Heterometallic M II Ln III (M = Co / Zn; Ln = Dy / Y) complexes with pentagonal bipyramidal 3d centres: syntheses, structures, and magnetic properties

Similar documents
Supporting Information. A family of lanthanide compounds with reduced nitronyl nitroxide. diradical: syntheses, structures and magnetic properties

Supporting Information for

From Double-Shelled Grids to Supramolecular Frameworks

Supporting Information

Supporting Information for. Remarkably high temperature spin transition exhibited by two new metal-organic frameworks

Observation of slow relaxation of the magnetization and hysteresis. loop in antiferromagnetic ordered phase of a 2D framework based on

Supporting Information

Supporting Information. Ze-Min Zhang, Lu-Yi Pan, Wei-Quan Lin, Ji-Dong Leng, Fu-Sheng Guo, Yan-Cong Chen, Jun-Liang Liu, and Ming-Liang Tong*

Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented

Supporting Information

Supporting Information

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Electronic Supplementary Information (ESI)

College of Materials Science and Engineering, Nanjing Tech University, Nanjing , P. R. China

Supporting Information. Crystal structures, magnetic and electrochemical properties of. coordination polymers based on the

Magnetic Metal-Organic Framework Exhibiting Quick and. Selective Solvatochromic Behavior Along With The Reversible

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

Electronic Supplementary Information (ESI)

Spin Transition and Structural Transformation in a

All materials and reagents were obtained commercially and used without further

Supporting Information for

Cis-Trans Isomerism Modulates the Magnetic Relaxation of. Dysprosium Single-Molecule Magnets

An Anionic Metal Organic Framework For Adsorption and. Separation of Light Hydrocarbons

Heterometallic Strategy to Achieve Large Magnetocaloric Effect. in Polymeric 3d Complexes

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Supporting Information

the multiple helices

Supporting information

Electronic Supplementary Information. Iridium(III) phosphors with bis(diphenylphorothioyl)amide ligand for

High-Connected Mesoporous Metal Organic Framework

Supporting Information

A supramoleculear self-assembled flexible open framework based on coordination honeycomb layers possessing octahedral and tetrahedral Co II geometries

Supporting Information

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004

Supporting Information

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Electronic Supplementary Information (ESI)

A water-stable zwitterionic dysprosium carboxylate metal organic. framework: a sensing platform for Ebolavirus RNA sequences

ELECTRONIC SUPPLEMENTARY INFORMATION

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

metal-organic compounds

Two cyanide-bridged Mn II -Nb IV coordination chain ferrimagnets promoted by interchain ferromagnetic interactions

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Supporting Information. Table of Contents

Zero-field slow magnetic relaxation in a uranium(iii) complex with a radical ligand

A highly luminescent and highly oxygen-sensitive Tb(III) complex with a tris-aryloxide functionalised 1,4,7-triazacyclononane ligand

Electronic Supporting Information for

Supporting Information. for. Advanced Functional Materials, adfm Wiley-VCH 2007

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Electronic Supplementary Information

Supporting Information

Hassan Osseili, Debabrata Mukherjee, Klaus Beckerle, Thomas P. Spaniol, and Jun Okuda*

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

A gadolinium(iii) complex that shows room-temperature phosphorescence in the crystalline state

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information

A hydride-ligated dysprosium single-molecule magnet

metal-organic compounds

Stabilizing vitamin D 3 by conformationally selective co-crystallization

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties

metal-organic compounds

Exploring the Surfactant Thermal Synthesis of Crystalline Functional Thioarsenates

Ordnung muss sein: heteroelement order and disorder in polyoxovanadates

Supplementary Information. Single Crystal X-Ray Diffraction

3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015)

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Supporting Information

A single crystal investigation of L-tryptophan with Z = 16

Supporting Information

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information

The solvent effect on the structural and magnetic features of bidentate ligand-capped {Co II 9[W V (CN) 8 ] 6 } Single-Molecule Magnets

Supporting Information

Impeller-like dodecameric water clusters in metal organic nanotubes

Supplementary Information

A trigonal prismatic mononuclear cobalt(ii) complex showing single-molecule magnet behavior

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013.

