactorsappearingin thegeneral buckling-stress equation ucr(cm7==) = qij ha 12 121- ( ~e2))b ( (1; arecritically examinedfromthes~dpointof theirtheoretical developmentanqtheagreement of-theory withtestda a n tbesectionentitled EasicPrinciples a briefreviewof the Lasicxmthematical principles involvedin solutionof bucklingproblem la giventheprbaryobjecti--e inpresenting thismaterial to acquahtthereaderwiththeapproximate methodsusedinordertobe ableta indicatetheaccuracyof tkeresultscfparticular solutions discussedinsubsequent sections Tnthesectionentitled%uudary Conditions theini lu=ce of the geometric &nm&ry conditio~s upontkebucklingstresstsdis~sed et somelengtht isindicated thattheuseofa freeunloadededgeina plateinvolvespoisson s ratiointhecompressive b??ckling coefficient Assan example,thebucklingcoefi icients forplatecolu!ms,flanges,and simplysupported platesaredetermice5 fromtheoryto dezmnstrate the effectafvariousboundaryconditions uponthebehatiorof suchelements Also,theth&e-parar&ermethodofrmthe-~tically describing stressstrainrelations ispresented inan introductory mannerinthesection entitled Stress-Strain Relations intheyieldregion Useof this methd affordsa considerable simplification inthepresentation of resultsof inelsticbuck ingtheories Theeffectsof exceeding theproportional limitofa rmterialare incorporated ina plasticity-reduction factorq Becauseof thenriouatheoriesthathavekeenrecently advancedtogetherwiththefact thatno onepublication hasreviewed theconflicting assumptions of *! - - - - -

,,,-:p - f: J k; Theeffectof claddin&u~n thelickling stressof flatplaheshas keentreate~hy an extension of inelastic-buckling theoryn tl:esectionentitled Cladding Reduction Factors a simplified treatmnt of bucklingof cladplatesispresented iriwhichvaluesforthecladding Correction factor~ arederived Thebaclc~~?dfordeterringtheelastic-kuckllng coefficientk haskeenwelldocumentedṫkerefore, thelastsectionsercconcerfied withthebucklingcoefficients fora largenumberof casesthepresentationconsi6ts, fortte?m6tpart,ofa straightforward cataloging of resultsintheformof buckling-coefficient charts Theappendixhasbeenorganized fcrunimpeded useinanalysisand designandforthisreasonro references appearinthisportionof the reportthereferences are examinedindetailin thepertinent part of themaintexttheliterature is reviewedanddiscussedbothas toconteutandapplication to theparticular problemexperimental evidence spresented whereittend6to Substantiate onethecryamng several whichmayhavebeenadvancedon a particular phaseof thebucklingproblem;plasticity-reduction factorsareperhapsthemastconspicuous e~mpleof thisthus,therecozzzendation fora particular theoqyis gene- supported byexperimental data The=& textalso containsomenewmterialdeveloped duringthe courseof thiscompilation Althoughsuchmaterialis important tothe unification of priorresults,ithasnotbeenconsidered of sufficient consequence tomeritseparatepublication Therefore, wkensuchmaterialdoesappearinthishandbookitisin a detailedform Thissurveywasconducted underthe sponsorship andwiththefinancialassistance of theeational Adviso~Committee foraeronautics Ar a b -S areaof ribcros sectioa,sq in longdimension ofplate,usuallyunloadededgefnuniaxial compression, in shortdimension ofplate,usuallyloadededgeinuniaxial compression, in # - ()

- cl c4 b ]! D D1 E platecross-cectioa rigidity,et3/12(1- V2),lb-h plasticplatecross-section rigidity, E6t39, / lb-in Young cdulus, psi secentmdulus, O/c tangentmdulus, du/de secantandtangentrzodulus forcladplates,respectively ratioof totalclaading thickness to totalplatethickness shearnmdulus cmuient ofinertia 3 = (%/E)(1- Vez)(1- Vq i i ;* e } d K k L M N n P P mdifiedbucklingcoefficient, kx2@(l - V2) bucklingcoefficie~t lengthofplate,in bendingmomentappliedinplaneofplate,in-lb axialload,lb/in numberoflongitudinal halfwavesinbuckledplate;also, shapeparameter forstress-strain curve norma loadapplieinplane of plate,atb,lb nornulpressure, psi 4 - --- - -J -,-T-,! i-,

, -; i;g-- veo+\)~ ~ shesrlouding,lb/in 6= E2+ ve(flb/a)2 R t strezs ratio thickness of plate,w u= - ks ( %+ - + ks )/( %+ - ) w w X,y,z yl+3pf a potentialenergy,in-lb displacement nomal toplaneofplate,in coordinates edgeangle,deg;also,12m/(pb+ 6M) & = fi(b/a)l/2 * $ ratioof cla~dingyieldstressto core stress, cl/acore$ also,loadingratioforplatewithvaryingaxialbad, Maxhmlload/14imim71 lead Y v shearstrain normalstrain;also,rati of rotational rigidity of plate e~gesti?fener toro~=tional rigidityofplate plasticity-reduction factor claddingreduction factor total-reduction factor,qfi bucklehalfwavelength, in inelastic Poisson s l%tioj V = Vp- ~p-j e)(%/e) for orthotropic solids -,- - -

,,, ~o7jjo85 stressat secantmdulus, op=d 085E, respectively, psi T ~ Subscripts : A,B av b c c1 cr e P pl r B Sm X,y stressintensity, ~x2+ ~y2- ~ 1/2 axay+ 3T, ( ), psi shearstress>psi angleofdiagonalsupportaplatewidth, radiansor deg valuesat stationa andstationb; seefig30 average bending compression claddingproportional limit criticalorbuckling elastic plastic proportional limit intraverseribof compressed plate shea r shearon infinitely longplate directions of loading + loadings producing tension loadingsproducing compression

