Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

Similar documents
Topology from the materials perspective

Heusler 4.0: Tunable Materials

Emergent topological phenomena in antiferromagnets with noncoplanar spins

arxiv: v2 [cond-mat.mtrl-sci] 4 Jan 2018

From colossal to zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

1. Chiral anomaly in Na 3 Bi and the half-heusler GdPtBi 2. Thermopower of Weyl fermions 3. Prelim results on nonsymmorphic semimetal KHgSb

arxiv: v1 [cond-mat.str-el] 23 Jun 2015

Ferromagnetism and Anomalous Hall Effect in Graphene

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Anisotropic Magnetic Structures in Iron-Based Superconductors

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010

Collective modes and transport In Weyl semimetals. Dima Pesin, University of Utah, Salt Lake City, UT, USA

Talk 2: Boulder Summer School, July 2016 Dirac and Weyl Semimetals and the chiral anomaly

Skyrmion Dynamics and Topological Transport Phenomena

Antiferromagnetic Textures

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Spinon magnetic resonance. Oleg Starykh, University of Utah

Dirac and Weyl fermions in condensed matter systems: an introduction

Introduction to Heusler compounds: From the case of Fe 2 VAl

Weyl and Transport. Claudia Felser. Nature

Weyl fermions and the Anomalous Hall Effect

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal

Large anomalous Hall effect driven by non-vanishing Berry curvature in non-collinear antiferromagnetic Mn 3 Ge

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Topological Insulators

Emergent Frontiers in Quantum Materials:

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

Topological response in Weyl metals. Anton Burkov

Topological Insulators and Ferromagnets: appearance of flat surface bands

Introductory lecture on topological insulators. Reza Asgari

Chiral Majorana fermion from quantum anomalous Hall plateau transition

Electron Correlation

Thermal Hall effect of magnons

Unusual ordered phases of magnetized frustrated antiferromagnets

IRG-1 CEM CENTER FOR EMERGENT MATERIALS SPIN-ORBIT COUPLING IN CORRELATED MATERIALS: SEARCH FOR NOVEL PHASES AND PHENOMENA

Berry Phase Effects on Electronic Properties

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

MOMENT Materials for Optical, Magnetic, and Energy Technologies

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

Recent developments in spintronic

Mesoscopic Spintronics

Resistivity studies in magnetic materials. Makariy A. Tanatar

Material Science II. d Electron systems

arxiv: v1 [cond-mat.mtrl-sci] 11 Nov 2012

Magnetism in Condensed Matter

3D topological insulators and half- Heusler compounds

Colossal magnetoresistance:

Berry Phase Effects on Charge and Spin Transport

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Topological Heterostructures by Molecular Beam Epitaxy

Dirac fermions in condensed matters

Symmetry Protected Topological Insulators and Semimetals

Quantum magnetism and the theory of strongly correlated electrons

Single crystal growth and basic characterization of intermetallic compounds. Eundeok Mun Department of Physics Simon Fraser University

Weyl semi-metal: a New Topological State in Condensed Matter

Topological Insulators

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Nov 2003

Symmetric Surfaces of Topological Superconductor

Transition Elements. pranjoto utomo

Topological Kondo Insulators!

Graphite, graphene and relativistic electrons

SOLID STATE CHEMISTRY

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

Quantum anomalous Hall states on decorated magnetic surfaces

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Manipulation of interface-induced Skyrmions studied with STM

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

First-principles study of the structural stability of Mn 3 Z (Z=Ga, Sn and Ge) Heusler compounds

Superconductivity and Magnetism in (Tl,K,Rb)Fe x Se 2. Minghu Fang ( 方明虎 ) Zhejiang University, Hangzhou , China

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope

Advanced Lab Course. Tunneling Magneto Resistance

Quantum Spin Liquids and Majorana Metals

Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 20 (T = Rh and Ir)

Supplementary Figures

Antiferromagnetic Spintronics

Physics in two dimensions in the lab

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Contents. Acknowledgments

Weyl semimetals from chiral anomaly to fractional chiral metal

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Competing Ferroic Orders The magnetoelectric effect

Weyl semimetals and topological phase transitions

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013)

Transcription:

Heusler compounds: Tunable materials with non trivial topologies Claudia Felser

Tunability of Heusler compounds Tuning the band gap Tuning spin orbit coupling Trivial and topological Heusler Adding spins half metals,magnetic semiconductors Weyl semimetals Localized and delocalized spins Tuning the magnetic sublattices ferro to ferri: Compensated ferrimagnets Centro and non-centro symmetric Weyl Adding anisotropy lattice distortion via van Hove and Jahn Teller In and out of plane magnetization Non collinear spin structures and frustration Dzyaloshinskii-Moriya Berry phase in antiferromagnets Skyrmions

Predicting topological insulators ScNiSb LaPtBi LaPtBi S. Chadov et al., Nat. Mater. 9 541 (2010). H. Lin et al., Nat. Mater. 9 546 (2010).