Electronic Supplementary Information

Supplementary data. Controlled crystallization of mixed-ligand complexes of. 1,3-bis(4-pyridyl)propane-N,N -dioxide with metal(ii) thiocyanates:

Supplementary Information

Supporting Information (SI) for the manuscript:

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

An Unusual High Thermal Stable 2D 3D Polycatenated. Fe(II) Metal-Organic Framework Showing. Guest-Dependent Spin-Crossover Behavior and High

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

metal-organic compounds

Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Supporting Information

Supporting Information. Lacunary Polytungstate Ligands

Supporting Information

Phthalocyanine-Based Single-Component

A Mixed Crystal Lanthanide Zeolite-like Metal-Organic. Framework as a Fluorescent Indicator for Lysophosphatidic. Acid, a Cancer Biomarker

Transcription:

Supporting Information for Heterometallic M II Ln III (M = Co / Zn; Ln = Dy / Y) complexes with pentagonal bipyramidal 3d centres: syntheses, structures, and magnetic properties Fu-Xing Shen, Hong-Qing Li, Hao Miao, Dong Shao, Xiao-Qin Wei, Le Shi, Yi-Quan Zhang, * Xin-Yi Wang *. State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. E-mail: wangxy66@nju.edu.cn Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China. E-mail: zhangyiquan@njnu.edu.cn 1

Table of contents Materials and Physical Measurements...4 Figure S1. Experimental and simulated powder X-ray diffraction patterns for 1 CoDy....5 Figure S2. Experimental and simulated powder X-ray diffraction patterns for 2 ZnDy....5 Figure S3. Experimental and simulated powder X-ray diffraction patterns for 3 CoY....5 Figure S4. TG curve of compound 1 CoDy at a rate of 10 K min -1 under a N 2 atmosphere....6 Figure S5. TG curve of compound 2 ZnDy at a rate of 10 K min -1 under a N 2 atmosphere....6 Figure S6. TG curve of compound 3 CoY at a rate of 10 K min -1 under a N 2 atmosphere....6 Figure S7. Crystal packing of complex 1 CoDy. Hydrogen atoms and the solvents are omitted for clarity....7 Figure S8. Crystal packing of complex 3 CoY. Hydrogen atoms and the solvents are omitted for clarity....7 Figure S9. Frequency dependence of in-phase ( ) and out-of-phase ( ) magnetic susceptibility of 1 CoDy (1 1000 Hz) measured at 2.0 K at zero field....8 Figure S10. The magnetization curves for 1 CoDy measured at 2, 3, and 5 K...9 Figure S11. The magnetization curves for 2 ZnDy measured at 2, 3, and 5 K...9 Figure S12. The magnetization curves for 3 CoY measured at 2, 3, and 5 K...9 Figure S13. Frequency dependence of the in-phase ( ) and out-of-phase ( ) magnetic susceptibilities of 2 ZnDy measured at 2.0 K in various applied fields from 0 to 4500 Oe...10 Figure S14. Frequency dependence of the in-phase ( ) and out-of-phase ( ) magnetic susceptibilities of 3 CoY measured at 2.0 K in various applied fields from 0 to 4500 Oe....10 Figure S15. Cole Cole plots of vs. of 2 ZnDy at 2.0 K under various applied dc fields. The solid lines represent the best fit of the experimental results with the generalized Debye model....11 Figure S16. Cole Cole plots of vs. of 3 CoY at 2.0 K under various applied dc fields. The solid lines represent the best fit of the experimental results with the generalized Debye model....11 Figure S17. Field dependence of the magnetic relaxation time at 2.0 K for 2 ZnDy and its fitting by τ -1 = AH 4 T +B 1 /(1 + B 2 H 2 )...12 Figure S18. Field dependence of the magnetic relaxation time at 2.0 K for 3 CoY and its fitting by τ -1 = AH 4 T +B 1 /(1 + B 2 H 2 )...12 Figure S19. Variable-temperature ac susceptibility data for 2 ZnDy collected under a 1000 Oe dc field over the frequency range of 1 to 999 Hz. The solid lines are simply guides for the eye....13 Figure S20. Variable-temperature ac susceptibility data for 3 CoY collected under a 1000 Oe dc field over the frequency range of 1 to 999 Hz. The solid lines are simply guides for the eye....13 Table S1. SHAPE analysis of the M(II) ion in complexes 1 3...14 Table S2. SHAPE analysis of the Ln(III) ion in complexes 1 3....14 Table S3. The select intramolecular distance and Angles for M II and Ln III in complexes 1 3...14 Table S4. Selected bond lengths (Å) and bond angles ( ) for compound 1 3....15 Table S5. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of compounds 2 ZnDy at 2 K under various dc fields according to the generalized Debye model...17 Table S6. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of compounds 3 CoY at 2 K under various dc fields according to the generalized Debye model...17 Table S7. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 2 ZnDy under 1.8 K-5.0 K according to the generalized Debye model....18 2