-- - ~u:,:if:c,::s: c F ch!!pd free Ss s iqiy suppurtei (hinged) nsketchesacccnyanying figures,supportedgeswithelusticrota- tiofial restraint areshwn shadedunshadedloadededgesaresimply sup~ortedunshadedunloadededgesarefree BASCPRNCPLES GeneralRenarks Thetheoretical bucklingstressofa flatstructural ele~~ntisthe stressatwhichan exchanged stablequilibrium configurations occurs tet-~enthestraightandtheslightlybentformtmarkstheregionin whichcontinued application of loadresultsinaccelerated growthof deflections perpendicular to theplaneofthe~:atetsimportance lies in thefactthatkucklinginitiates thephysi~-~l processes whichleadto eventualfailureof theplate 74< * Themathe=tical solutionofparticular kucklingproblemsreqtires thatequilibrium andboundaryconditions be satisfiedthiscanbe accozplishe~ by integration of theequilibrium partialdifferential equationof theflatplateor by useof mathematical n&thodswhichmaynot completely satis&theboundaryor equilibrium conditions Theformer solutions areexactwhereasthemethodsbasedgenerally on ecer~ integralsareapproximate althoughusuallyveryaccuratetheneedfor approximate rithodsarisesfromthefactthatexactsolutions canbe foundforonlyalimitednumberof buckling problemsof practical importance n thissection,a briefoutlineof themethodsof analysisof buckling problemsispresentedforextensive discussions of thevariousmethodsofanalysisandtheirapplication to a widevarietyof problems,reference to thelooksof Timshenko,Sokolrdkoff, anddleich (refs2tok) issuggested t / Equilibrium Differential Equation Thegenemlformofthedifferential equationdescribing theslightly bentequilibrium conflgumtion ofan initially flatplatewasderivedby StQvellin thefollowing form(ref5]: +- - -,--

,,, (2) inwhichtheconstants aredefinedas: cl= 1- (3/4)(a+=,) ~ - (%/ s] * C2 = 3u~Tai ( /2)~-(%, s] - (w ] s C=j=l- (3/4) py - )k (3) C4= 3ay7ai ( )p( a Thesedefinitions oftheconstmtsare&sed on theassumption thatno elasticunloading occursduringthebuckling process Furthermore, a valueof Misson sratioeqwl to 11 2wasassuredforboththeelastic andinelastic rangee n the elasticrange,%~% = 1,and,therefore, fora32loadings C1C3=C5= and C2 = C4 = O,andequation(2)reducesto the familiarequilibriaequationfortheelasticase: t t = &=&+2&+3 ax4 (4) - _, ~ ~ - - ----

d 8 krdingrigidityof D = l?l3/9, whereasthe elasticvalueis D = Et3/12(1- Ve2) Thesolutionof individual buckllngprohle=scanbe mostreadily handledby selection ofappropriate solutions of equation(2),insertion of properboundaryconditions, andminimization to obtainthebuckling stressh thisconnection, thebucklingstressesfors@ly supported pletecolumns,compressed flanges,andplatesareconsidered in some detailin thesectionentitled Boundary Conditions to illustrate the differences inb~cklingbehatiorof tkse structural elezients : Knergyntegrals Sinceexactsolutions to equations(2)and(4)canbefoundfor onlya llmitednumberof bucklidproblemsof practical importance approximate solutions genemllyutilizing ener~ integrals havefound tideapplication Thepotential energy of theplateanditsloadingsystemis representedby thedifference of twointegralsṭhefirstintegr~of equation(5)represents theincreasein strainenergyduetabendingand tuistingoftheplatedurir~thebucklingprocess,whereasthesecond integralrepresents energyassociated with rrembranestresses resulting fmm lateraldeflectionịf thepkte edgesarefixedduringbuckling, thelatterermesents themembranener~ f theedgesexperience a relati~shif~,thesecondintegralrep~esents thewo=koftheexternal loadingsystem t Thegeneralenergyintegralforpkteswithsimplysupportedges wasderivedby Stowell(ref5) fortheinelastic case: 1 - J + (5), ~ - --- ~- - - -- #--

, restraints of magnitudec along t!o edgesof th!plate,tlien tt~estrnin enerm inthesercstrnintm isaddedtoequation(5) Thesetermshave theform oj \QY/y=yo where y stheedgecoordinate Fortheelasticase,equation(5)c-k simplified to dxdy- (6) Soluttons h principle, of au thedeflection functions satisfying thegeometricboundaryconditions of theproblem,thepotential ener~ AM will be zeroforthatfunctionwhichalsosatisfies theequilibrium differentialequationthisfunctionwouldbe an exactsolutionof theproblem Sinceexactsolutions cank-efoundinonlya lfmitednumberof cases, theener~integrals areof greatusefulness infindingapproximate solutionswhichsatisfythegeometric bcmndsryconditions exactlyandthe differential equationapproximately Thus,oftheseveral~ctions satisfying thegeometric boundarycotiitions butnotnecessarily thedifferential equation, thefunctionforwhichtheener~integralsa minixmnnconstitutes tkebeetapproximate solutionof thedifferential equation Probablythebestlmmunenergymethodfordetermining thebuckling stressof thinplatesis therayleigh-ritz procedureṭhemethodconsistsof thefo~ouingsteps: (1]Thedeflection surfaceofthebuckledplateisexpressed in expendedfom as thesumof an infinitesetof functions havingundeterminedcoefficients ngeneral,eachtermoftheexpmsionmst satisfy thegeometrical boundaryconditions of theproblem, - - - - -

z ~, i f 2 4 (3)Thisminimizing procedure leadstoa set of lineur horzogeneous equations in theundetcri~c2 coefficients Thes equations hrvenollof theircoefficient vanishes vanishingsolutions onlyif thedeteralr%nt Thevanishing of thisstability determintint providestheequationthat rnybe solvedfortheb!!ckling stress Whentkesetof fuctionsuse~is a completesetcapablsof representingthedeflection, slope,aridcurvature of anypossibleplatedeformation,thesolutionobtainedis,inprinciple, exactsince,however, theexactstability de termlnant isusurllyinfinite, a finitedeterminant yieldingapproximate resultsisusedinstead Thebucklingstressesobtainedby theapproximate methodarealways higherthantkeexactsolutionalthoughtheynaybeveryaccuratethis is 8 resultof thefactthatthedeflection function approximates the truebuckleshapeandtherefore the~tentialeneraresulting fromuse of theapprox~tingfunctionisgreaterthanzerofthedeflection fumctianisthetrueone,thenanexactsolutionto thedifferential equationis obtained f a deflection functionischosenwhichsatisfies thegeometrical boundaryconditions approxtitely, ispossibletoobtaintuckling stresseswhichapproachtheexactsolution fromthelowersidethis canbeaccomplished bya revisionof therayleigh-ritz procedure known as thelagrangian multiplier method Theagmngianmultiplier methodfollowsthegeneralprocedureoutlinedfortherayleigh-ritz methodwithbutonesignificant cluzngethe restriction instep(1)thatthekaundaryconditions be satisfied by everytermof theexpmsionisdiscafied andisreplacedby thecondition, thattheexpansion as a wholesatisfies theboundsrjconditionsṭhis conditionismathematically satisfied in step(2),duringtheminimization process,by theuseof agrangian titipllers Theadvantage of theagrangian multiplier methodliesin thefact that,withtherejection of thenecessity of thefulfillment of boundnv conditions termby term,thechoiceof an expansion ismuchlessrestricted- Forexample,in theclamped-plate compression problem,a simplefourier expansionnayke usedinsteadof thecomplicated functions usuallyassured in therayleigh-ritz analysesof thisproblemftihermore,theorthogonalityproperties of thesimplefourierexpansion leadtoenergyexpressionsof a simplicity that1s instnmental inpermitting accurate computations c - ~ -r-~ ----

