TYPES OF HYDRIC REGIME IN THE SMALL RIVER BASINS FROM ROMANIA IN TERMS OF ANNUAL AVERAGE FLOW VARIATION

Similar documents
SEASONAL FLOW REGIME ON THE RIVERS FROM CĂLIMANI MOUNTAINS

PARTICULIARITIES OF FLOODS ON RIVERS IN THE TRANSYLVANIAN SUBCARPATHIANS AND THE NEIGHBOURING

Multi-model technique for low flow forecasting

COMPARATIVE STUDY OF THE FLOODS OCCURRED IN THE HYDROGRAPHICAL BASINS OF BISTRA MĂRULUI AND ŞUCU RIVERS (2005 and 2010)

THE MAXIMUM QUANTITIES OF RAIN-FALL IN 24 HOURS IN THE CRIŞUL REPEDE HYDROGRAPHIC AREA

The elevations on the interior plateau generally vary between 300 and 650 meters with

CLIMATE CHANGE IMPACT UPON WATER RESOURCES IN THE BUZĂU AND IALOMIŢA RIVER BASINS

RELATIVE AIR MOISTURE IN CRISUL REPEDE DRAINAGE AREA

AN EXCESSIVELY FROSTY MONTH - JANUARY 1963

SPECIFIC THERMO-PLUVIOMETRIC FEATURES ON THE WESTERN MOUNTAINS SIDE OF WESTERN CARPATHIANS

POTENTIAL EVAPOTRANSPIRATION AND DRYNESS / DROUGHT PHENOMENA IN COVURLUI FIELD AND BRATEŞ FLOODPLAIN

Flood Risk Assessment

1. Evaluation of Flow Regime in the Upper Reaches of Streams Using the Stochastic Flow Duration Curve

Climate Change Impact on Drought Risk and Uncertainty in the Willamette River Basin

Performance of two deterministic hydrological models

CONSIDERATIONS ABOUT THE INFLUENCE OF CLIMATE CHANGES AT BAIA MARE URBAN SYSTEM LEVEL. Mirela COMAN, Bogdan CIORUŢA

SNOW AS POTENTIAL FLOOD THREAT

Evaluation of the transition probabilities for daily precipitation time series using a Markov chain model

Oregon Water Conditions Report May 1, 2017

APPLICATION OF THE GRADEX METHOD TO ARID AREA OUED SEGGUEUR WATERSHED, ALGERIA

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin

Hydrological risk phenomena caused by rainfalls in the north-western part of Romania

CLIMATE CHANGE IMPACTS ON ICE REGIME OF THE RIVERS IN MONGOLIA

4. THE HBV MODEL APPLICATION TO THE KASARI CATCHMENT

Meteorological and climatic conditions of dynamics of the Anmangynda icing size

The Annals of Valahia University of Târgovişte, Geographical Series, Tome 4-5,

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program

SPATIAL TEMPORAL VARIABILITY OF MAXIMUM FLOW IN SLĂNIC, TELEAJEN AND PRAHOVA RIVER BASINS

Hydro-meteorological Analysis of Langtang Khola Catchment, Nepal

SWIM and Horizon 2020 Support Mechanism

Technical Note: Hydrology of the Lake Chilwa wetland, Malawi

Observed and near future projections of weather extremes in Romania

Climate also has a large influence on how local ecosystems have evolved and how we interact with them.

Climate. Annual Temperature (Last 30 Years) January Temperature. July Temperature. Average Precipitation (Last 30 Years)

Name of research institute or organization: Federal Office of Meteorology and Climatology MeteoSwiss

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes.

ENVIRONMENT REHABILITATION ON TROTUŞ RIVER VALLEY, AFTER THE 2004 AND 2005 FLOODS

BUCHAREST UNIVERSITY FACULTY OF GEOGRAPHY

2007: The Netherlands in a drought again (2 May 2007)

PRELIMINARY ASSESSMENT OF SURFACE WATER RESOURCES - A STUDY FROM DEDURU OYA BASIN OF SRI LANKA

CASE STUDY REGARDING SOIL TEMPERATURE IN THE PLAIN OF THE CRIȘ RIVERS

FLOOD WAVES PARAMETERS A COMPARATIVE ANALYSIS BETWEEN GALBENU AND TELEORMAN RIVERS

January 2011 Calendar Year Runoff Forecast

Disentangling Impacts of Climate & Land Use Changes on the Quantity & Quality of River Flows in Southern Ontario