Table S8. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 3 CoY under 1.8 K-5.0 K according to the generalized Debye model...18 Table S9. Parameters fitted from the Arrhenius plots in Figure 5 considering multiple relaxation processes for 2 ZnDy and 3 CoY....19 Table S10. Wave functions with definite projection of the total moment m J > for the lowest two Kramers doublets (KDs) of individual Dy III fragments for complexes 1 CoDy and 2 ZnDy...19 Table S11. Calculated energy levels (cm 1 ), g (g x, g y, g z ) tensors and m J values of the lowest eight Kramers doublets (KDs) of individual Dy III fragment, and zero-field splitting parameters D (E) (cm 1 ), g tensors of the lowest spin-orbit state of individual Co II fragment of complexes 1 3 using CASSCF/RASSI with MOLCAS 8.2....20 Table S12. Exchange energies (cm 1 ) and main values of the g z for the lowest four exchange doublets of complex 1 CoDy....21 Reference...22 3

Materials and Physical Measurements Infrared spectra (IR) data were measured on KBr pellets using a Nexus 870 FT-IR spectrometer in the 4000 400 cm -1 range. Elemental analyses of C, H, and N were performed at an Elementar Vario MICRO analyzer. TG analyses were recorded on a NETZSCH TG209F3 thermo analyzer under N 2 atmosphere within the temperature range of 300 1000 K at a heating rate of 10 K min 1. Powder X-ray diffraction data (PXRD) were recorded at 298 K on a Bruker D8 Advance diffractometer with Mo-Kα X-ray source (λ = 0.71073 Å) operated at 40 kv and 40 ma. Magnetic susceptibility data were collected using Quantum Design SQUID VSM magnetometer on samples of crushed crystals. Direct current (dc) magnetic susceptibility measurements were performed in the temperature range of 2 300 K under an applied field of 1000 Oe. Alternative current (ac) susceptibility measurements were performed with a 2 Oe ac oscillating field in an operating frequency range of 1 1000 Hz under a dc field of 0 or 1000 Oe. Magnetization data were collected in the 0 to 70 koe field range at 2.0 K. Experimental susceptibilities were corrected for diamagnetism of the sample holders and that of the compounds according to Pascal s constants.[s1] X-ray Crystallography Single crystal x-ray crystallographic data were collected on a Bruker APEX II or APEX Duo diffractometer with a CCD area detector (Mo-Kα radiation, λ = 0.71073 Å). The APEX II program was used to determine the unit cell parameters and for data collection. The data were integrated and corrected for Lorentz and polarization effects using SAINT. Absorption corrections were applied with SADABS.[S2] The structures were solved by direct method and refined by full-matrix least-squares method on F 2 using the SHELXTL crystallographic software package.[s3] All the non-hydrogen atoms were refined anisotropic. Hydrogen atoms of the organic ligands were refined as riding on the corresponding non-hydrogen atoms. Additional details of the data collections and structural refinement parameters were provided in Table 1. Selected bond lengths and bond angles of 1 3 were listed in Table S1. 4

Figure S1. Experimental and simulated powder X-ray diffraction patterns for 1 CoDy. Figure S2. Experimental and simulated powder X-ray diffraction patterns for 2 ZnDy. 5

Figure S3. Experimental and simulated powder X-ray diffraction patterns for 3 CoY. Figure S4. TG curve of compound 1 CoDy at a rate of 10 K min -1 under a N 2 atmosphere. Figure S5. TG curve of compound 2 ZnDy at a rate of 10 K min -1 under a N 2 atmosphere. 6

Figure S6. TG curve of compound 3 CoY at a rate of 10 K min -1 under a N 2 atmosphere. Figure S7. Crystal packing of complex 1 CoDy. Hydrogen atoms and the solvents are omitted for clarity. 7

Figure S8. Crystal packing of complex 3 CoY. Hydrogen atoms and the solvents are omitted for clarity. 8

Figure S9. Frequency dependence of in-phase ( ) and out-of-phase ( ) magnetic susceptibility of 1 CoDy (1 1000 Hz) measured at 2.0 K at zero field. 9

Figure S10. The magnetization curves for 1 CoDy measured at 2, 3, and 5 K. Figure S11. The magnetization curves for 2 ZnDy measured at 2, 3, and 5 K. Figure S12. The magnetization curves for 3 CoY measured at 2, 3, and 5 K. 10