,,,,, ThLslWi!Oi&tditSfi~~liCZLiO:l iospectticpro*l~vg isu,:: rit;wl by hdimlsky WA HU (Wr 6) l%cyhivetreatei~kckgranl~imul tl - plierr=tlxxl ina namer inwhichit ispossibletoobtuinupproxz&le solutions foriothupperandloxerbourdsas dewrmin:~nts of lli~!ler orderarz usedto o!:ain betterapproxlmitioas, taththeup>erandl~wcr boundsapproachthetme bucklingstrcscthu6,theagrangian mltipliermethodraybeusedto ohtsdn resultstithir anydesiredegreeof accuracy nadditiontotheaboveprocedures whichsrebasedonenergyirtcgrals,othermethodsof obtaining approximate solutions of bucklingproblemshavebeenuse~whichinvolvetheequilibrium differential equation ~CtiOnS which&&:lsfythegeorr~trical tiundaryconditions exactlyare usedto sat~sfyt~egoverning differential equationapproxkately by processes thatleadto integration of thesefucctionsgalerkln s =thod, finite-difference e~uations, relaxation techniques, anditeration aresome of thenumerical nethodsthatcanbeused KUNDARYCONDTONS Thenatureof thebuckleratternina relate dependsnotonlyupon thetypeof appliedloadingbutalsouponthe=%er in whichtheeds=s aresupportedthisis illustrated infigure1 inwhichthes&me-al compressive loadingisseen to generatethreetypesof bucklepatterns ona longrectangular platewithdifferent geo~ trical boucdaryconditionsthesinglewaveisrepresentative of coluznbehatior, thetwisted waveis representative of flangebehatior, andtkemultiple-buckle pattern 58representative of platetehatior N indicatethem=nne=in whichtinegeometric boundarycondltio-= mathe-tically influence thebuc kling behavioran~alsotodamnstrate thesolutionof theequilibrium differential equation(eq(4))forsome particular cases,theplate showninfigure1 cueanalyzed!o-f conditions vhichc~cterize simplysqrporte~ vi~ecolumns,~ges, andplatesareconsidered - d Wthemtical&ialysis Theequilibrium differential equationforelasticbucklingof a unlaxially compressed platecanbecbtainedfromequation(4)in the form (7) - - - --- - - - -

-,,,, J;! ; T!,isES5UT*2,3 &ld~h~ refore w= ( c1 uhere (9) (lo) (m Thecoefficients cl to C4 areto be detenzined by thegeometrical bmndaryconditions alongthe &nloadei edgesof theplate Fortiewidecolumn,tkeunloadededgeslocatedat y = tb/2 are free,andconsequently theedgeemqent6andre-iuced she?~smust be zero Therefore, * i A ~ + 2(1 -Ve)zz- *O ax~ytib/2 1 (1 ) Fortheflange,theunloadededgeat y = O isassumedto he simply supported andthatat y b is free:

5=&2 - ve(xb/a)2 A:-,, ), ;:;,: (W)y=() =o (=+veg),=o,b=o &+2~- e)-]y=b=0 Theplateisassumedtobe simplysuppmtedalongtheunloadeded~es locatedai y = ~b/2: (w)y~b/2 =o () +,,22 a % * & ~2 ~*~/2 = 0 ncorporation of theseboundaryconditions intothesolution given by equation(8)leadsto thefollowing implicit expressions for kc Forthecolumn, d for the flange, #p sinh&cosp - ~%coshtisln~= O (16) 1 andfortheplate [itanh{~/2) +j3 tan(5/2~-1=o (17) where #- 1,- - _ ----- - _

!, ~lebucklingcoefficient fora sixplysupported flangewasderived ~,yt,w@@standstowell (ref8) intheform kc = (6/Lr2) (1 e)i[fib/a)2/6]} { - (18) kc=083-093ve+l34(a/fib)2+ 010(xb/A)2 (19) Forthe s*w supported plate kc= [m+(b/ajj2 (a Anticlastic-titure AS my be seenfromthesolutions inthepreceding section, the,,u:kling coefficient for ~d 1s independent ofrissontsratio,whilethecoefficients thesimplysupported platedependsupononly for J/A the@ de columnandflmgearefunctions ofboth Ve and b/l ThiS ~5tufition isnotlimitedtotbecaseof 6fmplesupportalonebutper- ~tl,vtoa~ degreeof rotational restraint alongthew-a ed=s of ~ ~lfitec Theinfluence of v= upon ~ istraceable to thereduced- ~~lemr te- atthefreeedgesofflangesandcolumns Boundary conditil)rl~ suchas simplesupportdo notmposetherequirement of zero ~ettuc~she= ~ong theunloadededges, whicheliminates the Ve influ-,ntofrom therelationship for kc me valueof thecompressive bucklingcoefficient foranelement ~mtdinin6a free unloadededgedependsuponthedegreeofanticlastlc ~~lrv/ltul~ developedḟora verynarrowelementsuchas a be&m,complete,---