2017 Fall Conditions Report

Influence Of Mild Winters On Groundwater In Bulgaria

active and discontinued climate stations in Labrador are listed in Appendix A along with

Regional temperature, precipitation and runoff series in the Baltic countries

Rong Jiang. Map of River. Table of Basic Data. China 14. Serial No. : China-14

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh

CHANGES IN THE FREQUENCY AND MAGNITUDE OF FLOODS IN THE BUCEGI MOUNTAINS (ROMANIAN CARPATHIANS)

EVALUATION AND MONITORING OF SNOWCOVER WATER RESOURCES IN CARPATHIAN BASINS USING GEOGRAPHIC INFORMATION AND SATELLITE DATA

Hydrologic Forecast Centre Manitoba Infrastructure, Winnipeg, Manitoba. FEBRUARY OUTLOOK REPORT FOR MANITOBA February 23, 2018

Preliminary Runoff Outlook February 2018

The following information is provided for your use in describing climate and water supply conditions in the West as of April 1, 2003.

Estimation of monthly river runoff data on the basis of satellite imagery

Regional Climate Variability in the Western U.S.: Observed vs. Anticipated

APPENDIX B Hydrologic Model Spring Event

Analysis of Meteorological drought condition for Bijapur region in the lower Bhima basin, India

Regional analysis of hydrological variables in Greece

TABLE OF CONTENTS. 3.1 Synoptic Patterns Precipitation and Topography Precipitation Regionalization... 11

March 1, 2003 Western Snowpack Conditions and Water Supply Forecasts

Summary of the 2017 Spring Flood

Modelling changes in the runoff regime in Slovakia using high resolution climate scenarios

A SURVEY OF HYDROCLIMATE, FLOODING, AND RUNOFF IN THE RED RIVER BASIN PRIOR TO 1870

Influence of the timing of flood events on sediment yield in the north-western Algeria

Flood Inundation Analysis by Using RRI Model For Chindwin River Basin, Myanmar

THE INCIDENCE OF HYDROLOGICAL WARNINGS AT NATIONAL LEVEL INTENSITY AND SPATIAL DISTRIBUTION IN 2009

The agroclimatic resource change in Mongolia

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( )

Geographical location and climatic condition of the

Oregon Water Conditions Report April 17, 2017

NIDIS Intermountain West Regional Drought Early Warning System February 7, 2017

COMPARATIVE ANALYSIS OF THE FLOODS FREQUENCE ON TELEORMAN AND GALBEN RIVERS

STATISTICAL ANALYSIS OF CONVECTIVE STORMS BASED ON ORADEA AND BOBOHALMA WSR-98D RADAR IN JULY

NWS FORM E-5 U.S. DEPARTMENT OF COMMERCE I HYDRO SERVICE AREA NOAA, NATIONAL WEATHER SERVICE I Indianapolis, IN MONTHLY REPORT

VARIABILITY OF PRECIPITATION AND LIQUID FLOW IN THE DESNĂŢUI HYDROGRAPHICAL BASIN

EXTREME TEMPERATURES IN THE CITY OF SĂCUENI BIHOR

Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017

Studies on adaptation capacity of Carpathian ecosystems/landscape to climate change

HEAVY PRECIPITATION IN THE FĂGĂRAŞ MOUNTAINS, 1-4 JUNE, 1988

MONITORING OF SURFACE WATER RESOURCES IN THE MINAB PLAIN BY USING THE STANDARDIZED PRECIPITATION INDEX (SPI) AND THE MARKOF CHAIN MODEL

SOUTH-WESTERN APUSENI MOUNTAINS SMALL RIVERS SEASONAL HYDROLOGICAL FLOW REGIME

Calculating the suspended sediment load of the Dez River

2015 Fall Conditions Report

GEOLOGICAL AND HYDROGEOLOGICAL CONSIDERATIONS ON THE PHREATIC AQUIFER OF THE TARNAVA MICA RIVER FLOOD PLAIN AND TERRACES

2006 Drought in the Netherlands (20 July 2006)

Report for Area Drainage Studies for 1320 MW (2x660 MW) THERMAL POWER PROJECT AT MIRZAPUR, U.P.

Anahit Hovsepyan ARMSTATEHYDROMET Second WMO/MEDARE International Workshop May 2010, Nicosia, Cyprus

A Review of the 2007 Water Year in Colorado

Watershed simulation and forecasting system with a GIS-oriented user interface

3. HYDROMETEROLOGY. 3.1 Introduction. 3.2 Hydro-meteorological Aspect. 3.3 Rain Gauge Stations

Global Cryosphere Watch (GCW) Tropical Cryosphere Workshop

Zambia. General Climate. Recent Climate Trends. UNDP Climate Change Country Profiles. Temperature. C. McSweeney 1, M. New 1,2 and G.