Figure S13. Frequency dependence of the in-phase ( ) and out-of-phase ( ) magnetic susceptibilities of 2 ZnDy measured at 2.0 K in various applied fields from 0 to 4500 Oe. Figure S14. Frequency dependence of the in-phase ( ) and out-of-phase ( ) magnetic susceptibilities of 3 CoY measured at 2.0 K in various applied fields from 0 to 4500 Oe. 11

Figure S15. Cole Cole plots of vs. of 2 ZnDy at 2.0 K under various applied dc fields. The solid lines represent the best fit of the experimental results with the generalized Debye model. Figure S16. Cole Cole plots of vs. of 3 CoY at 2.0 K under various applied dc fields. The solid lines represent the best fit of the experimental results with the generalized Debye model. 12

Figure S17. Field dependence of the magnetic relaxation time at 2.0 K for 2 ZnDy and its fitting by τ -1 = AH 4 T +B 1 /(1 + B 2 H 2 ). Figure S18. Field dependence of the magnetic relaxation time at 2.0 K for 3 CoY and its fitting by τ -1 = AH 4 T +B 1 /(1 + B 2 H 2 ). 13

Figure S19. Variable-temperature ac susceptibility data for 2 ZnDy collected under a 1000 Oe dc field over the frequency range of 1 to 999 Hz. The solid lines are simply guides for the eye. Figure S20. Variable-temperature ac susceptibility data for 3 CoY collected under a 1000 Oe dc field over the frequency range of 1 to 999 Hz. The solid lines are simply guides for the eye. 14

Table S1. SHAPE analysis of the M(II) ion in complexes 1 3. Label Shape Symmetry (1) Co1 (2) Zn1 (3) Co1 HP-7 Heptagon D7h 33.922 33.616 35.260 HPY-7 Hexagonal pyramid C6v 25.597 25.012 25.754 PBPY-7 Pentagonal bipyramid D5h 0.289 0.311 0.274 COC-7 Capped octahedron C3v 7.246 6.536 6.377 CTPR-7 Capped trigonal prism C2v 5.492 4.851 4.700 JPBPY-7 Johnson pentagonal bipyramid J13 D5h 4.262 4.073 4.271 JETPY-7 Johnson elongated triangular pyramid J7 C3v 22.637 22.897 23.930 Table S2. SHAPE analysis of the Ln(III) ion in complexes 1 3. Label Shape Symmetry (1) Dy1 (2) Dy1 (3) Y1 DP-10 Decagon D10h 34.432 34.453 34.812 EPY-10 Enneagonal pyramid C9v 24.842 24.870 25.515 OBPY-10 Octagonal bipyramid D8h 16.180 16.154 16.761 PPR-10 Pentagonal prism D5h 11.689 11.876 11.785 PAPR-10 Pentagonal antiprism D5d 9.969 10.207 9.409 JBCCU-10 Bicapped cube J15 D4h 7.485 7.506 6.900 JBCSAPR-10 Bicapped square antiprism J17 D4d 3.417 3.243 3.451 JMBIC-10 Metabidiminished icosahedron J62 C2v 6.317 6.501 5.493 JATDI-10 Augmented tridiminished C3v 19.027 19.068 18.567 icosahedron J64 JSPC-10 Biaugmented trigonal prism C2v 3.930 3.867 4.263 SDD-10 Staggered Dodecahedron (2:6:2) D2 3.780 3.874 4.210 TD-10 Tetradecahedron (2:6:2) C2v 2.879 2.990 3.165 HD-10 Hexadecahedron (2:6:2) or (1:4:4:1) D4h 5.297 5.384 4.709 Table S3. The select intramolecular distance and Angles for M II and Ln III in complexes 1 3. Complex M II Ln III (Å) M II 2 -O Ln III ( o ) 1 3.774(7) 112.460(1), 113.720(1) 2 3.756(12) 111.801(2), 112.835(2) 3 3.746(8) 112.906(8) 15