- enbiclastlc curutureoccurs anithelending rigiditiy iu slcplye?01 a relatively vitiebtrip,t?ma:iticlaztic CU-JatJreis suppressed sot?t~t thecrosssectiofi reraizsrelntlve>y flatexceptfora highlylaculize; Curlingat thefreeeigesvkre the~tressdistribution rermrapges itself to satisfythegeometrical bow-simycomiibions Therestraint of anticksticcurntureres-dtsinm increaseinbendingstiffmss Fora verywideele~ent,tkek::<irg stiff~ess approachese/(1- v2);this limitingcondition is~r-~:: as cylindrical kending Platecolumnsandflangesmy oft-en he relatively narrow,inwhich casethebendingstiffness lieslctweenthelimiting valuesdiscbssed Thiseffectcanteacccunted forby useoffigure2 STRESS-STRAN R!21ATONS NYELDRGON Three-tineterDescription ofstress-stmin Curves Stress-strain cumesareof f undanental iqcmtanceinthecosrputa- inelastic bucklingstressesṫhenumberofdesirechartsrewired tionof forthemny materials a~-ilable andthevariousallowabie stresses~or thesemterialsat nomalandelevate~temperatures canbetrewmdous;ly reducedbyuseof a nondimensional mathematical description of stressstrainrelations RambergandOsgod(ref9)haveproposeda three-pszaneter representation of stress-strain relations intheyieldregionwhichfrsfound wideapplication TYeir e~uationspecifies thestress-strain curveky theuseof threepar==ters:themdulueof elasticitye, thesecant fieldstressco-7 corres~nding to theintersection of thestressstralncurveanda secantof 07E,andtheshapeparametern which describes thecwxa:uzze of thekneeof thestress-strain curvethe ebapeparaceter isa function of Jo7~d ~085Jthelatterstress corresponding toa secantof055eas shownin figure3(a)theshape ~ter n ispresentti infigure3(b)as a functionoftheratio 07 085 / - m Thethree-paraceter methodis base~on theexperimen~l observation thatformny mterialsa simple~wer lawdescribes therelationbetween theplasticandelasticomponents of straineyuseof this fact,tke following nondimensional equationcanbederived: # Ee= =07 () n +2A e 7U07 (a)

i!, nelastic Moduli ThequalitiesM -/ l?~yan: u / C(-J,7 tire nond~rwmio::al andccmsc~uefilly tk nondimensional stress-struin curveshorninfigureh canleplottei Therefore, thestress-strain curwxof ranyffi%erials my be foundwith theaidof figy?eh providinge, n, ahd =07 areknownforthespecificmterials Forinelastic-tickling problems, tilemodulusratiosee/e,et/e, and Et/EsappearTheseratioscanbe co~ ~tedinnondimensional form byuseof equation(21)sincees= u/c,itfollowsdirectlyfromequation(21)that ~~ = 1+ (3/7)@o7)n-1 (22) Since~ = du)de,differentiation ofequation(21)leadstothe expression * E~ = (23) Fronequations (22)and(23) it Et/Es= followsthat (%%)/(%) 1+ (3m\u/%7)n-l ~+ (3/7) n(u/uo~)n-1 (24) Thesequantities areusedinsubsequent seetions concem,ed with inelastic buckling nelastic Poisson s Ratio Poissen s ratioforengineering mterialsusuallyhasa valuein theelasticregionof between1/4and1/3and,ontheassumption ofa plastically irlcompressible i$otropic solid,assuresa valueof 1/2in theplasticregionthetransition fromtheelasticto theplasticvalue isnxxtpronounced intheyieldregionof thestress-strain curvesince - -- - -

is of sorei:uport:mce in irelastic-iucklit:~ prollc%s, GerardandWildhorn, w;::k ot~ers, havestudiejthisproblemon severalalu~dtuum alloysandhuveshornthatpoisson c ratioisseriously affectedby misotmpyof thematerial(ref10) ForrmterklsUMC canke considered tote orthotropic (eg,hatingthesmc properties alongthey-?u_d z-~e6iflotied810ngtkle x-is) the rolbw@ rehtion describes thetransition ntheyieldregion: v = P - @se)~p - e) (&j) - * ti thisrelation, P is thefullyplasticvalueofpoisson s ratio For isotropic rmterialsvp= 1/2, ukreas fororthotropic materialsvp is generally different froma valueof 1/2 tisevidentfrom thebucklingstressexpression thattworaterials whichdifferonlyintheirvaluesofpoisson s ratioshouldhavedifferent bucklingstressesas a rule,however,thevalueof v= istirtually constantfora material whoseproperties m3ychange as a resultofheat treatment, detailsof composition, orarcount of cold-work TheUSUEL1mge of ye for EOst technically inportant structural mterialsis #sween025 and035~lere are exceptions, howeverone of themostextrer~terialssberyllium, forwhichudy,shav,8nd Wulgerreportatiue of 002(refn)!, - - * ntheinelastic range,presmblybecauseof anisotropy, numerical valuesof v havebeenfoundwhichme considerably inexcessof the theoretical upperlimitof 05,whichisderivedon tke assumption of incompressibility of- isotropic =terialforexa@e, Gerardand Wildhornobtainedvaluesof v as mge as070forseveralhigh-strength aluminum alloys (ref10),vhile~n andrussellreporteda value of 077forcanzercially puretitaniumsheetand062forfs-lh=gnesium alloy(ref12) Stang,Greenspan, andnewcanalsoobtaineddataat variancewiththetheoretical valueof 05forplasticstrains(ref13) Thesethreereports cover a large varietyofalloys,deformedbyvarious total strainsinbothbarandsheetstock,andshouldbe consulted for morecompletedata 0- ~- - _ - -- -, - -- ---- - - --- ~ ~

,, PLASTCTY-RZHK TCW FACTURS nelastic-buckling-st -essequatson Theelastic buckltngstressofa flatrectangular platecanbe expressed in theform Cre= ~2E ~ 2 )() 12(1 2 b - Ve (26) Whenthebucklingstressexceedstheproportional limitof theplate material, thetermsinequation(26)whichareinfluenced are ~, E, and v Thebucklingcoefficient k dependsuponthetypeofloading, thebucklewavelengthas affectedby thegeometrical features of boundaryconditions andaspectratio,thestresslevel,andpoisson s ratio in thecaseofplateswithfreeedgestheelasticmuus E is altered by thereduction intendingstiffness associated withinelastic behatior Poisson s ratioin theyieldregionexhibitsa gradualtransition from theelasticvalueve to8 valueof 1/2for8 plastically incompressible isotropic material Forsimplicity of calculation alleffects of exceeding theproportiona limit-are &nera12y incorporated a singlecoefficient referred to as theplasticity-reduction factorq Bydefinition t ~ = aq~cre (2 7),Substituting equation(27)intoequation(26), 0- (28) Since q = 1 nthe elasticrange,equation(28)isperfectly general anditisnotnecesssxy to distinguish betweenelasticandplastic buckling!hevaluesof k @ ve arealwaystheelasticvalues sincethecoefficient ~ containsallchangesin thosetermsresulting frominelastic behatior / _ - -