Hydrologic Forecast Centre Manitoba Infrastructure, Winnipeg, Manitoba. MARCH OUTLOOK REPORT FOR MANITOBA March 23, 2018

Climate Change in Colorado: Recent Trends, Future Projections and Impacts An Update to the Executive Summary of the 2014 Report

The relationship between catchment characteristics and the parameters of a conceptual runoff model: a study in the south of Sweden

THE REFERENCE EVAPOTRANSPIRATION AND THE CLIMATIC WATER DEFICIT IN THE WESTERN PLAIN OF ROMANIA, NORTH OF THE MURE RIVER

Transcription:

TYPES OF HYDRIC REGIME IN THE SMALL RIVER BASINS FROM ROMANIA IN TERMS OF ANNUAL AVERAGE FLOW VARIATION POMPILIU MIŢĂ, SIMONA MĂTREAŢĂ Key-words: small basins, types of hydric regime, Romania. Types de régime hydrique à l échelle des petits bassins hydrographiques en Roumanie. Les auteurs examinent les types de régime hydrique à l échelle des petits bassins hydrographiques sous 1 km 2, selon les données des bassins représentatifs situés dans différentes parties de la Roumanie, différenciés en fonction du régime des pluies et des facteurs naturels (géologie, relief, sol, végétation). Ces facteurs, mais surtout le régime des précipitations ont déterminé, dans le cas de ces rivières, l existence d un type particulier de variation de débit au cours de l année. Dans chaque type de régime, on a déterminé l apport qu ils ont sur l écoulement, chacun des facteurs qui le déterminent: précipitations liquides, précipitations solides, l écoulement souterrain. INTRODUCTION Knowing the type of hydric regime (flow variation / year) is a problem of major interest not only for water management, but also for other areas, e.g. social economic, energy, irrigations, etc. In view of it, the type of flow variation/year in small basins (under 1 km 2 ), was established at the hydrometric stations of representative basins. Representative basins are situated in different zones of the country with distinctive rainfall regime and natural factors (geology, relief, soil, vegetation) (Miţă 1996). The rainfall regime of rivers has a certain type of flow varation over the year (TFV). Calculations for this study covered the 1975 22 interval at the majority of hydrometric stations. 1. THE CHARACTERISTIC AVERAGE YEAR Establishing a river TFV at a certain hydrometric station, involved analysing the average monthly values of the 28 years (1975 22) take into calculation. The hydrograph of a real year (conventionally called characteristic average year) is the year in which the annual average and the monthly average discharge values come closest to the annual and multi-annual averages registered at the respective station. Therefore, it is closest to the multi-annual average / year, both in terms of quantitaty and time-distribution, registered at the respective station, and can be considered typical of the respective river. Thus, the months intervals in which highest or smallest discharges constant flow periods and discharge phases characteristic of the respective river occur are highlight. Senior researcher, National Institute of Hydrology and Water Management, Şos. Bucureşti-Ploieşti, no. 97, sect. 1, Bucharest, pompiliu.mita@hidro.ro. Researcher, National Institute of Hydrology and Water Management, Şos. Bucureşti-Ploieşti, no. 97, sect. 1, Bucharest, simona_matreata@yahoo.com. Rev. Roum. Géogr./Rom. Journ. Geogr., 54, (1), p. 69 76, 21, Bucureşti.

7 Pompiliu Miţă, Simona Mătreaţă 2 For each characteristic average year established for a certain hydrometric station and therefore for each type of flow variation / year, corresponding to the respective station, quantitative determinations were made of supply sources: liquid rainfalls (1), snowmelt (z), and groundwater input (base). It was decided that the characteristic average year should be the hydrologic year (X IX) and not the calenndar year (I XII) for the cause effect analysis to have continuity (the contribution of runoff from snowmelt water). The analysis of flow distribution / year made in this paper, had in view monthly and is not daily average values, because the longer the time intervals, the more accurate the cause-effect analysis. In what concerns snowmelt runoff (for example) before showing up in discharge after a certain time; the same in the case of precipitation falling on the snow layer. The longer time-intervals blur this time-gap between cause and effect, making the analysis between the two factors more reliable. 2. SUPPLY SOURCES River water sources in Romania are rain, snow, phreatic and deep waters. Supply inputs come from superficial sources and groundwater sources. Establishing groundwater supply sources meant dividing the daily average hydrograph corresponding to the characteristic average year. Separating groundwater supply from superficial supply is graphically represented by a curve which runs through summer and winter minima and through the final points of flood decrease curves (Fig. 1). In this way, the average monthly groundwater-produced drained layer was calculated.,8,7,6,5 Q(mc/s),4,3 Volume from surface supply: liquid precipitation and snowmelt,2,1 Volume from groundwater supply 3 6 9 12 15 18 21 24 27 3 33 36 Fig. 1 Hydrograph separation of groundwater supply. Separating groundwater supply from the superficial supply allowed for the calculation of the layer drained by the monthly average groundwater (Fig. 2).

