Time Series, Part 1 Content Literature

Similar documents
10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

STK4080/9080 Survival and event history analysis

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S.

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

Comparisons Between RV, ARV and WRV

Moment Generating Function

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

The Central Limit Theorem

A Note on Prediction with Misspecified Models

6/10/2014. Definition. Time series Data. Time series Graph. Components of time series. Time series Seasonal. Time series Trend

O & M Cost O & M Cost

Institute of Actuaries of India

Inference of the Second Order Autoregressive. Model with Unit Roots

Big O Notation for Time Complexity of Algorithms

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Section 8 Convolution and Deconvolution

F D D D D F. smoothed value of the data including Y t the most recent data.

BAYESIAN ESTIMATION METHOD FOR PARAMETER OF EPIDEMIC SIR REED-FROST MODEL. Puji Kurniawan M

Lecture 15 First Properties of the Brownian Motion

Please, ask questions!

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

B. Maddah INDE 504 Simulation 09/02/17

Extremal graph theory II: K t and K t,t

Processamento Digital de Sinal

State and Parameter Estimation of The Lorenz System In Existence of Colored Noise

Granger Causality Test: A Useful Descriptive Tool for Time Series Data

Additional Tables of Simulation Results

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12

Let s express the absorption of radiation by dipoles as a dipole correlation function.

Stationarity and Error Correction

Stationarity and Unit Root tests

Fresnel Dragging Explained

Comparison between Fourier and Corrected Fourier Series Methods

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

Affine term structure models

July 24-25, Overview. Why the Reliability Issue is Important? Some Well-known Reliability Measures. Weibull and lognormal Probability Plots

Unit - III RANDOM PROCESSES. B. Thilaka Applied Mathematics

Auto-correlation of Error Terms

Lecture 8 April 18, 2018

Notes 03 largely plagiarized by %khc

Lecture 9: Polynomial Approximations

FOR 496 / 796 Introduction to Dendrochronology. Lab exercise #4: Tree-ring Reconstruction of Precipitation

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Development of Kalman Filter and Analogs Schemes to Improve Numerical Weather Predictions

A Bayesian Approach for Detecting Outliers in ARMA Time Series

1 Notes on Little s Law (l = λw)

Modeling Time Series of Counts

Specification of Dynamic Time Series Model with Volatile-Outlier Input Series

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

A Two-Level Quantum Analysis of ERP Data for Mock-Interrogation Trials. Michael Schillaci Jennifer Vendemia Robert Buzan Eric Green

Localization. MEM456/800 Localization: Bayes Filter. Week 4 Ani Hsieh

Actuarial Society of India

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

Discrete-Time Signals and Systems. Introduction to Digital Signal Processing. Independent Variable. What is a Signal? What is a System?

Estimation of the Mean and the ACVF

Convergence theorems. Chapter Sampling

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

The Eigen Function of Linear Systems

LECTURE DEFINITION

Research Design - - Topic 2 Inferential Statistics: The t-test 2010 R.C. Gardner, Ph.D. Independent t-test

Calculus BC 2015 Scoring Guidelines

ELEG5693 Wireless Communications Propagation and Noise Part II

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

Using GLS to generate forecasts in regression models with auto-correlated disturbances with simulation and Palestinian market index data

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

A Note on Random k-sat for Moderately Growing k

Hadamard matrices from the Multiplication Table of the Finite Fields

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Maximum Likelihood Estimation for Allpass Time Series Models

HYPOTHESIS TESTING. four steps

Chapter 9 Autocorrelation

Chapter 11 Autocorrelation

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Chapter Chapter 10 Two-Sample Tests X 1 X 2. Difference Between Two Means: Different data sources Unrelated. Learning Objectives

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Applying the Moment Generating Functions to the Study of Probability Distributions

N! AND THE GAMMA FUNCTION

OBJECTIVES OF TIME SERIES ANALYSIS

Semiparametric and Nonparametric Methods in Political Science Lecture 1: Semiparametric Estimation