3J * L,, \ f, ij:, ; : -, -,? - s Ratherprecisexperimental dataexistforplasticbucklingof colurms,sinplysu~ortedflangesandplatesundercompressive loads, andelastically sup~rted platesundershearloadsforpractical alundnum-a~oy columsundercompression, itisa well-known facttk=t theexperimental failingstressis closelyapproximated by theeuler formulawiththetangentnmdulusubstituted fortheelasticmodulus n figure5, testdataforbucklingof slmply supported flanges undercompression areshownincomparison withthetheoretical values as derivedby Stowell(ref14)according themethodofgerard (ref15) Excellent agreent is obtained Thetheoretical andexperimental determinations of thevnluesof q appropriate tov trious typesof loadingsandtiund[lry conditioner lqvc reaulte~i3extensive literatu~eṫheassumptions underlying the v%riau$ theoriesdifferwithrespectoplaatlclty laws,btress-strain relaticws, andbuckling mdelsused nordert~avoidpossibleconfusionindiscussingthevarioustheories, itappearsdesirable toresor to tke expedient of comparing theorieswithtestdatafirst n figure6, test dataofprideandheimerl(ref16]andpeters (ref17)forplasticbucklingof sinplysupported platesundercovressionareshownin co,xparison withthetheoriesof Bijleard(ref18), HandelmandPrager(ref19),Hyushin(ref20),andStowell(ref5), andthe~thodof Gerard(ref15) Pooragreement isobtainedbetweea thetestdataandtheflowtheoryof Handehn andprager,whereasrelatively goodagree~entis obtainedforthedeformation theoriesof tke othqrswithstowell s theoryinbestagreer~ct nfigure7, testdataforplasticticklingof elastically supported platesundersheerareshownin comparison withthetheoriesof Bi~laard (ref18),gerard(ref21),andstowell(ref5) tcanbcobs_ed thatthemethodofgerard,whichis basedon themaximum-shear plasticity lawto transform axialstress-strain curveintia shearstress-strain curve,is in goodagreement withtestdataon aludnum alloys On the-basis of theagreercnt withtestdata,thevaluesof q recommended forusewithequation(28)appearintheappendixȧlso, nondimensional bucklingchartsderivedthroughtheuseof thesereduc- ~tionfactorsappearinfi~es 8, 9,and10foraxiallycompressed flangesandplates and for shear-loaded plates Assumptions of nelastic-buc?xng Theories Thestateof knowledge up to 1936concerning inelastic bucklingof platesandshellshasbeens~rfzed by Tiimmkenko (ref2) The=:Q

, i ei?or<s rc?crtc l tl:cv-ei~ Jereca[~c~~ccd vlthatl~iii~)ts t-o modifylk!variousl-erldiu~-rrfirest tcrl:s of td::~ e~:l~litriu~, dlfrcrentltil e~u~tione by t!c! useof suitak,lc plasticity coefficients determiried frome~erirental date on columns Ȧlt?ogh suchsenier~frical effortsrfitwitha reasonet~le degreeof success,thetkoreticaldeterntinatlon ofplasticity-re~uction factorsforflatplateshasbeenechlevedwithinrecentyearsas the resultof thedevelopzxmt of a Satisfactory inelestic-kuck~ing theory Becausesuchdeveloprxmts arerecentandbecauqethevarioustheoriesave notbeen,as yet,adequately treatedintextbooks,thefollowing dis- CUS6LOnconcerning theassu~ptions andreslilts of theveiriou6 theoriesis presented in souedetail Mathematical theoriesof plasticity arephenomsnological innature sincesuchtheoriesgenerally proceedfromtheexperirr~ntally determined stress-strain relations forsimpleuniaxialoadingsịntheelastic range,stressw strainarelinearlyrelatedby theelasticmdulus At strainsbeyondtheproportional lfm~t,a finitestress-strain relationcanbeusedin thefora or an incremental relationcanbeused h eitherelationthesec~tmoduluses or thetangentiulus % varieswithstressandappliesas longas theloadingcontinues to increaseunloading usually occursalongan elasticwe parallelto ttieinitiale-tic portionof thestress-strain curve nthebucklingprocess,forexample,thestresstateisc&siderablynrmecomplexthansimpleuniaxialoadingtherefore, formulation of suitablestress-strain lawsforthree-dimensional stresstatesbeyond theprofortiorsl limitformsoneof thebasicassumptions C* thevarious phsticitytheoriesease3on generalizations of equation(3) which involvefiniterelations, deformation t~s of stress-strain lawshave beenad-ted Similargeneralizations of equation(30)involving incrementalrelations arereferredtoas flow-type theoriesḥ boththeories, unloading occurselastically Theuseofthevariousplasticity theoriesisgreatlyfacilitated by theintroduction of rotationa~y invariant fimctions todefinethe three-dimensional stressandstrainstates;suchfunctions aretermed stressandstrainntensities Theassumption thatthestressintensity isa uniquelydefined,single-valued functionof thestrainintensity - - -

fora @ven rzterialwtentheslressintensity incre%ses (loadin~) uri is elasticwtenitdecre-fies (unloading) is a secondof thefunda%entsl hypotkesefi ofplasticity theory Thedefinitions of,thestresswdstrainintensities tkeoretlcaliv canlechosenfrona f~all%y of rotationally invariant fi,anctiors Two suchfunctions referre~toas diemqximlk-shear lawend-octahedral-skar awhavebeenfoundtobe of considerable usefuheseforcorrelalin3 stress dataonductilezterialsthus,trothof theselawshave teen assumedtoapplyin variousolutions forinelastic buckling norderto obtainsolutions tovariousplasticity problerrs, adiiitionalassurzptions are~-nerally er@oyedtheseordinarily includethe assun@ionthatthepri~cipal axesof stressandstraincoincideandthe assunrption ofpkstictsotropyẇtherrmre,thevariation Poisson s ratiofromtheelasticvaluetothevalueof 05fora plastically incompressible, isotropic solidisnmstpronounced in theyieldregionsome solutions accountforthe instantaneous valueof Poisson s ratiowhereas othersassumea valueof05forboththeehsticardplasticregion The latterissumptioa servesto sirplifytheanalysisconsiderably Corrections fortheuseof thefullyplastic value of Poisson s ratio cangenerauybe incorporated thefinalresults From thestandpoint of classical stability theory,tttebucklingload is theloadatvhichan exchang@of stablequilihriurr configurations occursbetweenthestraightformandthebentform Sticetheloadrezains conskntduringthisexcwnge, a strainreversalmustoccuron theco~vex sideand,therefore, tkebucklingnndelleadingtothereduced-mdulus conseptforcolumnsiscorrectheoretically Alltheforegoing assumptions formthebasisforsolutionof plasticityproblemsingeneti Forthespecificprobleaof inelastic buckling, t isnecessary tamakeanadditional assumption concerning thestressdistribu~idn attheinstantofbuckling %icticalplatesarxicoumrsinvariabwcontaininitial@erections of somesort,and,therefore, axialloadingandbendingproceed simultaneously n thisczse,thebentformis theonlystableconfi~uration Ṣincein thepresenceof relatively largeaxialcompressive stressesthetendingstresses aresmll,no strainreversaloccursand theincremental bendingstressesintheinelastic rangearegivenby equation(30) Sincefailingloadsobtained from testson ahuninum-alloy columns arecloselyapproxinuited bytheeulerbucklingequationwiththetangent modulusubstituted fortheelasticmodulus,certainof theinelastictucklingtheoriesassumetheno-strain-reversal, ~gent-nmdulus, modelas thebasicbuckling process andthenproceedto solutions byuse of equilibrium equations basedon classical stability concepts ------ - ---,- ~ - ------- - -,

