Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

Similar documents
SEVERAL REVERSE INEQUALITIES OF OPE. Citation 数理解析研究所講究録 (2005), 1452:

MEAN THEORETIC APPROACH TO THE GRAND FURUTA INEQUALITY

Citation 数理解析研究所講究録 (1994), 860:

NORM INEQUALITIES FOR THE GEOMETRIC MEAN AND ITS REVERSE. Ritsuo Nakamoto* and Yuki Seo** Received September 9, 2006; revised September 26, 2006

Citation 数理解析研究所講究録 (2009), 1665:

Citation 数理解析研究所講究録 (2013), 1841:

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

LOGARITHMIC ORDER AND DUAL LOGARITH ORDER (Operator Inequalities and Re. Citation 数理解析研究所講究録 (2000), 1144:

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

Citation 数理解析研究所講究録 (2004), 1396:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

394 T. FURUTA AND Y. SEO An alternative roof of Theorem A in [5] and the best ossibility oftheoremaisshown in [3]. Recently a Kantorovich tye characte

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

Citation 数理解析研究所講究録 (1996), 966:

Norm inequalities related to the matrix geometric mean

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

FURTHER EXTENSION OF AN ORDER PRESERVING OPERATOR INEQUALITY. (communicated by M. Fujii)

Citation 数理解析研究所講究録 (1996), 941:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32:

JENSEN INEQUALITY IS A COMPLEMENT TO KANTOROVICH INEQUALITY

Journal of Inequalities in Pure and Applied Mathematics

On the scaling exponents of Takagi, L\ evy

Citation 数理解析研究所講究録 (2015), 1963:

ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS

Citation 数理解析研究所講究録 (2010), 1716:

Citation 数理解析研究所講究録 (2012), 1805:

A CHARACTERIZATION OF THE HARMONIC OPERATOR MEAN AS AN EXTENSION OF ANDO S THEOREM. Jun Ichi Fujii* and Masahiro Nakamura** Received December 12, 2005

Citation 数理解析研究所講究録 (2002), 1254:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

Mixed matrix (operator) inequalities

2. reverse inequalities via specht ratio To study the Golden-Thompson inequality, Ando-Hiai in [1] developed the following log-majorizationes:

Citation 数理解析研究所講究録 (1994), 886:

Citation 数理解析研究所講究録 (2004), 1380:

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

Citation 数理解析研究所講究録 (2014), 1898:

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

Citation 数理解析研究所講究録 (2010), 1679:

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

Title numbers (Mathematics of Quasi-Perio. Citation 数理解析研究所講究録 (2011), 1725:

Banach Journal of Mathematical Analysis ISSN: (electronic)

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

Citation 数理解析研究所講究録 (2006), 1476:

Citation 数理解析研究所講究録 (2008), 1605:

Title free boundary problems (Free Bounda. Citation 数理解析研究所講究録 (2001), 1210:

Banach Journal of Mathematical Analysis ISSN: (electronic)

Quasinormalty and subscalarity of class p-wa(s, t) operators

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

arxiv: v1 [math.fa] 13 Oct 2016

Citation 数理解析研究所講究録 (2003), 1347:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

Citation 数理解析研究所講究録 (2012), 1807:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

Citation 数理解析研究所講究録 (2005), 1440:

On Solving Semidefinite Programming Elimination. Citation 数理解析研究所講究録 (1998), 1038:

Citation 数理解析研究所講究録 (2014), 1891:

ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS N ( ) 528

Citation 数理解析研究所講究録 (2003), 1308:

BRAUER CORRESPONDENCE AND GREEN. Citation 数理解析研究所講究録 (2008), 1581:

TitleOccam Algorithms for Learning from. Citation 数理解析研究所講究録 (1990), 731:

Citation 数理解析研究所講究録 (2016), 1995:

Citation 数理解析研究所講究録 (2001), 1191:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

RADON TRANSFORM OF HYPERFUNCTIONS A PROBLEMS OF SUPPORT. Citation 数理解析研究所講究録 (1996), 937:

The matrix arithmetic-geometric mean inequality revisited

Citation 数理解析研究所講究録 (2003), 1334:

IMPROVED ARITHMETIC-GEOMETRIC AND HEINZ MEANS INEQUALITIES FOR HILBERT SPACE OPERATORS

FIXED-WIDTH CONFIDENCE INTERVAL EST Title OF A FUNCTION OF TWO EXPONENTIAL SC. Author(s) Lim, Daisy Lou; Isogai, Eiichi; Uno

Citation 数理解析研究所講究録 (2017), 2014:

Citation 数理解析研究所講究録 (1999), 1078:

CORACH PORTA RECHT INEQUALITY FOR CLOSED RANGE OPERATORS

Citation 数理解析研究所講究録 (2006), 1465:

Citation 数理解析研究所講究録 (2000), 1123:

Title series (New Aspects of Analytic Num. Citation 数理解析研究所講究録 (2002), 1274:

SPECTRAL PROPERTIES OF DIRAC SYSTEM. and asymptotic analysis) Citation 数理解析研究所講究録 (2003), 1315:

Moore-Penrose Inverse and Operator Inequalities

Citation 数理解析研究所講究録 (2002), 1244:

Citation 数理解析研究所講究録 (2006), 1466:

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Citation 数理解析研究所講究録 (2009), 1669:

Author(s) Higuchi, Masakazu; Tanaka, Tamaki. Citation 数理解析研究所講究録 (2002), 1298:

IITII=--IITI! (n=l,2,...).

(Theory of Biomathematics and its A. Citation 数理解析研究所講究録 (2010), 1704:

Buzano Inequality in Inner Product C -modules via the Operator Geometric Mean

of iterates converges to the fixed

systems and harmonic analysis) Citation 数理解析研究所講究録 (2002), 1294:

in the geometric function theory) Author(s) Shigeyoshi; Darus, Maslina; Cho, Na Citation 数理解析研究所講究録 (2010), 1717: 95-99

関数型 SIRMs 結合型ファジィ推論法による非線形同定に関する一考察 ( モデリングと最適化の理論 ) Citation 数理解析研究所講究録 (2006), 1526:

Citation 数理解析研究所講究録 (2004), 1368:


AN EXTENDED MATRIX EXPONENTIAL FORMULA. 1. Introduction

Citation 数理解析研究所講究録 (1997), 1014:

Citation 数理解析研究所講究録 (2007), 1570:

JENSEN S OPERATOR INEQUALITY AND ITS CONVERSES

Transcription:

Title A Reverse of Generalized Ando-Hiai theory and related topics) Author(s) Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo Citation 数理解析研究所講究録 (2011), 1753: 35-39 Issue Date 2011-08 URL http://hdlhandlenet/2433/171182 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

1753 2011 35-39 35 A Reverse of Generalized Ando-Hiai Inequality ( ) ( ) ( ) ( ) \S 1 Introduction The L\"owner-Heinz inequality says that the function $t^{\alpha}$ $\alpha\in[0,1]$ $(LH)$ $A\geq B\geq 0$ $\Rightarrow$ $A^{\alpha}\geq B^{\alpha}$ for $\alpha\in[0,1]$ It induces the $\alpha$-geometric operator mean defined for $\alpha\in[0,1]$ is operator monotone for as $A\#_{\alpha}B=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\alpha}A^{\frac{1}{2}}$ if $A>0$, ie, $A$ is invertible, by the Kubo-Ando theory [1] see also [7] Ando and Hiai [2] proposed a log-majorization inequality, whose essential part is the following operator inequality We say it the Ando-Hiai inequality, simply (AH) $(AH)$ $A\#_{\alpha}B\leq I$ $\Rightarrow$ $A^{r}\neq_{\alpha}B^{r}\leq I$ $(r\geq 1)$ In some sense, (AH) might be motivated by the following operator inequality,which is a super extension of L\"owner-Heinz inequality, the case of $r=0$ in below: Furuta inequality (FI) If $A\geq B\geq 0$, then for each $r\geq 0$, $(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}})^{\frac{1}{q}}\geq(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}}$ and $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{1}{q}}\geq(B^{\frac{r}{2}}B^{p}B^{\frac{r}{2}})\vec{q}1$ hold for $p\geq 0$ and $q\geq 1$ with $(1+r)q\geq p+r$ By using the mean theoretic notation,the Furuta inequality has the following expression by virtue of (LH): (FI) If $A\geq B>0$, then $A^{-r}\#_{\overline{p}+r}1\pm rb^{p}\leq A$ for $p\geq 1$ and $r\geq 0$ Moreover, to make a simultaneous extension of both (FI) and (AH), Furuta added variables as in the extension of (LH) to (FI) Actually he established so-called grand Furuta inequality, simply (GFI) It is sometimes said to be generalized Furuta inequality, [3], [6] and [9]