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Estimation for Parameter-Driven State-Space Space Models:

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

EGR 544 Communication Theory

Extended Laguerre Polynomials

Math 6710, Fall 2016 Final Exam Solutions

6.003: Signals and Systems

The Splice Bootstrap

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

K3 p K2 p Kp 0 p 2 p 3 p

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

Statistical Estimation

Application of Intelligent Systems and Econometric Models for Exchange Rate Prediction

Transcription:

Time Series, Par Coe - Saioariy, auocorrelaio, parial auocorrelaio, removal of osaioary compoes, idepedece es for ime series - Liear Sochasic Processes: auoregressive (AR), movig average (MA), auoregressive movig average (ARMA) - Fi of models AR, MA ad ARMA o saioary ime series - Liear models for o-saioary ime series - Predicio of ime series - Noliear aalysis of ime series wih sochasic models - Noliear aalysis of ime series ad dyamical sysems Lieraure - The Aalysis of Time Series, A Iroducio, Chafield C., Sixh ediio, Chapma & Hall, 4 - Iroducio o ime series ad forecasig, Brockwell P.J. ad Davis R.A., Secod ediio, Spriger, - No-Liear Time Series, A Dyamical Sysem Approach, Tog H., Oxford Uiversiy Press, 993 - Noliear Time Series Aalysis, Kaz H. ad Schreiber T., Cambridge Uiversiy Press, 4

physiology Real world ime series uivariae ime series mechaics elecroics oly oe ime series limied legh geophysics ecoomy o-saioariy oise

observed quaiy variable Χ Defiiios / oaios The values of he observed quaiy chage wih radomess (sochasiciy) a some small or larger degree radom variable (r.v.) Χ The observaios ake place mos ofe a fixed ime seps samplig ime For each ime poi we cosider he value x of he r.v. Χ The se of he values of x over a ime period (give i uis of he samplig ime) (uivariae) ime series x { x, x,, x } If here are simulaeous observaios of more ha oe variable mulivariae ime series We apply mehods ad echiques o he give uivariae or mulivariae ime series i order o ge isigh for he sysem ha geeraes i ime series aalysis The ime series ca be cosidered as realizaio of a sochasic or deermiisic process (dyamical sysem) X

close idex volume close idex close idex Exchage idex ad volume of he Ahes Sock Exchage (ASE) 7 ASE idex, period 985-6 ASE idex, period 7-6 5 5 4 4 3 3 86 88 9 9 94 96 98 4 6 8 ASE idex, period 8 7 8 9 5 x 5 ASE volume, period 998-8 6 4 5 8 6 3 4 5 6 7 8 9 mohs 98 99 3 4 5 6 7 8 Predicio? Wha is he idex value omorrow? The day afer? Dyamical sysem? sochasic process? Wha is he mechaism of he Greek sock marke?

Geeral Idex of Comsumer Prices Geeral Idex of Cosumer Prices (GICP) Geeral Idex of Comsumer Prices, period Ja - Aug 5 5 5 5 3 4 5 6 Tred? Seasoaliy / periodiciy? Auocorrelaio? Auoregressio? Predicio?

umber of suspos umber of suspos umber of suspos Aual suspo umbers 5 5 5 Aual suspos, period 7-7 75 8 85 9 95 5 Aual suspos, period 96-995 8 6 4 8 6 4 Aual suspos, period 9-9 9 94 96 98 Wha is he mechaism / sysem / process ha geeraes suspos? Is i a periodic sysem + oise? Is i a sochasic sysem? Is i a chaoic sysem? 96 97 98 99 Give he suspo umber for up o 995, wha is he suspo umber i 996? ad he afer? Wha will be he suspo umber i 3, 4?

suspo umber Model compariso Geuie predicio Geuie predicios of suspo daa 5 5 995 5 5 year