Table S4. Selected bond lengths (Å) and bond angles ( ) for compound 1 3. Complex 1 Complex 2 Complex 3 Dy(1)-O(2) 2.370(3) Dy(1)-O(2) 2.353(4) Y(1)-O(2) 2.367(2) Dy(1)-O(1) 2.381(3) Dy(1)-O(1) 2.375(4) Y(1)-O(2)#1 2.367(2) Dy(1)-O(3) 2.399(3) Dy(1)-O(3) 2.399(4) Y(1)-O(1)#1 2.417(3) Dy(1)-O(4) 2.423(4) Dy(1)-O(4) 2.425(4) Y(1)-O(1) 2.417(3) Dy(1)-O(8) 2.462(4) Dy(1)-O(8) 2.451(4) Y(1)-O(5) 2.451(3) Dy(1)-O(7) 2.470(4) Dy(1)-O(12) 2.462(4) Y(1)-O(5)#1 2.451(3) Dy(1)-O(12) 2.488(4) Dy(1)-O(7) 2.462(4) Y(1)-O(3)#1 2.467(3) Dy(1)-O(10) 2.532(4) Dy(1)-O(10) 2.516(4) Y(1)-O(3) 2.467(3) Dy(1)-N(3) 2.624(4) Dy(1)-N(3) 2.610(5) Y(1)-N(3) 2.618(3) Dy(1)-N(9) 2.649(4) Dy(1)-N(9) 2.654(5) Y(1)-N(3)#1 2.618(3) Co(1)-N(6) 2.116(4) Zn(1)-O(3) 2.136(4) Co(1)-O(2)#1 2.126(2) Co(1)-N(5) 2.126(4) Zn(1)-N(5) 2.140(5) Co(1)-O(2) 2.126(2) Co(1)-O(2) 2.133(3) Zn(1)-N(6) 2.142(5) Co(1)-N(6) 2.126(4) Co(1)-N(7) 2.133(4) Zn(1)-O(6) 2.150(5) Co(1)-N(5) 2.135(3) Co(1)-O(3) 2.137(3) Zn(1)-N(7) 2.152(5) Co(1)-N(5)#1 2.135(3) Co(1)-O(5) 2.172(5) Zn(1)-O(2) 2.155(4) Co(1)-O(6)#1 2.175(3) Co(1)-O(6) 2.181(5) Zn(1)-O(5) 2.175(5) Co(1)-O(6) 2.175(3) O(2)-Dy(1)-O(1) 120.41(11) O(2)-Dy(1)-O(1) 120.43(14) O(2)-Y(1)-O(2)#1 63.02(11) O(2)-Dy(1)-O(3) 62.70(10) O(2)-Dy(1)-O(3) 63.80(12) O(2)-Y(1)-O(1)#1 156.13(10) O(1)-Dy(1)-O(3) 152.97(14) O(1)-Dy(1)-O(3) 152.60(15) O(2)#1-Y(1)-O(1)#1 120.73(9) O(2)-Dy(1)-O(4) 158.49(13) O(2)-Dy(1)-O(4) 157.14(14) O(2)-Y(1)-O(1) 120.73(9) O(1)-Dy(1)-O(4) 68.11(13) O(1)-Dy(1)-O(4) 67.86(16) O(2)#1-Y(1)-O(1) 156.13(10) O(3)-Dy(1)-O(4) 119.88(11) O(3)-Dy(1)-O(4) 119.92(13) O(1)#1-Y(1)-O(1) 66.56(14) O(2)-Dy(1)-O(8) 86.36(12) O(2)-Dy(1)-O(8) 85.05(13) O(2)-Y(1)-O(5) 75.50(9) O(1)-Dy(1)-O(8) 82.39(13) O(1)-Dy(1)-O(8) 82.19(14) O(2)#1-Y(1)-O(5) 83.62(9) O(3)-Dy(1)-O(8) 124.17(12) O(3)-Dy(1)-O(8) 124.79(13) O(1)#1-Y(1)-O(5) 127.32(10) O(4)-Dy(1)-O(8) 74.89(13) O(4)-Dy(1)-O(8) 74.73(14) O(1)-Y(1)-O(5) 75.41(10) O(2)-Dy(1)-O(7) 80.65(12) O(2)-Dy(1)-O(12) 120.30(14) O(2)-Y(1)-O(5)#1 83.62(9) O(1)-Dy(1)-O(7) 129.48(13) O(1)-Dy(1)-O(12) 76.31(14) O(2)#1-Y(1)-O(5)#1 75.50(9) O(3)-Dy(1)-O(7) 77.05(12) O(3)-Dy(1)-O(12) 78.97(13) O(1)#1-Y(1)-O(5)#1 75.42(10) O(4)-Dy(1)-O(7) 79.45(13) O(4)-Dy(1)-O(12) 81.70(15) O(1)-Y(1)-O(5)#1 127.32(10) O(8)-Dy(1)-O(7) 51.54(12) O(8)-Dy(1)-O(12) 152.75(13) O(5)-Y(1)-O(5)#1 155.52(13) O(2)-Dy(1)-O(12) 118.72(12) O(2)-Dy(1)-O(7) 80.03(14) O(2)-Y(1)-O(3)#1 84.38(9) O(1)-Dy(1)-O(12) 76.70(13) O(1)-Dy(1)-O(7) 129.47(15) O(2)#1-Y(1)-O(3)#1 120.70(9) O(3)-Dy(1)-O(12) 79.07(12) O(3)-Dy(1)-O(7) 77.30(13) O(1)#1-Y(1)-O(3)#1 73.72(10) O(4)-Dy(1)-O(12) 81.77(13) O(4)-Dy(1)-O(7) 79.15(15) O(1)-Y(1)-O(3)#1 82.86(10) O(8)-Dy(1)-O(12) 153.17(13) O(8)-Dy(1)-O(7) 52.01(13) O(5)-Y(1)-O(3)#1 136.49(11) O(7)-Dy(1)-O(12) 136.50(12) O(12)-Dy(1)-O(7) 136.28(14) O(5)#1-Y(1)-O(3)#1 51.49(10) O(2)-Dy(1)-O(10) 73.86(12) O(2)-Dy(1)-O(10) 74.86(13) O(2)-Y(1)-O(3) 120.70(9) O(1)-Dy(1)-O(10) 79.35(13) O(1)-Dy(1)-O(10) 79.37(15) O(2)#1-Y(1)-O(3) 84.38(9) O(3)-Dy(1)-O(10) 76.08(12) O(3)-Dy(1)-O(10) 75.93(13) O(1)#1-Y(1)-O(3) 82.86(10) O(4)-Dy(1)-O(10) 127.55(13) O(4)-Dy(1)-O(10) 127.81(14) O(1)-Y(1)-O(3) 73.72(10) 16