3 Types of hydric regime in the river basins from Romania 71 3 25 hs base: groundwater contribution hs base (mm) 2 15 1 5 T(months) Fig. 2 Monthly runoff variation of groundwater supply. Extracting the layer drained by groundwater supply from the total drained layer (Fig. 3a) the layer drained by superficial supply could be obtained (liquid rainfall and snowmelt) (Fig. 3b). 3 25 2 hs total (mm) 15 1 5 3 25 T(months) hss: surface runoff contribution (liquid precipitation and snowmelt) hss = hs total- hs base a) hss (mm) 2 15 1 5 T(months) Fig. 3 Monthly variation of total runoff (a) and surface runoff (b). In order to separate the snow-related superficial supply from rain-triggered supply, the meteorological factors found at the representative meteorological stations of the basin, as well as snowmelt dynamics in the conditions of liquid precipitation fallen over the existing snow layer were taken into consideration. b)

72 Pompiliu Miţă, Simona Mătreaţă 4 Establishing the layer drained by liquid precipitation (Fig. 4c) was made by using the liquid precipitation layer (Fig. 4a) and the relations between the runoff coefficient and liquid precipitation at each hydrometric station in terms of the index value of the precipitation fallen for 1 days previously, API 1 (Fig. 4b). 25 2 ) m 15 (m P l 1 5 a) b) 14 12 1 hs l (mm) 8 6 4 2 c) Fig. 4 Monthly variation of rainfall (a), total rainfall-triggered runoff (c), and the relation between the runoff coefficient and rainfall for different API 1 (b). Establishment the snowmelt drained layer was made in two distinct stages. The first stage looked at the snowmelt water layer, hz (mm) (Fig. 5d) starting from the layer of solid precipitation fallen (Fig. 5a), hzc (mm), daily air temperature variation (Fig. 5b) and relations between the water quantity yielded by snowmelt, hz (mm) and the daily average air temperature in terms of sunshine duration, D i (Fig. 5c) (Miţă, Drăgan, 1986).

5 Types of hydric regime in the river basins from Romania 73 18 16 14 12 ) m1 (m c 8 z h 6 4 2 a) b) h z (mm) 16 14 12 1 8 6 4 2 c) Fig. 5 Monthly variation of snowfall (a), total snowmelt triggered-runoff (d), daily air temperature variation (b), and the relation between snowmelt and daily air temperature for different sunshine duration (c). d) Starting from these values and using the relations between the snowmelt-drained layer and snowmelt-related water layer (Fig. 6a) enabled determining the snowmelt drained layer (Fig. 6b). 16 14 12 hs z (mm) 1 8 6 4 2 a) Fig. 6 Relations between snowmelt-related runoff and snowpack water equivalent for different API 1 (a) and the monthly variation of snowmelt-triggered runoff (b). b) Finally, by combining these results and based on the monthly average values, the TFV was obtained, with highlight on the contribution of each constitutive factor to the flow: liquid precipitation (hs l), snowmelt water (hs z), and groundwater (hs base). For comparison s sake, the values of flow elements and of supply sources were expressed in terms of layer (mm and %). The results obtained for four representative basins are illustrated in Fig. 7.