Wha is he geeraig sysem of a real ime series? x(i) preical EEG Real ime series ical EEG Cadidae sochasic models sochasic 3 4 5 ime i secods 3 4 5 ime i secods 4 ime idex i Cadidae deermiisic models periodic + oise low dimesioal chaos high dimesioal chaos 3 4 5 ime i secods 3 4 5 ime i secods 3 4 5 ime i secods

Drippig waer fauce (origial experime a UC Saa Cruz). x x x 3 ( x3, x) ( x, x ) The observaio of he drippig fauce shows ha for some flow velociy he drops do o ru a cosa ime iervals. Cruchfield e al, Scieific America, 986 The scaer diagram of he daa showed ha he drop flow is o radom. scaer diagram i i ( x, x ) ( xi, xi, xi ) Héo map s.4s.3s i i i observed variable x s w w i oise i i i chaos

AE idex Geeral Idex of Comsumer Prices Geeral Idex of Comsumer Prices, period Ja - Aug 5 5 No-saioariy 5 Tred? Seasoaliy / periodiciy? 5 3 4 5 6 4 Auroral Elecroje Idex 8 6 Volailiy? 4 Auocorrelaio? 5 5 5 3 35 4 45 5 ime [ mi]

AE idex AE idex 4 8 y, y,, y Auroral Elecroje Idex Variace sabilizig rasformaio Trasform Χ =T(Υ ) ha sabilizes he variace of Υ? Var[ X ] cos simple soluio: X log( Y)? 6 4 5 5 5 3 35 4 45 5 ime [ mi] 8 7 6 5 4 x, x,, x 3 5 5 5 3 35 4 45 5 ime [ mi] Logarihm rasform of Auroral Elecroje Idex Power rasform (Box-Cox): X Y Assumpio: Var[Υ ] chages as a fucio of he red μ λ Χ Var[y ] - -.5.5 Y Y log( Y ) Y Oher rasforms? 4 c 3 c c c?

AE idex f Z (z) AE idex f Y (y) AE idex f X (x) 4 Auroral Elecroje Idex 5 x -3 8 6 4 3 y ormal y, y,, y 4 5 5 5 3 35 4 45 5 ime [ mi] Logarihm rasform of Auroral Elecroje Idex 8 - -5 5 5 x.5 7.4 6 5.3. x=log(y) ormal X log( Y) 4. 3 5 5 5 3 35 4 45 5 ime [ mi] Gaussia rasform of Auroral Elecroje Idex 4 3 - - -3-4 5 5 5 3 35 4 45 5 ime [ mi] 4 6 8 y.5.4.3.. x= - (F Y (y)) ormal -4-4 z X F ( Y ) Y?

idex ime series y, y,, y Saioariy - red Tred: slow chage of he successive values of y deermiisic red: a fucio of ime μ = f() Plasic deformaio 6 S&P5 sochasic red: radom slow chage μ 4 8 6 4 8 85 87 9 9 95 97 5

Removal of red Y X. Deermiisic red : kow or esimaed fucio of ime μ = f() Example: polyomial of degree p p f () a a a p Plasic deformaio μ : mea value as fucio of (slowly varyig mea level) X Y {X } saioary Fi wih firs degree polyomial Fi wih fifh degree polyomial

close idex close idex close idex. Sochasic red 7 6 5 5 4 4 3 3 Idex of he Ahes Sock Exchage (ASE) ASE idex, period 985 -- orig orig local liear, breakpois polyomial,p= - 86 88 9 9 94 96 98 4 6 8 α. Smoohig wih movig average filer Simple filer: movig average 7 6 5 4 3 orig MA(3) MA(5) ˆ ASE idex, period 985-6 5 4 3 ASE idex, period 7-7 8 9 q y q 3 ˆ y y y q 3 3 3 j jq 86 88 9 9 94 96 98 4 6 8 "q " 4? More geeral filer: movig weighed average q ˆ ay a j j jq q jq Simple movig average: a j, j q,, q q j

