The Gaia mission and the variable objects

Similar documents
Studies of Peculiar Black Holes with Gemini Telescopes

Variable stars with LSST

International Science Development Teams (ISDT) Time-domain Science. Masaomi Tanaka (National Astronomical Observatory of Japan)

Complete Classification Conundrum

Standard candles in the Gaia perspective

arxiv: v1 [astro-ph.sr] 25 Apr 2018

Igor Soszyński. Warsaw University Astronomical Observatory

Transient Astronomy with the Gaia Satellite

arxiv: v1 [astro-ph] 21 Dec 2007

Building the cosmic distance scale: from Hipparcos to Gaia

468 Six dierent tests were used to detect variables, with dierent sensitivities to light-curve features. The mathematical expression for the limiting

Gaia: a new vision of our Galaxy and our neighbours

Classification of CoRoT Exofield Light Curves

arxiv: v1 [astro-ph] 12 Nov 2008

arxiv: v2 [astro-ph.sr] 19 Jul 2011

Astronomy and Astrophysics

Results of the OGLE-II and OGLE-III surveys

ASTR STELLAR PULSATION COMPONENT. Peter Wood Research School of Astronomy & Astrophysics

The BRITE satellite and Delta Scuti Stars: The Magnificent Seven

MASS FUNCTION OF STELLAR REMNANTS IN THE MILKY WAY

ECLIPSING BINARIES: THE ROYAL ROAD. John Southworth (Keele University)

Science Alerts from GAIA. Simon Hodgkin Institute of Astronomy, Cambridge

List of submitted target proposals

Simulations of the Gaia final catalogue: expectation of the distance estimation

Pulsating stars plethora of variables and observational tasks

Variability Analysis of the Gaia data

16th Microlensing Season of the Optical Gravitational Lensing Experiment

Photometric variability of luminous blue variable stars on different time scales

Chapter 9. Stars. The Hertzsprung-Russell Diagram. Topics for Today s Class. Phys1411 Introductory Astronomy Instructor: Dr.

Stellar Variability in a Survey of Field Stars

arxiv: v1 [astro-ph.im] 13 Oct 2016

Gaia: Mapping the Milky Way

Intrinsic variable types on the Hertzsprung Russell diagram. Image credit: Wikipedia

Rømer Science Mission Plan

From Gaia frame to ICRF-3 3?

Frequency estimation uncertainties of periodic signals

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1

Gaia Status & Early Releases Plan

Gaia, LSST and binaries

PLATO Follow-up. Questions addressed. Importance of the follow-up. Importance of the follow-up. Organisa(on*&*Progress*Report

Outline. ESA Gaia mission & science objectives. Astrometric & spectroscopic census of all stars in Galaxy to G=20 mag.

arxiv:astro-ph/ v1 15 Nov 2005

Lecture 10. Advanced Variable Star Stuff. March :00 PM BMPS 1420

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical

Tidal Disruption Events in OGLE and Gaia surveys

Period Analysis of AAVSO Visual Observations of 55 Semiregular (SR/SRa/SRb) Variable Stars

The Three Dimensional Universe, Meudon - October, 2004

Microlensing towards the Galactic Centre with OGLE

Massive OB stars as seen by Gaia

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

White dwarf populations. Gijs Nelemans Radboud University Nijmegen

Open Research Online The Open University s repository of research publications and other research outputs

arxiv: v1 [astro-ph.im] 23 Apr 2014

Gaia Data Processing - Overview and Status

Physics Lab #6: Citizen Science - Variable Star Zoo

Science Olympiad Astronomy C Division Event. National Cathedral School Invitational Washington, DC December 3 rd, 2016

Microvariability of Red Giant Stars

Selection of stars to calibrate Gaia

The Plato Input Catalog (PIC)

Asterosismologia presente e futuro. Studio della struttura ed evoluzione delle stelle per mezzo delle oscillazioni osservate sulla superficie

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

GREAT. Kick-off meeting

Pan-Planets with PANSTARRS1. And : CfA, John Hopkins Uni., UK Consortium, Centr. Uni. Taiwan

Observations of Pulsating Stars

LANDOLT-BORNSTEIN. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik Neue Serie Gesamtherausgabe: K.- H. Hellwege

Chapter 12 Stellar Evolution

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Asteroseismology in Action: Probing the interiors of EHB stars

arxiv:astro-ph/ v1 25 Mar 2003

Delta Scuti stars: Observational aspects

arxiv: v1 [astro-ph.ep] 4 Nov 2014

THE GALACTIC BULGE AS SEEN BY GAIA

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Reanalysis of the OGLE-I Observations with the Image Subtraction Method. I. Galactic Bar Fields MM1-A, MM1-B, MM7-A, and MM7-B 1

Science Olympiad Astronomy C Division Event National Exam

Delaware Asteroseismic Research Center. Asteroseismology with the Whole Earth Telescope (and More!)