36 Grand Furuta inequality (GFI) If $A\geq B>0$ and $t\in[0,1]$, then $[A^{\frac{r}{2}}(A^{-\frac{t}{2}}B^{p}A^{-\frac{t}{2}})^{s}A^{\frac{r}{2}}]^{\frac{1-t+r}{(p-t)\epsilon+r}}\leq A^{1-t+r}$ holds for $r\geq t$ and $p,$ $s\geq 1$ It is easily seen that (GFI) for $t=1,$ $r=s$ $\Leftrightarrow(AH)$ (GFI) for $t=0,$ $(s=1)\leftrightarrow(fi)$ Based on an idea of Furuta inequality, we proposed two variables version of Ando-Hiai inequality, [4] and [5] Ando-Hiai inequality(gah) For $\frac{generalized}{then}$ $A,$ $B>0$ and $\alpha\in[0,1]$, if, $A\#_{\alpha}B\leq I$ $A^{r} \#\frac{\alpha r}{\alpha r+(1-\alpha)s}b^{s}\leq I$ for $r,$ $s\geq 1$ It is obvious that the case $r=s$ in (GAH) is just Ando-Hiai inequality Now we consider two one-sided versions of (GAH): (1) For $A,$ $B>0$ and $\alpha\in[0,1]$, if $A\#_{\alpha}B\leq I$, then $A^{r} \#\frac{\alpha r}{\alpha r+1-\alpha}b\leq I$ $r\geq 1$ (2) For $A,$ $B>0$ and $\alpha\in[0,1]$, if $A\#_{\alpha}B\leq I$, then $A \#\frac{\alpha}{\alpha+(1-\alpha)s}b^{8}\leq I$ $s\geq 1$ It is known in [5] that (1) and (2) are equivalent and they are equivalent to (FI) Furthermore generalized Ando-Hiai inequality (GAH) is understood as the case $t=1$ in (GFI): \S 2 Generalisation of Seo s result Recently Seo showed the following reverse inequality of (AH) in [8] Theorem S Let A,B be positive invertible operators Then $A\#_{\alpha}B\leq I\Rightarrow A^{r}\neq_{\alpha}B^{r}\leq\Vert(A\neq_{\alpha}B)^{-1}\Vert^{1-r}I$ $(0\leq r\leq 1)$ Thus we give a generalization of Theorem S As a matter of fact, we show the following theorem Theorem 1 Let A, B be positive invertible operators and $\alpha\in[0,1]$ Then $A \#_{\alpha}b\leq I\Rightarrow A^{r}\#\frac{\alpha}{\alpha r+(1-\alpha)\iota}b^{s}\leq\vert(a\#_{\alpha}b)^{-1}\vert^{\frac{\alpha(r-s)+(1-r)\epsilon}{\alpha r+(1-\alpha)\epsilon}}i$ $(0\leq r, s\leq 1)$