REPtBi multifunctional topologic insulators Multifunctional properties RE: La, Er Superconductivity and TI RE: Gd Magnetism and TI RE: Ce Antiferromagnetism with GdPtBi complex behaviour of the Fermi surface RE: Yb Kondo insulator and TI YbPtBi is a super heavy fermion with the highest g value Pt RE Bi 10 + 3 (+f n ) + 5 = 18 S. Chadov et al., Nat. Mater. 9, 541 (2010). H. Lin et al., Nat. Mater. 9, 546 (2010).

Weyl semimetals

Weyl semimetals We need time reversal symmetry breaking (Dirac points are at high symmetry points Weyl points are not at high symmetry points) - Structural distortion - Application of magnetic field or magnetism 3D topological Weyl semimetals - breaking Time reversal symmetry by transport 1. Intrinsic anomalous Hall effect 2. Chiral anomaly S. L. Adler, Phys. Rev. 177, 2426 (1969) J. S. Bell and R. Jackiw, Nuovo Cim. A60, 47 (1969) AA Zyuzin, AA Burkov - Physical Review B (2012) AA Burkov, L Balents, PRL 107 12720 (2012)

GdPtBi is magnetic D M (µ B /f.u.) 6 4 2 µ 0 H (T) [110] B ll B ll [111] 1.4K 15 K, B ll [111] 100 K, B ll [111] GdPtBi is an Antiferromagnet below 10 K However it is very soft and the spins can be tuned in a magnetic field 0 0 10 20 30 40 µ 0 H (T) C. Shekhar et al., arxiv:1604.01641, (2016).

Weyl GdPtBi in a magnetic field C. Shekhar et al., arxiv:1604.01641, (2016). M. Hirschberger et al.,. Nature Mat. Online arxiv:1602.07219, (2016).

GdPtBi Anomalous Hall Effect In ferromagnets an AHE scales with the magnetic moment Antiferromagnet show no AHE A Hall angle of 0.2 is exceptional 1 would be the Quantum AHE T. Suzuki, & J. G. Checkelsky Nature Physics (2016) doi:10.1038/nphys3831 Shekhar et al., arxiv:1604.01641, (2016)

Chiral Anomaly neg. quadratic MR C. Shekhar et al., arxiv:1604.01641, (2016). M. Hirschberger et al. Nature Mat. online, arxiv:1602.07219, (2016).

Magnetic Heusler compounds with and without inversion L2 1 Co 2 MnAl space group 225 (Fm3"m) Mn 2 CoAl X space group 216 (F4"3m)

Weyl Semimetals Breaking symmetry E with Inversion symmetry Breaking time reversal symmetry E without k Magnetic field k

Magnetic Heusler compounds with and without inversion 26 Valence electrons Zhijun Wang, et al., arxiv:1603.00479 Guoqing Chang et al., arxiv:1603.01255 Barth et al. PRB 81, 064404 2010 Ouardi et al., Phys. Rev. Lett. 110 (2013) 100401

Magnetic Weyl semimetals in a magnetic field

Kübler, Felser, PRB 85 (2012) 012405 AHE in half metallic ferromagnets

AHE in half metallic ferromagnets Giant AHE in Co 2 MnAl s s xy xy = 1800 S/cm» 2000 S/cm calc. meas. Kübler, Felser, PRB 85 (2012) 012405 Vidal et al. APL. 99 (2011) 132509 Kübler, Felser, EPL 114 (2016) 47005. Weyl points are the origin for a large Berry phase and a Giant AHE

I4/mmm (D0 22 ) Structural distortion Fm3m (L2 1 ) P6 3 /mmc (D0 19 ) tetragonal cubic hexagonal Out of plane M STT-RAM Permanent magnets Compensated ferrimagnets Permament magnets Non-collinear magnetism Topological Hall effect Skyrmions Half metallic ferro/i Spin gapless mag. semiconductors compensated ferrim. Phase transitions Magn. shape memory Magnetocalorics CDW Multiferroics Out of plane M STT-RAM Permanent magnets Antiferromagnets: Mn 3 Ge Ferromagnets: Fe 3 Sn Anomalous Hall effect Spin reorientation transition?

Out and in plan magnetisation Wollmann et al. Phys. Rev. B 92 (2015) 064417 arxiv:1506.03735

Cubic Compensated ferrimagnet Mn 2 VGa + Fe 2 MnGa = compensated Wurmehl, et al., J. Phys. Cond. Mat. 18 (2006) 6171 Stinshoff, et al., PRL submitted

Compensated tetragonal ferrimagnet Mn Mn Mn Pt Mn Mn Nayak, et al., Phys. Rev. Lett. 110 127204 (2013) Nayak, et al., Nature Materials 14 679 (2015)