Gaia: algorithms for the external calibration

Variable Stars South. Who we are What we do. 2

Recent Researches concerning Semi-Regular Variables

Synergies between E-ELT and space instrumentation for extrasolar planet science

arxiv: v1 [astro-ph.ep] 20 Nov 2012

The cosmic distance scale

Compact Pulsators Observed by Kepler

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars

The overture to a new era in Galactic science: Gaia's first data release. Martin Altmann Centre for Astrophysics of the University of Heidelberg

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Mira variables They have very regular light curves, with amplitude V > 2.5 m, and periods Π > 100 days.

Gaia. Stereoscopic Census of our Galaxy. one billion pixels for one billion stars

GAIA: SOLAR SYSTEM ASTROMETRY IN DR2

The global flow reconstruction of chaotic stellar pulsation

Astr As ome tr tr ome y I M. Shao

Gaia: Astrometric performance and current status of the project

Exoplanetary transits as seen by Gaia

Outline. Go over AGN problem, again, should be rotating BH Go over problem 6.6 Olber's paradox Distances Parallax Distance ladder Direct checks

Variability of β Cephei and SPB stars

CIRCULAR No JULY

New measurements and analysis of the β Cephei star V909 Cassiopeiae

THE CONNECTION BETWEEN DELTA SCUTI STARS AND CLOSE BINARY PARAMETERS A THESIS SUBMITTED TO THE GRADUATE SCHOOL

Transcription:

The Gaia mission and the variable objects Laurent Eyer, N.Mowlavi, M.Varadi, M.Spano, Observatoire de Genève, Suisse G.Clementini, Université de Bologne, Italie Lundi, 29 Juin 2009 Kursaal Besançon, France

An attempt to organise the variable celestial objects Variability Tree Asteroids Extrinsic Intrinsic AGN Rotation Eclipse Stars Stars Microlensing Eclipse Rotation Eclipse Eruptive Cataclysmic Pulsation Secular Asteroid occultation EA Eclipsing binary EB Credit : L. Eyer & N. Mowlavi (03/2009) EW Planetary transits ELL FKCOM Single red giants β Per, α Vir SXA SX Arietis MS (B0-A7) with strong B fields ACV RCB Binary red giants α 2 Canes Venaticorum MS (B8-A7) with strong B fields BY Dra RS CVn DY Per UV Ceti Red dwarfs (K-M stars) FU PMS Be stars WR GCAS ZAND Symbiotic SN Supernovae LBV S Dor SPBe λ Eri N Novae ACYG α Cygni Hot OB Supergiants β Cephei UG Dwarf novae BCEP Slowly pulsating B stars PG 1159 (DO,V GW Vir) He/C/O-WDs SPB V361 Hya (EC14026) short period sdb V1093 Her (PG1716+426, Betsy) long period sdb V777 Her (DBV) He-WDs SXPHE SX Phoenicis PV Tel He star ZZ Ceti (DAV) H-WDs PMS δ Scuti DST δ Scuti Solar-like roap Photom. RR RR Lyrae GDOR FG Sge Sakurai, V605 Aql γ Doradus L SARV Small ampl. red var. CEP δ Cepheids SR Irregulars RV Period R Hya (Miras) δ Cep (Cepheid) M CW Miras Semiregulars RV Tau (W Vir) Type II Ceph. Gaia will detect most variable types on this tree

HR diagram for variable stars Gaia: Imagine 10-20 million variable stars in this HR-diagram Precise statistical description of variable types Precise position of instability strips A.Gautschy 2008

Variable stars in 12 Colour-Magnitude Diagram Variable stars Eclipsing Be Cepheids:[Fund][1st Ov][2nd Ov] RRLyr:[rrab][rrc][rrd] [rre] Ellipsoidal Lpv (Long Period Variables) LMC OGLE data 14 Gaia: 1) Full description of HR 16 diagram (parallax) 2) better precision (detection of many additional types) Ecl. Bin. EW RV Tau 18 3) simultaneous data in G, BP, RP 4) Radial Velocities R CrB 20 V4334 Sgr FG Sge Added secular evolution 22 0 2 v-i 4 Spano et al 2009

Fraction of variables from some surveys Hipparcos satellite: 3.3 years, 118,204 stars ASAS 1-2: 3 years, 140,000 stars 9.7 % variable stars Gaia: 10%? =100 million variables! 2.9 % variable stars OGLE-II: ~3-4 years, 40 million stars 0.7 % variable stars MOST satellite (J.Matthews, private communication) 20 % variable stars CoRoT satellite, 2.5 years, 120,000 stars (Debosscher s PhD Thesis) 40 % variable stars Kepler satellite, 3.5 years, 100,000 stars? % variable stars (a majority of variable stars?)