37 To prove this, we need some lemmas $\underline{lemma2}$ (Araki-Cordes inequality) $\Vert A^{p}B^{p}A^{p}\Vert\leq\Vert ABA\Vert^{p}$ for $A,$ $B\geq 0$ and $0\leq p\leq 1$ It is well-known that Lemma 2 is equivalent to (LH), and so the following lemma is regarded as a reverse of both (LH) and Lemma 2 Lemma 3 If $A\geq B>0$, then $\Vert A^{\epsilon e}2b^{-p}a2\vert B^{p}\geq A^{p}$ $(0\leq p\leq 1)$ proof $A\geq B>0$ implies $A^{p}\geq B^{p}$ for all $0\leq p\leq 1$ and then $I\geq A^{-ee}2B^{p}A^{-}2$ $\geq$ $\Vert A^{\epsilon e}2b^{-p}a2\vert^{-1}$ Hence we have $\Vert A^{\epsilon e}2b^{-p}a2\vert B^{p}$ $\geq$ $A^{p}$ Finally, we cite a convenient formula on exponent of operators $\underline{lemma4}$ Let A, B be an invertible operators Then $(BAB^{*})^{r}=BA^{\frac{1}{2}}(A^{\frac{1}{2}}B^{*}BA^{\frac{1}{2}})^{r-1}A^{\frac{1}{2}}B^{*}$ $(r\in R)$ We prove Theorem 1 in the below Proof of Theorem 1 If we put $C=A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ then the assumption $A\#_{\alpha}B\leq I$ implies $C^{\alpha}\leq A^{-1}$ By Lemma 3, we have $A^{r}=A^{\frac{1}{2}}A^{r-1}A^{\frac{1}{2}}\leq\Vert A^{-\frac{1-r}{2}C^{-\alpha(1-r)}A^{-\frac{1-r}{2}}}\Vert A^{\frac{1}{2}}C^{\alpha(1-r)}A^{\frac{1}{2}}$ In addition,by Lemma 2, we have $A^{r}\leq\Vert A^{-\frac{1}{2}}C^{-\alpha}A^{-\frac{1}{2}}\Vert^{1-r}A^{\frac{1}{2}}C^{\alpha(1-r)}A^{\frac{1}{2}}$ $C^{-\frac{1}{2}}$ On the other hand, multiplying on both sides of $C^{\alpha}\leq A^{-1}$, we have $C^{\alpha-1}\leq(C^{\frac{1}{2}}AC^{\frac{1}{2}})^{-1}$