close idex close idex b. Tred removal wih differecig Oe lag differece or firs differece Y Y Y ( B) Y B: lag operaor BY Y Secod order lag differece Y ( Y ) ( B)( B) Y ( B B ) Y Y Y Y If he red is locally liear, i is removed by firs differeces: Y Y Y X X aa a a a a ( ) a cosa! If he red is locally polyomial or degree p, i is removed by usig p Y? p Y p! c X [show firs: ] 4 ASE idex: firs differeces, period 7-4 ASE idex: firs differeces, period 7 - - - -4-4 -6 86 88 9 9 94 96 98 4 6 8-6 8

close idex close idex close idex close idex close idex Which mehod for red removal is bes? 6 5 4 orig local liear, breakpois polyomial,p= ASE idex, period 7-5 ASE idex dereded, period 7 - local liear, breakpois polyomial,p= 3 5-5 - 8 8 6 5 4 orig MA(3) MA(5) ASE idex, period 7-5 ASE idex dereded, period 7 - MA(3) MA(5) 3 5-5 - 8 8 Esimaio of red 5 ASE idex: firs differeces, period 7-5 -5-8

differece of logs idex relaive chage firs differece more o differecig rasform 6 4 8 6 4 y, y,, y - ime series 8 85 87 9 9 95 97 5 S&P5 8 85 87 9 9 95 97 5 5-5..5 -.5 -. -.5 -. S&P5, firs differeces S&P5, relaive chages -.5 8 85 87 9 9 95 97 5 S&P5, differece of logs..5 -.5 -. -.5 -. -.5 8 85 87 9 9 95 97 5 chage of he value x y y relaive chage of he value y y x y chage of he logarihm of he value x l y l y

umber of suspos umber of suspos Removal of seasoaliy or periodiciy Y s X s : periodic fucio of wih period d 5 5 Aual suspos, period 7 - Aual suspos 7 75 8 85 9 95 Period d ad appropriae fucio s?. kow or esimaed periodic fucio s = f() 8 6 4 8 6 4 Aual suspos, period 9-9 9 94 96 98 X Y s {X } saioary a. Esimaio of s i i=,,d from he averages for each compoe Period d is kow k / d sˆ k y i i jd k j b. Removal of periodiciy usig lag differeces of order d (d-differecig) Y Y Y ( B d ) Y d d

year cycle of GICP residual GICP GICP dereded GICP Removal of red ad periodiciy Y s X Y Y s X. Removal of red X Y s Y s. Removal of periodiciy {Χ }: ime series of residuals Firs remove red ad he periodiciy or vice versa? 5 Geeral Idex of Comsumer GICP: Liear Prices, fiperiod /-8/5 3 GICP: Residual of liear fi 5-5 - 3 4 5 6 year GICP: Year cycle esimae 3-3 3 4 5 6 3 GICP: dereded ad deseasoed - - - - -3 3 4 5 6 year o-saioary y y y saioary,,, -3 3 4 5 6 year x, x,, x Is here iformaio i he residuals?

f Y (y) f X (x) idex firs differece Y : he value of he quaiy y, y,, y ime series Time correlaio Sochasic process Y X 6 S&P5 S&P5, firs differeces 4 8 6 5 chage of he value 4-5 x y y 8 85 87 9 9 95 97 5-8 85 87 9 9 95 97 5 3 fy ( y) 3.5 x -3 Gaussia pdf superimposed o S&P5 6 5 fx ( x) Gaussia pdf superimposed o S&P5 reurs Saic descripio margial disribuio.5.5 4 3 Dyamic descripio? Time correlaio.5 5 5 -.5.5 Y X