The Gaia mission: Observed Objets 1 billion stars (~100 million variable objets) 1 million galaxies -astrometry, photometry -spectro-photometry ~80 (40-250) measurements over 5 years 0.5 million QSO 0.3 million asteroids of our solar system mostly main belt asteroids -Radial Velocity Spectrometer ~40 (20-120) measurements over 5 years for objects brighter than G=14-15

The DPAConsortium: the global view Two main concepts: 1. Coordination Units 2. Data Processing Centres CU2 Simulation CU1 Architecture ESAC/BPC/OAOT CU3 Astrometry BPC/CNES CU4 Objects CU5 Photometry CU6 Spectroscopy CU7 Variability CU8 A.P. CNES Cambridge CNES ObsGE/ISDC CNES 385 people

CU7 Variability Analysis functional analysis

Study of Period search algorithm (J.Cuypers) Hipparcos data

CU7 Variability Analysis functional analysis

Specific Object Studies N.Mowlavi (ObsGe/ISDC)

Gaia Focal Plane 0.7 deg x0.7 deg

The Gaia photometric precision G-band In the G band transit photometry 20 mmag at G=20 Limiting magnitude of Gaia ~1 mmag at 10<G<14 per ccd observation per transit (9 CCDs) end-of-mission (80 observ.) C. Jordi modified by M.Varadi

The Gaia mission sampling properties Rotation of the satellite 6 hours, precession in 63 days Preceding-Following Field of View: 1h46 Following to Preceding FoV: 4h14 Gaps of about 30 days

A Number comparison of field oftransits over 5 years time differences and spectral windows

A comparison of time differences and spectral windows

Period recovery rate for strictly period signals 1. Signal(t)= A sin(2 π ν t + φ) + noise 2. Two parameters: a) S/N ratio = 0.75 b) Period = 1/ν = 0.2 day 3. Gaia sampling 4. Period search algorithm determine the success rate Aitoff projection in Ecliptic coordinates 90 (very defavorable case) 180-180 -90 0 20 40 60 80 100 Percentage Eyer & Mignard 2005

Period recovery rate: exploring the parameter space Frequency cycle/day 1 millimag error 1.3 millimag signal recovered 97-100 % Normalised S/N = sqrt(nmes/80) S/N Eyer & Mignard 2005

More complex light curves: Simulated ZZ Ceti stars (pulsating white dwarfs) Simulation of a typical ZZ Ceti star (properties derived from the star GD29-38) Work done with Stefan Jordan (Heidelberg), code re-written by M.Varadi

Caveat: Pulsation assumed stable Analysis of simulated time series of GD29-38 - multiperiodic signal + noise - 5 year long data set - Gaia sampling (AGISLab) 82*9=738 per-ccd data 2 frequencies with highest amplitude can be recovered correct period recovered Gaia Goal: Correct detection of such objects with possibilty main period & determination of luminosity

Transient variable: Microlensing and Supernovae 1) Microlensing: L. Wyrzykowski 1324 out of 1988 microlensing events from OGLE with at least one measurement within lensing event event duration > 30 days: rate is 93% OGLE Bulge Microlensing events D.Evans, I.Lecoeur, L.Eyer Algorithm of microlensing detection, high recovery rate on OGLE-II data 2) Supernovae (Gilmore & Belokurov): 6,000 to G=19 about 1/3 before maximum light

Ground based Observations Within Gaia Data Processing and Analysis Consortium (DPAC): Help to prepare the data reduction GBOG (Ground-Based Observations for Gaia, Coordinated by Caroline Soubiran) CU7: Use of HAT, SDSS, Hipparcos, OGLE, CU2; Super- Verify-Validate the data analysis Macho, CoRoT,... - CU5 for the Alert system - CU7 Scientific Community: Scientific exploitation (for example GREAT, Gaia Research for European Astronomy Training), following - Scientific follow-up of alerts, announcements - Catalogue releases Telescopes of 1m-2m, 2m-4m are valuable for the Gaia validation & science

Telescopes that could be used for CU7 Validation Onderjov Obs. Koubsky/Houdec 0.6-2m L.Figl Obs. Lebzelter 1-1.5m Castelgrande Obs. Ripepi 1.5m La Silla Chile Eyer Euler 1.2m La Silla Chile Koubsky Danish 1.5m CTIO, Chile Lebzelter SMARTS 0.9-1.5m La Palma Eyer Mercator 1.2m LaionaObs. Clementini 0.6-1m Pic du midi Shultheis 1-2m Pisykesteto Obs. Szabados 1m Maidanak Obs. Ibrahimov 2*0.6-1-1.5m

Ground based observations Establish: List of (planned) instruments attached to the telescope the relevance for Gaia validation and science Importance for the future of telescopes

FIN! Merci pour votre intérêt