38 We apply $th$ to Lemma 3 Namely we have $B^{s}$ $(A^{\frac{1}{2}}CA^{\frac{1}{2}})^{s}$ $A^{\frac{1}{2}}C^{\frac{1}{2}}(C^{\frac{1}{2}}AC^{\frac{1}{2}})^{s-1}C^{\frac{1}{2}}A^{\frac{1}{2}}$ by Lemma 4 $\Vert(C^{\frac{1}{2}}AC^{\frac{1}{2}})^{-\frac{1-s}{2}}C^{-(\alpha-1)(1-\epsilon)}(C^{\frac{1}{2}}AC^{\frac{1}{2}})^{-\frac{1-s}{2}}\Vert A^{\frac{1}{2}}C^{\frac{1}{2}}C^{(\alpha-1)(1-s)}C^{\frac{1}{2}}A^{\frac{1}{2}}$ $\Vert zz\vert^{1-s}a^{\frac{1}{2}}c^{\frac{1}{2}}c^{(\alpha-1)(1-\epsilon)}c^{\frac{1}{2}}a^{\frac{1}{2}}$ Let $r(a)$ be the spectral radious of A Then we have $\Vert(C^{\frac{1}{2}}AC^{\frac{1}{2}})^{-\frac{1}{2}}C^{-(\alpha-1)}(C^{\frac{1}{2}}AC^{\frac{1}{2}})^{-\frac{1}{2}}\Vert$ $r((c^{\frac{1}{2}}ac^{\frac{1}{2}})^{-1}c^{-(\alpha-1)})$ $=r(a^{-1}c^{-\alpha})$ $r(a^{-\frac{1}{2}}c^{-\alpha}a^{-\frac{1}{2}})$ $\Vert A^{-\frac{1}{2}}C^{-\alpha}A^{-\frac{1}{2}}\Vert$, so that $B^{\epsilon}\leq\Vert A^{-\frac{1}{2}}C^{-\alpha}A^{-\frac{1}{2}}\Vert^{1-s}A^{\frac{1}{2}}C^{(\alpha-1)(1-s)+1}A^{\frac{1}{2}}$ Therefore, it follows that $A^{r} \#\frac{\alpha r}{\alpha r+(1-\alpha)*}b^{s}$ $\{\Vert A^{-\frac{1}{2}}C^{-\alpha}A^{-\frac{1}{2}}\Vert^{1-r}A^{\frac{1}{2}}C^{(1-r)\alpha}A^{\frac{1}{2}}\}$ $\#\frac{\alpha r}{\alpha r+(1-\alpha)e}\{\vert A^{-\frac{1}{2}}C^{-\alpha}A^{-\frac{1}{2}}\Vert^{1-s}A^{\frac{1}{2}}C^{(\alpha-1)(1-s)+1}A^{\frac{1}{2}}\}$ $\Vert A^{-\frac{1}{2}}C^{-\alpha}A^{-\frac{1}{2}}\Vert^{\frac{\alpha(r-\epsilon)+(1-r)\epsilon}{\alpha\tau+(1-\alpha)s}}A^{\frac{1}{2}}\{C^{(1-r)\alpha}\#\frac{\alpha r}{\alpha r+(1-\alpha)\epsilon}c^{(\alpha-1)(1-s)+1}\}a^{\frac{1}{2}}$ by $ax\neq_{\gamma}by=a^{1-\gamma}b^{\gamma}x\#y$ $\Vert A^{-\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{-\alpha}A^{-\frac{1}{2}}\Vert^{\frac{\alpha(r-\epsilon)+(1-r)\epsilon}{\alpha\tau+(1-a)s}}A^{\frac{1}{2}}C^{\alpha}A^{\frac{1}{2}}$ $\Vert\{A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\alpha}A^{\frac{1}{2}}\}^{-1}\Vert^{\frac{\alpha(r-s)+(1-r)s}{\alpha r+(1-\alpha)e}}(a\#_{\alpha}b)$ $\Vert(A\#_{\alpha}B)^{-1}\Vert^{\frac{\alpha(r-\epsilon)+(1-r)s}{\alpha r+(1-\alpha)\epsilon}}i$ Hence the proof is complete Remark Theorem $S$ is obtained by putting $r=s$ in Theorem 1

39 REFERENCE 1 TAndo, Topics on Operator Inequalities, Lecture notes (mimeographed), Hokkaido Univ, Sapporo, 1978 2 TAndo and FHiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl, 197,198 (1994), 113-131 3 MFujii and EKamei, Mean theoretic approach to the grand Furuta inequality, Proc Amer Math Soc, 124 (1996), 2751-2756 4 MFujii and EKamei, Ando-Hiai inequality and Furuta inequality, Linear Algebra Appl, 416 (2006), 541-545 5 MFujii and EKamei, Variants of Ando-Hiai inequality, Operator Theory: Adv Appl, 187 (2008), 169-174 6 MFujii, AMatsumoto and RNakamoto, A short proof of the best possibility for the grand Furuta inequality, J Inequal Appl, 4 (1999), 339-344 7 FKubo and TAndo, Means of positive linear operators, Math Ann 246 (1980), 205-224 8 YSeo On a reverse of Ando-Hiai inequality Banach J Math Anal4(2010), 87-91 9 TYamazaki, Simplified proof of Tanahashi s result on the best possibility of generalized Furuta inequality, Math Inequal Appl, 2 (1999), 473-477