Disribuio ad momes of a sochasic process A sochasic process ca be fully described i erms of he margial ad joi probabiliy disribuios Z f ( y) f ( y, ) Y Y margial disribuio, Z f ( y, y ) f ( y, y,, ) Y, Y Y joi disribuio of r.v.,, 3 Z f ( y, y, y ) f ( y, y, y,,, ) Y, Y, Y 3 Y 3 3 3 joi disribuio of 3 r.v. Y yf y y Firs order mome (mea) (, )d Secod order mome Ceral secod order mome Higher order momes Y Y y y f ( y, y,, )dy d y (, ) Y Y ( Y )( Y ) (, ) (, ) auocovariace The probabiliy disribuio ad momes may chage i ime

Sric-sese saioariy Saioariy The disribuios do o chage wih ime (equivalely, all momes are cosa) Z,,, 3 Z Z f ( y) f ( y, ) f ( y) Y Y Y f ( y, y ) f ( y, y ) Y, Y Y, Y f ( y, y, y ) f ( y, y, y ) Y, Y, Y 3 Y, Y, Y 3 3 cosa Z Wide-sese saioariy The firs wo momes are cosa i ime Y YY, (, ) ( ) Y Y (, ) (, ) ( ) cosa Z cosa - mea - variace - auocovariace for τ= Y () cosa variace () Y () Y

Auocorrelaio Saioary ime series X Auocovariace X X X X X ( )( ) ( ) () Variace X X Auocorrelaio () () () ( ) ( ) a a lag τ. () Noaio: () () Commes: k k ad k k ad k k Auocovariace marix Time correlaio of variables of Measures he memory of X Auocorrelaio marix X

X Basic sochasic processes X idepede ad ideically disribued r.v. (iid) P( X x, X x,, X x ) P( X x ) P( X x) P( X x ) E X whie oise (WN), o-correlaed r.v. E XX i j ij 3 Y radom walk (RW) Y Y X X X X E Y Y, Y,, Y Y X iid E Y E Y E X E X? Variace icreases liearly wih ime!

Ucorrelaed (whie oise) ad idepede (iid) observaios Chafield C., The Aalysis of Time Series, A Iroducio, 6 h ediio, p. 38 (Chaper 3): Some auhors prefer o make he weaker assumpio ha he z s are muually ucorrelaed, raher ha idepede. This is adequae for liear, ormal processes, bu he sroger idepedece assumpio is eeded whe cosiderig o-liear models (Chaper ). Noe ha a purely radom process is someimes called whie oise, paricularly by egieers. p. (Chaper ): Whe examiig he properies of o-liear models, i ca be very impora o disiguish bewee idepede ad ucorrelaed radom variables. I Secio 3.4., whie oise (or a purely radom process) was defied o be a sequece of idepede ad ideically disribued (i.i.d.) radom variables. This is someimes called sric whie oise (SWN), ad he phrase ucorrelaed whie oise (UWN) is used whe successive values are merely ucorrelaed, raher ha idepede. Of course if successive values follow a ormal (Gaussia) disribuio, he zero correlaio implies idepedece so ha Gaussia UWN is SWN. However, wih o-liear models, disribuios are geerally o-ormal ad zero correlaio eed o imply idepedece. Wei W.W.C., Time Series Aalysis, Uivariae ad Mulivariae Mehods, p. 5:.4 Whie Noise Processes A process {a } is called a whie oise process if i is a sequece of ucorrelaed radom variables from a fixed disribuio wih cosa mea (usually assumed ), cosa variace ad zero auocovariace for lags differe from.