::;-;, x ;f;: 1 -, nelusiicikcklirrg i-~eori~s Different invectlgntcrs hnveusedvariousonesof t},ose assuwlions di~cussed above,n ordertoindicatethemajorassuimpkions underlyirl~ eachof tl:etheories, ELsunraryis present~a in table1 Historically, EiJlaardappezrstohavekeenthefirsttoarrive at 6Qtisfactor~ theoretim~solutions forinelastic-buck~ing theories (ref 18) Hisworkis thenestcomprehensive of allthoseconsidered inthatheconsiders kth incre~ntal anddeforrztion theoriesandconcludesthatthedeformation typeis correctsinceit leadsto lowerinelasticbucklingloadbth&nareobtainedfromincrerzntal theorieseis workwasfirstpublishe~ in1937!hispnperanclaterpublications includesolutions townyi@ortnnt inelastic-buckling problemhovever,thisworkappearstohaveremainedunknoumtonestof thelater investigators lyushinbrieflyreferredto Bijkard sworkandthenproceeded to derivethebasicdifferential equationforinelastic bucklingof flat platesaccording tothestrain-reversal rdel (ref20) Thederivation of thisequationisratherelegantandwasusedby Stowell,who,however, usedtheno-strain-reversal mdel (ref5) Thedifferential equation obtainedby BiJlaardreducesto thatderivedby Stawellby setting v 1/2 intheformerhandelrxm andfrager,duringthistime,obtained solutions to severalfnelastic-buckling groblemsby useof incremental theory(ref19) Testdata,suchas shownin figure6, indicatethat theresultsof incremental theories, regardless of thebucklingmodel, aredefinitely unconsemtive,whereasdefomtion-typetheoriesarein relatively goodagreerent Alltheforegoing theoriesweretzscdon tteuseof theoctahedralshearlaw Eovever, testdataon theinelastic bucklingof aluminum-alloy platesin shearindicated thattheresultsof theabovetheorieswere unconservative Gerardusedthemaximum-shear lawin placeof the octahedral-shear lawto transform axialstress-strain curvesto shear stressandfoundgoodagreezent withthealuuinum-alloy-plate shearbucklingdata(ref21) Tc sumarize,then,theassuruptions whichleadtothebestagreement betweentheoryandtestdataon inelastic bucklingof aluminum-alloy flat platesundercompression andshearloadingsincludedeformation-type stre~s-strain laws,stressandstrainintensities definedby theoctahedralshearlaw,andtheno-strain-reversal modelof inelastic bucklingȧlthos$ theremaybetheoretical objectior-is todeformation theoriesas a classand theuseofa no-strain-reversal modelinconjunction withclassical stibilityconcepts, testdatado suggestheuseof resultsobtainedfroma theorybasedon theseassurrgtions inengineering applications Thechoice,oflawsto transform axials ress-strain datato shearstress-strain data! - - -, - -- -

*> -,} -, -:-,), :,;i,:l de~endsupontj:ede~reeof currc::,:l G:lObt::irtczl b:: dc%!rl eachor th,jjs L - lawswlihpolyaxial test,dntufor iriivldwd :LLtF:rlfLs ~ FactorsUsedinCo:qm&iticms As alreadyinilicated, thelnelastlc-kuckl~ng stressu~ybc coxputedbyuseof plasticity-reductfon fectorsappropriate theboundaryandloadin~conditionsṫhefaclar3incoqymatealleffectsof exceeding the proportion92 lizxit upon k,,e,a~d v Forconveaienee inpreparing desi~ chartsforinelastic buckding, thecriticalelastic straincanbe used: Frcmequations(28)end(31) k# tz Ecr = () 5 + 1#) (31) Ucr* V%r (32) - Therecommended valuesof q sregivenintable2 Forcowressive loads,thevaluesof q derivedby Stowellforinfinitely longplates exceptinthecaseofplatecolumns(seerefs5 and22)havebeencorrectedtoaccountforthetistant~leous valueof Poisson s ratioaccording to a methodsuggested by Stowe12 andpride(ref23) Thusj,=,8(+) k-v2) (33) where qs is theoriginalvaluegivenby Sti#ellEquation(33)is the formof theplasticity-reduction factorstkatappearsintable2 sndhas beenuse~to constmc thenondimensional bucklingchartsof figures8, 9, andlo Forlongsimplysupported platesundercoxzbined axialco~ression andbendingbijlaardfoundtheoretically, bya finite-difference approach (ref24),that - -

,,,7,, *- :, -& ~? t}eplasticity-reduction factorfcraxialcompression Equation(Zl)) r~lucesto tms valueforaxialloudalofie, sincea = O forthiscase Forpurebendingu = 2 andequation(34)is equalto theplasticityreiiuction factorfora hingedfbnge Todetermine theinstanta~eous value ofpoisson s ratio,equation(25) canbeused Forthenond~nencional bucklingchartsthetheoretical fully plasticvalue of 05wasas3um4forPoissonts ratio,as wasassvcedby Stowellinhisdeterminations oftheplasticity-reduction factorsstowell andpridereported on computations tie usingequation(34)insteadof v = 05 andshowedthattherewaslittledifference betweenthetwocurves forflangesandsimplysupported pliates (ref23) Bijlaardtookexception to thisreport(ref25);however,thedifferences were slight,as wns pointedoutby StowellandRride,anditcanbe assuredforpractical purposesthattheplasticity-reduction factorshownintheappend~ix aresatisfactory forgeneral desi~ andanalysis &mstruction Of Nondimensional BUC~lg(%Sl_tS Thenondimensional buckling-stress chartsof figures8, 9,and10 wereconstructed fromthebasicnond~sionalstress-strain curvesof figureh andtheplasticity-reduction factorshownintheappendix, incorporating themethodof criticalstrainsas depictedthroughequations(31)and(32)sincethere islittledifference amongthenwzericalvaluesof thebucklingstressesthatwcxildbeobtainedforthe plasticity-reduction factorsapplicable toa longckuxpedflangeandto a hug platewithanyamuntof edgerotational restraint, tkesecases weregroupedintoonee@oying thereduction factorforthesiuplysup- @rtedplate,whichis theaverageof thethreefactors CADDM3RRXCTONFACTORS Eaiic%inciples Thepresenceof claddingon thefacesofplatesmy haveanappreciableeffecton thebucklingstressincethecladdingraterial, which usually has lower mechanicalstrengththantheplatecore, is locatedat theextremefibersof thephte cros section(fig11)wherethebending strainsduringbucklingattaintheirhighestvalues Buchertdetermined buckling-stress-reduction factorsforcladplates whichincludeplasticity effectsaswellas reduction dueto cladding (ref26) However,it ispossibletodetezmine a reduction factorfor - ---- - -- --- - ---- - - -- --