Giant coercitive field and exchange bias µ 0 H EB (T) 2.0 1.5 1.0 0.5 µ 0 H EB (T) 3 2 Mn 2.4 Pt 0.6 Ga 1 0 0 5 10 15 20 25 µ 0 H CF (T) Mn 2.5 Pt 0.5 Ga Mn 2.4 Pt 0.6 Ga µ 0 H CF =5 T µ 0 H EB (T) 1.2 0.8 0.4 Mn 1.5 Fe 1.5 Ga Mn 1.8 FeGa H CF =5 T 0.0 0 40 80 120 160 T (K) 0.0 0 100 200 300 T (K) Nayak, et al., Phys. Rev. Lett. 110 127204 (2013) Nayak, et al., Nature Materials 14 679 (2015)

Thin film of compensated ferrimagnets (a) (b) Ga MnI MnII Pt (c) S(001) F(002) Intensity [arb. unit] S(002) F(004) Mn 2.2 Pt 0.7 Ga 1.1 Mn 2.25 Pt 0.65 Ga 1.1 Mn 2.3 Pt 0.6 Ga 1.1 Mn 2.4 Pt 0.5 Ga 1.1 Mn 2.7 Pt 0.2 Ga 1.1 Mn 2.9 Ga 20 30 40 50 60 2Q [deg.] Roshnee Sahoo, et al. Advanced Materials (2016) DOI: 10.1002/adma.201602963 (2016)

Exchange bias M [µ B /f.u.] 0.8 (a) 0.4 0.0-0.4-0.8 2 K Mn 2.9 Ga x=0.2 x=0.5 x=0.6 x=0.65 x=0.7-4 -2 0 2 4-4 -2 0 2 4 µ 0 H [T] (b) 300 K 0.6 0.4 0.2 0.0-0.2-0.4-0.6 M [ µ B /f.u.] 0.6 0.4 0.2 (a) Mn 2.2 Pt 0.7 Ga 1.1 (b) Mn 2.25 Pt 0.65 Ga 1.1 1.0 0.5 r xy [µw cm] 0.0-0.2-0.4-0.6 1.0 0.5 (c) 2 K 50 K 150 K 300 K Mn 2.7 Pt 0.2 Ga 1.1 (d) Mn 2.9 Ga 0.0-0.5-1.0 1.0 0.5 r xy [µw cm] 0.0 0.0-0.5-0.5-1.0-1.0-8 -4 0 4 8-8 -4 0 4 8 µ 0 H [T] Roshnee Sahoo, et al. Advanced Materials (2016) DOI: 10.1002/adma.201602963 (2016)

Hexagonal Antiferromagnet Chen, Niu, and MacDonald, Phys. Rev. Lett., 112 (2014) 017205 Kübler and Felser EPL 108 (2014) 67001

Non-collinear AFM in metallic Mn 3 Ge The anomalous Hall conductivities are normally assumed to be proportional to magnetization Kübler and Felser EPL 108 (2014) 67001

Non-collinear AFM Mn 3 Ge/Mn 3 Sn Nayak et al. Science Advances 2 (2016) e1501870 Kiyohara, Nakatsuji, preprint: arxiv:1511.04619, Nakatsuji, Kiyohara, & Higo, Nature, doi:10.1038/nature15723

Hao Yang, et al., preprint: arxiv:1608.03404 Fermiarcs in the Weyl AFM

Anomalous Hall effect

Application Spin Hall Effect

Stuart S. P. Parkin, et al.: Magnetic Domain-Wall Racetrack Memory, Science 320 (2008) 190 194

Mn-Pt-Sn non collinear Nayak, et al., to be submitted (2016)

Skyrmions The in-focus Lorentz TEM image shows the structural microstructure (martensitic like plates). The stripes in the out of focus images correspond to the helical magnetic structure. They disappear completely for fields > 0.3 T. Skyrmions

New Fermions Fermions in condensed-matter systems are not constrained by Poincare symmetry. Instead, they must only respect the crystal symmetry of one of the 230 space groups. Hence, there is the potential to find and classify free fermionic excitations in solid-state systems that have no high-energy counterparts. What comes next? Magnetic Space groups Ag 3 Se 2 Au, Ba 4 Bi 3 Science, 353, 6299, (2016)

Summary Heusler compounds offer a tool box for topological phenomena Topological insulators Majorana Dirac Weyl Skyrmions New Fermions?

More semiconductors 26 Mn2CoAl CoMn2Al CoFeCrAl CoMnCrSi CoFeVSi 21 FeVTiSi CoVScSi FeCrScSi FeVTiSi FeMnScAl 28 26 24 21 FeMnCrSb 18 V 3 Al 28 CoFeMnSi 10 d 6 p 2 s 18

More semiconductors 26 CoMn2Al CoFeCrAl CoMnCrSi CoFeVSi FeMnCrSb 18 V 3 Al 21 FeVTiSi CoVScSi FeCrScSi FeVTiSi FeMnScAl 28 CoFeMnSi

Anomalous Hall effect Intrinisic Hall Berry phase Magnetisation? Extrinsic Hall Skew scattering Side jumps