4 X For each order p: Gaussia (ormal) sochasic process f ( x, x,, x ) X, X,, X p p is p-dimesioal Gaussia disribuio Gaussia disribuio is compleely defied by he firs wo momes sric saioariy weak saioariy Example Sochasic process: Is he process weak saioary? E[ X ] E[ A]E[si( )] X Asi( ) A r.v. E[ A] Var[ A] ~ U[, ] E[ XX ] E A si( )si( ( ) )... cos( ) The firs ad secod order momes do o deped o ime.? θ ad A idepede

ime series Sample auocovariace / auocorrelaio Sample mea x, x,, x x x ubiased esimae of he mea μ of he ime series? Sample auocovariace Aoher esimae of auocovariace Biased esimaes: ( ) ( x ) () ( ) c() ( xx x ) c x x E[ c ] ( )Var[ x] E[ c] Var[ x] c x x,,, c( ) Sample auocorrelaio r( ) r() c() r ~ N(,Var[ r ]) For large : Var[ r ] ( m m m m 4 mm ) m Var[ r ] m very large m Noaio c() c bias icreases wih he lag τ Noaio r() r Barle formula

Auocorrelaio for whie oise x, x,, x whie oise ime series, r ~ N(, )? Tes for idepedece observed saioary ime series residual ime series afer red or periodiciy removal Η : x, x,, x Hypoheses Is i iid? Η Are here correlaios? x x x is iid Η : is whie oise,,, x, x,, x Saisical Sigificace es for auocorrelaio H : H : r R r z / Rejecio regio: / z Bad of isigifica auocorrelaio: a/ x, x,, x whie oise r N(, ) for sigificace level for =.5 Η

r() Numerical Example For a ime series of observaios, he auocorrelaio for τ=,, are: 3 4 5 6 7 8 9 -.38 -.8. -.8....7 -.8.5 Assume ha he ime series is purely radom (Η :ρ=): Var[ r ].5 for =.5, we expec 95% of auocorrelaios o be i he ierval.96.96.7.39 ρ, ρ και ρ τ για τ=3,4, Example of GICP.3.. GICP residual: auocorrelaio Sigificace es Η : for each idepedely -. -. -.3 -.4 5 5 A sigificace level =.5, Η is rejeced for τ= Is here ay correlaio i he GICP ime series?

r() The Pormaeau sigificace es Q(k) A es for each lag,,k Oe es for all lags ogeher? H :,,,k Tes saisic Q: ~ k Q k r ( k ) / ( ) Box-Pierce Q r j Q rejecio regio R Q k; a Ljug-Box.3. GICP residual: auocorrelaio k 35 3 GICP residual: Pormaeau (Ljug-Box). -. Q 4.6 k ; a 8.3 5 5 -. -.3 -.4 5 5 H for τ= is rejeced 5 5 5 k

x() r() x() r() radom ime series. radom ime series: auocorrelaio.8..6.4 -.. -. 3 4 5 6 7 8 9 logisic ime series -.3 4 6 8 logisic ime series: auocorrelaio..8.5..6.5.4 -.5. -. -.5 3 4 5 6 7 8 9 A appropriae sigificace es? -. 4 6 8

close idex r() Q(k) close idex r() Q(k) close idex r() Q(k) close idex 6 5 4 3 ASE idex, period 7-7 8 9 4 3 - - ASE idex: firs differeces, period 7 - Is here correlaio i he reurs ime series of he ASE idex (ime period 7-)? Wha is he appropriae saioary ime series: firs differeces or reurs? Is here correlaio? firs differeces x y y.8.6.4. -. -.4 ASE firs differeces: auocorrelaio oliear? 5 5 X X E ASE firs differeces: Pormaeau (Ljug-Box) sample Q X (k,) -3 7 8 9 ASE idex: reurs, period 7 -.5..5 -.5 -. -.5 -. 7 8 9 ASE idex: square reurs, period 7 -..5..5 7 8 9 reurs x l y l y square of reurs x l y l y x ( x) -.6 4 6 8 ASE reurs: auocorrelaio.8.6.4. -. -.4 -.6 -.8 4 6 8.3.5..5..5 -.5 ASE square reurs: auocorrelaio -. 4 6 8 4 6 8 k ASE reurs: Pormaeau (Ljug-Box) 5 5 sample Q X (k,) 4 6 8 k 35 3 5 5 5 ASE square reurs: Pormaeau (Ljug-Box) sample Q X (k,) 4 6 8 k