O(8)-Dy(1)-O(10) 140.86(12) O(8)-Dy(1)-O(10) 140.41(14) O(5)-Y(1)-O(3) 51.49(10) O(7)-Dy(1)-O(10) 149.22(12) O(12)-Dy(1)-O(10) 50.91(14) O(5)#1-Y(1)-O(3) 136.49(11) O(12)-Dy(1)-O(10) 50.56(12) O(7)-Dy(1)-O(10) 149.30(14) O(3)#1-Y(1)-O(3) 151.99(13) O(2)-Dy(1)-N(3) 60.28(11) O(2)-Dy(1)-N(3) 60.09(14) O(2)-Y(1)-N(3) 60.14(8) O(1)-Dy(1)-N(3) 60.93(12) O(1)-Dy(1)-N(3) 60.91(15) O(2)#1-Y(1)-N(3) 120.56(8) O(3)-Dy(1)-N(3) 119.75(11) O(3)-Dy(1)-N(3) 120.01(14) O(1)#1-Y(1)-N(3) 118.16(9) O(4)-Dy(1)-N(3) 120.25(12) O(4)-Dy(1)-N(3) 119.98(15) O(1)-Y(1)-N(3) 61.16(9) O(8)-Dy(1)-N(3) 69.64(13) O(8)-Dy(1)-N(3) 69.56(15) O(5)-Y(1)-N(3) 67.12(10) O(7)-Dy(1)-N(3) 110.51(12) O(12)-Dy(1)-N(3) 112.55(14) O(5)#1-Y(1)-N(3) 113.04(10) O(12)-Dy(1)-N(3) 112.87(12) O(7)-Dy(1)-N(3) 111.08(14) O(3)#1-Y(1)-N(3) 69.39(11) O(10)-Dy(1)-N(3) 71.23(12) O(10)-Dy(1)-N(3) 70.85(14) O(3)-Y(1)-N(3) 110.43(10) O(2)-Dy(1)-N(9) 119.14(11) O(2)-Dy(1)-N(9) 119.59(13) O(2)-Y(1)-N(3)#1 120.56(8) O(1)-Dy(1)-N(9) 119.55(12) O(1)-Dy(1)-N(9) 119.39(14) O(2)#1-Y(1)-N(3)#1 60.14(8) O(3)-Dy(1)-N(9) 59.56(11) O(3)-Dy(1)-N(9) 59.64(13) O(1)#1-Y(1)-N(3)#1 61.16(9) O(4)-Dy(1)-N(9) 60.46(11) O(4)-Dy(1)-N(9) 60.37(14) O(1)-Y(1)-N(3)#1 118.16(9) O(8)-Dy(1)-N(9) 110.87(13) O(8)-Dy(1)-N(9) 110.60(14) O(5)-Y(1)-N(3)#1 113.04(10) O(7)-Dy(1)-N(9) 69.65(12) O(12)-Dy(1)-N(9) 67.46(14) O(5)#1-Y(1)-N(3)#1 67.12(10) O(12)-Dy(1)-N(9) 66.93(12) O(7)-Dy(1)-N(9) 68.89(13) O(3)#1-Y(1)-N(3)#1 110.43(10) O(10)-Dy(1)-N(9) 108.26(12) O(10)-Dy(1)-N(9) 108.98(13) O(3)-Y(1)-N(3)#1 69.39(11) N(3)-Dy(1)-N(9) 179.28(12) N(3)-Dy(1)-N(9) 179.65(14) N(3)-Y(1)-N(3)#1 179.28(12) N(6)-Co(1)-N(5) 72.73(16) O(3)-Zn(1)-N(5) 142.05(16) O(2)#1-Co(1)-O(2) 71.17(12) N(6)-Co(1)-O(2) 144.16(15) O(3)-Zn(1)-N(6) 144.72(17) O(2)#1-Co(1)-N(6) 144.41(6) N(5)-Co(1)-O(2) 72.13(14) N(5)-Zn(1)-N(6) 72.90(19) O(2)-Co(1)-N(6) 144.41(6) N(6)-Co(1)-N(7) 72.66(16) O(3)-Zn(1)-O(6) 89.4(2) O(2)#1-Co(1)-N(5) 141.99(10) N(5)-Co(1)-N(7) 145.39(16) N(5)-Zn(1)-O(6) 85.7(2) O(2)-Co(1)-N(5) 72.39(9) O(2)-Co(1)-N(7) 142.05(14) N(6)-Zn(1)-O(6) 89.2(2) N(6)-Co(1)-N(5) 72.64(7) N(6)-Co(1)-O(3) 144.74(14) O(3)-Zn(1)-N(7) 72.13(16) O(2)#1-Co(1)-N(5)#1 72.39(9) N(5)-Co(1)-O(3) 142.08(14) N(5)-Zn(1)-N(7) 145.72(19) O(2)-Co(1)-N(5)#1 141.99(10) O(2)-Co(1)-O(3) 71.05(12) N(6)-Zn(1)-N(7) 72.82(19) N(6)-Co(1)-N(5)#1 72.64(7) N(7)-Co(1)-O(3) 72.38(13) O(6)-Zn(1)-N(7) 94.1(2) N(5)-Co(1)-N(5)#1 145.28(15) N(6)-Co(1)-O(5) 93.30(17) O(3)-Zn(1)-O(2) 71.66(14) O(2)#1-Co(1)-O(6)#1 94.99(10) N(5)-Co(1)-O(5) 94.5(2) N(5)-Zn(1)-O(2) 71.57(16) O(2)-Co(1)-O(6)#1 85.66(10) O(2)-Co(1)-O(5) 82.65(16) N(6)-Zn(1)-O(2) 143.44(17) N(6)-Co(1)-O(6)#1 89.60(8) N(7)-Co(1)-O(5) 87.3(2) O(6)-Zn(1)-O(2) 96.5(2) N(5)-Co(1)-O(6)#1 92.71(11) O(3)-Co(1)-O(5) 89.55(19) N(7)-Zn(1)-O(2) 142.06(17) N(5)#1-Co(1)-O(6)#1 87.05(11) N(6)-Co(1)-O(6) 92.5(2) O(3)-Zn(1)-O(5) 89.35(18) O(2)#1-Co(1)-O(6) 85.66(10) N(5)-Co(1)-O(6) 85.85(17) N(5)-Zn(1)-O(5) 94.8(2) O(2)-Co(1)-O(6) 94.99(10) O(2)-Co(1)-O(6) 91.76(19) N(6)-Zn(1)-O(5) 92.40(18) N(6)-Co(1)-O(6) 89.60(8) N(7)-Co(1)-O(6) 95.87(18) O(6)-Zn(1)-O(5) 178.4(2) N(5)-Co(1)-O(6) 87.05(11) O(3)-Co(1)-O(6) 86.52(19) N(7)-Zn(1)-O(5) 86.42(19) N(5)#1-Co(1)-O(6) 92.71(11) O(5)-Co(1)-O(6) 174.0(2) O(2)-Zn(1)-O(5) 82.23(16) O(6)#1-Co(1)-O(6) 179.21(15) Symmetry transformations used to generate equivalent atoms for 3 CoY, #1: -X, Y, 0.5-Z. 17