-,,, L L-il ~ ;, claddind<a;: : -!Jlt lxiy& uciltli~ tli~-i L:(tl,einclzstic t)uc}:lic~ stress t~yiel~a i innl bucklifi~ strc:sforl1eclmipl;ite tl~:~t a~reesquite close~withtketestdata Thecladdir~g reductio~l i uckrsmaytlhc: kc _ usedwiththeexistin& inelastic-bucklix~ curvesof fig~es8, ~,ata13 Theformofbucklingeqmtionco~mdy useifor detercinin~ t!:c bucklingstressof a bureflatplatewithanytypeof loadingandlm~n~~ - arysuppcrtsisgivenas equation(28)forclaiplatesthisexprec~ian isusedtofindc nominalbucklingstress,wliere thethic!vess is tt~t of thetotl-l plateandtheraterialproperties arethoseof thecore Theactual bucklingstressof a clad@ate thenmy be foundby applying a simplentczerical multiplierfi to thisstressthisrultlplier, termedthecladdingreduction factorbecauseitreducestheratioo: the nominalcorestressto thebuc kling stressof tkecladplate,is a fxnctionof therelativecoreandcladdingstresslevelsandtherespective mduli of thecoreandcladdingmaterialstkeclad-plate bucklingstress canbe foundfrom 1 acr = <ucr (35) E tinenominalbucklingstressexceedstkeproportional limitof thecore =terial,thenthenominalbucklingstressforthecladplate my be foundby usingtheappropriate valueof q, theplasticityreduction factorof thecoremterialvaluesof q maybe obtained fromtheclad-plate stress-strain curveshowninfigure12,thederivationofwhichisdiscussed belo-w, t shouldbe notedthattheplasticity-reduction factordepenti uponthestresslevelandconsequently requiresan estimteof thefinal bucklingstressof theplatebefor equation(28)canbeusedto fi~~ ffcrthecladdingreduction factorhasbeenfourdtobe of sucha -ture, however,thatlittl errnrisinmlvedinfirst~indingthenominalbucklingstressandthenmultiplying itdirectlyby thecladdingreductiaa fact-or to findtheactualbucklingstressof tlcecladplatetheproduct qfiis ~T$whichwasdetermined by Buckert Table3 containsalistingof the=riouscladdingreduction factorsdeteminedinsubsequent portionsof thissectionnthetable, allplatesarelor&andsti,ply supportedṛallcasesforwhichtke cladding proportional-limit stressucl exceedsthenoninalbuckling stressucr thecladdingreduction factorisequaltounitytheymntity p %sdefinedas P = aclci ~ cr,ad f istherati of thetotal claddingthickness to theclad-plate totalthi-kness - - - -- -

- :, :1 7 DcrfvaLion Or CoreStress-ZkrEln Curve Tkecorestress-strein curve My be derivedfroma skress-str8fn curvefortheentirecladp~%teus showninfi=ve12 Usingthenotitionof fl~e 11,inuhtcha sectiofi ofa cladplateisshown,thetotal axialloadactingon thesectionisdetermirtible ikon (36) Dividingthisexpression by tucoreyields where $ = cllacore, 5/ocore =1 -f+pf (37)!Ums,thecorestress-strain currecanbeconstructed by plotting tf&corestressdeterrzined fromequation(37)at eachvalueof strain forwhichthecorresponding clad-plate stresswasfound(seefig12) ~einitial slopeof thecorecurve,whichisthesarzeas theinitial slopeoftheclad-plate curve,istheelasticmdulustobe usedinthe noriln=1-buckling-stress equationsincethebucklingstress refersto thecoreruiterial, Ucorewasreplacedby itscounterpart Ucr inthe succeeding derivations ~ical valuesof f foralcladplateappearin tablek forseveralaluninumalloysduchertshoweda valueof acl= 10,~ psifor ll(x)-kl4alloy (ref26) However,thecladdingstresstillvarywith thecladding material, ofwhichdifferent typesareusedon different alloycores Comparison of Tkeovand@erfm_ent Thetotal-reduction f8ctor,defined8s theproductoftheplasticityandcladding-reduction fnctors,hasbeenplot-ted in fi,-re 13asa functiffnof stressforboththetestdataandthetlfeory ir,thecaseof axially compressed plateswo mterialsarerepresented, eachwitha different percentage of claddingthlckness purthe~ore, thefirst(202h-t@l sheet) isa sirrply supported platewhereasthesecond(~zk-~ sheet)isa long colum Plasticity-reduction factorsforthesetwocaseswere obtained frontable2 tis instructive tonoticetheclosecorrelation forthe colunncase,forwhichthetangentmdulusistheapplicable plasticityreduction mdulus Thisfo~owstheprediction of thesimplified theo~, -- - - - ---,,

,/,,,, l \ :: 4 Derivations ofsimplified CladdingReduction Factors Buchertderivedexpressions forthetotal-reduction factorforfist simplysupported rectangular platesubjected to severaltypesof lceiings n thefollowing sections arepreriented derivations of simplified claiding reduction factorsthatyieldbuc kling stres6es atallstresslevelsz~ rely by mltlplyingthengzinalstress(elastic or inelastic) bythecladding reduction factorat tkt stress Ṭhisisdofieby separating thecladiing effectfromtketotal-reduction factorbyusingtherelationship fi= ~/~ Case1 LongSs!lySuppotiedplatesin coqression- Buchertderived theevressiori for ~ at a==> upl (ofthecore)(refx): (*) where ~ = (3f%/Es)[1A) + (3/4)(%/%] Fora bareplatef = O and ~= q,ufiich give (39) (cftable2) Then 3 ) 1+ (,&,E=jl 5= 1 l+3r +{[l+(mjes] 1+11A)+ (3/4) (%/%]1 2 p,,,+(,,4)(2,,++w]~f (Q) i -,- --- =