74 Pompiliu Miţă, Simona Mătreaţă 6 Fig. 7 Annual cycle of monthly runoff variation (mm, %) different variation types.

7 Types of hydric regime in the river basins from Romania 75 3. TYPES OF FLOW VARIATION IN THE SMALL RIVERS OF ROMANIA Flow variation types were established by taking into account the following: the size of the drained layer hs (annual values); time intervals in which characteristic drained layer values occur (highest and lowest); supply sources.a. TFV corresponding to mountain region I. In the high mountain region (over 1, m) from the West of the country (R.B. the Ieduţ), annual hs > 1, mm Highest hs values: months IV V, source: rains and snowmelt High values: months VI VIII, source: rains Lowest hs values: months XI II, source: groundwater supply II. In the high mountain area (over 1, m) from the South East of the country (R.B. the Jiul de Vest) annual hs > 1,mm Highest hs values: months IV V, source: rains and snowmelt High values: months VI VIII, source: rains Lowest hs values: months IX, XI II, source: groundwater supply III. In the high mountain area (over 9 m) from the South West of the country (the Banat Mountains) (R.B. the Sebeş) annual hs > 9 mm Highest hs values: months III IV, source: rains and snowmelt High values: months V VI, source: rains Lowest hs values: months VIII X, source: groundwater supply IV. In the high mountain area (over 1, m) from the North East of the country (R.B. the Straja, Suha, and Bistra) annual hs: 7 1, mm Highest hs values: months IV V, source: rains and snowmelt High values: months VI VIII, source: rains Lowest hs values: months XI II, source: groundwater supply V. In the high mountain area (over 1, m) from the East of the country (R.B. the Upper Trotuş) annual hs: 4 45 mm Highest hs values: month IV, source: rains and snowmelt High values: months VI VIII, source: rains Lowest hs values: months XII II, source: groundwater supply VI. In the high area from the East of the country, the Western branch of the Eastern Carpathians (over 9 m) (R.B. the Sovata) annual hs 4 45 mm Highest hs values: month V, source: rains and snowmelt High values: months VI VII, source: rains Lowest hs values: months XII II, source: groundwater supply VII. In the low area of the Apuseni Mountains, Codru-Moma, Zarand 7 8 m (R. B. the Moneasa) annual hs: 4 45 mm Highest hs values: months III IV, source: rains and snowmelt High values: months I; VI, source: rains Lowest hs values: months VII; X XI, source: groundwater supply Particularity: rain-and-snowmelt-triggered floods in January VIII. In the high mountain area (over 1, m) from the South of the country (R.B. the Upper Teleajen) annual hs: 75 8 mm Highest hs values: month IV, source: rains and snowmelt Particularity: abundant flow throughout the year

76 Pompiliu Miţă, Simona Mătreaţă 8 B. TFV corresponding to hill and plateau regions I. The hilly area from the South West of the country, altitudes 4 45 m (R.B. Amaradia Hurezani) annual hs: 15 2 mm Highest hs values: month III, source: rains and snowmelt High values: months IV VI, source: rains Lowest hs values: months VII IX; XII II, source: groundwater supply II. Hilly area from Southern Transylvania, altidues 6 65 m (R.B. the Hodoş) annual hs: 2 25 mm Highest hs values: months III IV, source: rains and snowmelt Lowest hs values: months VI VIII, source: groundwater supply III. Hilly area from the East of the country, the Central Moldavian Plateau and the Transylvanian Tableland altitudes 25 35 m (R.B. the Trebeş, Tinoasa Ciurea, and Comlod) annual hs: 1 15 mm Highest hs values: months III IV, source: rains and snowmelt Lowest hs values: months VII VIII; XII II Particularities: no groundwater contribution for F<3 km 2 C. TFV corresponding to plain regions I. The West Plain and the Romanian Plain, 12 15 m altitudes (R.B. the Varieş, Tinoasa and Vedea) annual hs: 2 3 mm Highest hs values: month IV, source: rains and snowmelt High values: months I II, source: rains and snowmelt Lowest hs values: months VI VIII Particularity: no groundwater contribution at F<15 2 km 2 censed by drying up phenomena 4. CONCLUSIONS On the basis of a very accurate hydro-meteorological data-base obtained from Romania s representative basins and the corresponding processing, the types of hydric regime in small basins have been established in terms of drained layer size (annual values), time-intervals in which highest and lowest drained layer values occur as well as the contribution of supply sources (liquid precipitation, solid precipitation and groundwater flow) in mm and also in percentages. These basins are located in the main relief forms: mountains, hill-plateaus, and plains. Several sub-types have resulted as rainfall in the mountain region (for example) decreases from West to East. BIBLIOGRAPHY Miţă, P. (1996), Representative basins in Romania, INMH, Bucureşti. Miţă, P., Drăgan, I. (1986), Particularităţi privind scurgerea din topirea zăpezii, Studii de hidrologie, nr. 2, IMH, Bucureşti. Received October 3, 29