Table S5. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of compounds 2 ZnDy at 2 K under various dc fields according to the generalized Debye model. H / koe S / cm 3 mol -1 K T / cm 3 mol -1 K / s s 0.2 3.56 4.81101 0.00120 0.10715 2.15E-5 0.4 1.81635 4.73773 0.00182 0.18822 6.53E-5 0.6 1.09113 4.68185 0.00255 0.18479 2.05E-4 0.8 0.5701 4.56227 0.00293 0.21998 3.74E-4 1.0 0.40331 4.52044 0.00332 0.22995 6.51E-4 1.5 0.19952 3.60212 0.00300 0.20928 1.06E-3 2.0 0.17458 3.26806 0.00246 0.17144 3.30E-4 2.5 0.01868 2.79137 0.00184 0.27027 4.44E-4 3.0 0.05818 2.26425 0.00130 0.24823 8.75E-5 3.5 0.04766 2.02591 9.300E-4 0.29997 5.45E-4 4.0 0.09667 1.79372 7.210E-4 0.28007 1.29E-3 4.5 0.08468 1.38781 5.770E-4 0.29974 4.78E-4 Table S6. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of compounds 3 CoY at 2 K under various dc fields according to the generalized Debye model. H / koe S / cm 3 mol -1 K T / cm 3 mol -1 K / s s 0.2 0.53791 0.75326 2.3E-4 0.20531 3.14E-5 0.4 0.31145 0.76106 2.9E-4 0.18244 1.47E-4 0.6 0.20245 0.75217 3.3E-4 0.14082 9.94E-5 0.8 0.13784 0.76248 3.8E-4 0.15790 1.90E-4 1.0 0.11480 0.75299 3.9E-4 0.12400 1.26E-4 1.5 0.07787 0.72881 3.7E-4 0.10416 9.09E-5 2.0 0.03191 0.69904 3.1E-4 0.11170 1.28E-4 2.5 0.01631 0.69568 2.7E-4 0.16502 2.60E-4 3.0 0.00769 0.68030 2.5E-4 0.22064 9.07E-4 3.5 0.05808 0.61065 2.3E-4 0.15178 9.93E-4 4.0 0.01766 0.58199 1.7E-4 0.20686 2.05E-4 4.5 0.00466 0.56005 1.6E-4 0.28092 8.81E-4 18