<= (l+3pf) +*p+39f)(4+313fp2} (41) 2(1 + 3f) { vhich JllSybe written -(8[+i~-[$vfm + 3,f)l} 2) f itis ass-d that 9W/(1+ 3Pf)<<4, thefouowingsiaplexpresforthecladdingreduction factor: sionisobtained * (42) (c)forlarge stresses,p-o mdtheretore 1?= (43) l+sf - (( Equations (42) ad (43) m=r infi~ 13 ~nthefo~of qt= Tfi> wherethey,maybe seentoagreecloselywiththetotal-reduction factor andthetestdata,- Case2 Platecolumns- Thederivations of forshortandlong platecolumnsfollowthefomnusedincase1 forthesupported plate uithoutanysimpli~ingassumptions Theresultsareshownin table3 W COlumncurveisplottedinfi~e 13 int~~efo~ qt= vi>whereit is seentoagreecloselywiththedataandwithf!uchert s theory Case~ Langsimplysupported platesinshearḇuchert(re&26) showsthat ~ forshearona longsimplysupported plateis - _ - -- - - --

-,, wherethenodal-li[,e slopeof theshearbucklesisobtaine~ from the @licit equation The&nLmm-energy state occurs foruncladelssticplateswhen a-l ~, andthereislittleyeasontoexpecta significantly different valueforcladplatesconsequently, thisvalueof a isassuredin thefollowing development: M C5T EsE wpa+p3t/%)+*ij 4(l*3f) (45), (a)when acr< ~c13 pfi=lq=l - (b)theplasticity-reduct~on factorfor a=r>dcl isderivable fromthetotal-reductian factorin theform (E8,8E)f,= +(~ps) +-+]

- -,,, : where Y 1+ 3pf hi-(e@)++ - (@)] := 1:3f 4+(qEJ+3/~-(%iq 1 (47) The expression in bracesdeviatesabout2 percentfromunityfor f 010 andfor $ >02,u~ch willbein theneighborhood of the proportional limitfortypicalstructuraluminumalloysconsequently, ittillnotintroduce an appreciable errorto consideritequalto unity, inwhichcaseequation(42)forthecompressed simplysupported plate F=ldstrue (c) Forlargestresses,$-+0,and therefore {= ~ l+3f KEKLNGOF FATLECTMGUAR PLATESUNDERCOMPRESSVE LOADS nthe precedingsectionsthemathe=ticalendphysicalbackground fortheflat-plate bucklingprobleahasbeenpresentedtwasshown thatbasicequation(1)canbe usedforthesolutionof bucklingproblems pertaining to flatrectan~ platesundervarioustypesof loadingsin theelasticandnelzstic rangesby suitablechoiceof reductionfactors andbucklingcoefficients Considerations thatinfluence thedeterminationof k havebeenanalyzedin thesectionsentitled EasicPrinciples and Boundary Conditions! Theplastici@-reduction SM claddingreduction factorswerediscussed in thesections Plasticity-Reduction Fac~ors and Cladding Reduction Factors h thissection,andinthoseto follow,t%e bucklingcoefficientk wi~ be discussed anditsnumerical valuesfor variousloadingandboundaryconditions ti12be presented Historical Background _ inves-kigated thebucklingofa simp~ys-~pported flatrec-tangularplateundertxialloadingintheelasticrangeusingtheenerw method(ref27) He obtainedtheexplicitformfor ~ forthistype of l~dingandsupport: kc = ~a/nb)+ (nb/a]2 (48) - ----- - - - -

,,,,,,, : j: : : - - Tiw,sw2s tr~tcdt]wnerou~ niiitima,-nses ot h) l(t i 1,;; :;1 t?,u,~{uy cortd~tio15 Ut~liZf:lg bo~h bk ei2-~ up~rc:tct: ar,d Llk4:solul-iott 01 t~e differential equntion(ref2) liiilconstructed Q churtof kc covisy:ng thecompleterznge ofpossi~;?: til&x:~ ;~ conditiol]s forf~i[l~]@ k~il+i: simplyc j~port~~d, clampedor freecir;c: on one stie, awl simply Guppor!& or ck,peded~~son theother,withthelomhi C:WS eitherclumpedor simplysupported(ref28) Lundquist and%owe~ presented tk efirstunifiedtreatrent of tkc compressive-buckling problemintheiranalyses, by boththedifferentialequationandenergyrethods,of thecasesof supported platesandflanges withsimplysupported lomltiedgesandwithvaryingdegreesof elastic rotational restraint alongtkesupprkd unloadeii edges(refs8 and29) SteinandLibove,inconsidering co~binedlongitudimlandtransverse axialloads,coveredtheeffectsof c~~ing alongtheunloadededgesot rectangular plates(ref~) Numerical Valuesof Compressive-Buckling Coefficients * forpktes Figure14 isa sumarychartdepictingthevariation of ~ asa ~CtiOn Of a/b forvsriouslimithgconditions Of edgesupportand rotational restraint on a rectangular fht platet isapparenthat forvaluesof a/b greaterthanfcmrtheeffectof rotational restraint alongtheloadededgesbeccmesnegligible andthatthecl~ed plate wouldbuckleat tirha12y tinesamecompressive bad as a platewith siqply supported loadededges + Supported Plate,~~ws,, Elastically Restrained Against~otation Thebehaviorof compressed plateswithvariouamuntsof elastic rotational restraint alongtheunloadededgescanbe understood by exminingtherelationbetweenbucklingcoefficient andbucklewave lengthforplatesupported alongbothuriloaied edgesthecurves appearin figure15forrotational restraint fromfullclamping(e= =) tohingedsuppo1 ts (~= O) From thisfigure,which1s takenfromthe reportby Lundqulst andstove-l (ref29),it ispossibleto seether~ner inwhich~hebucklewavelengthdecreases as rotational restraint increases, andthevalueof A/b for a minimum value of ~ canbe seento increasefrom2/3fore-lampedgesto 100forhingededges Thelowerportionsof thesecurvesandtheportionsto theleftof tke mininum~ lineformthefirstarmsof thecurves of ~ as a function --- - - - - - -- -