Table S7. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 2 ZnDy under 1.8 K-5.0 K according to the generalized Debye model. T / K S / cm 3 mol -1 K T / cm 3 mol -1 K / s s 1.8 0.27180 6.07507 0.06517 0.25944 7.49E-4 2.0 0.22784 5.20592 0.04452 0.27640 9.14E-4 2.2 0.22174 4.71029 0.03554 0.26727 8.78E-4 2.4 0.20375 4.41414 0.02890 0.26676 5.83E-4 2.6 0.19138 4.10504 0.02236 0.24797 3.21E-4 2.8 0.14734 3.92100 0.01742 0.27029 4.77E-4 3.0 0.12905 3.70782 0.01355 0.28785 4.47E-4 3.2 0.10208 3.51832 0.00939 0.29409 8.94E-4 3.4 0.10126 3.33525 0.00636 0.27723 1.82E-3 3.6 0.10000 3.20125 0.00446 0.28458 1.81E-3 3.8 0.05029 3.04004 0.00284 0.27950 1.05E-3 4.0 0.02820 2.89738 0.00191 0.28860 1.50E-3 4.2 0.02270 2.77082 0.00126 0.27681 1.59E-3 4.4 0.01259 2.66711 8.800E-4 0.27213 1.26E-3 4.6 1.50E-4 2.60000 6.600E-4 0.29967 1.39E-3 4.8 0.01150 2.50000 5.000E-4 0.30000 1.52E-3 5.0 0.10001 2.30000 4.000E-4 0.26902 3.08E-3 Table S8. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 3 CoY under 1.8 K-5.0 K according to the generalized Debye model. T / K S / cm 3 mol -1 K T / cm 3 mol -1 K / s s 1.8 0.09343 0.83166 4.7E-4 0.15382 4.73E-5 2.1 0.06636 0.73965 3.4E-4 0.18600 1.75E-4 2.4 0.06751 0.63522 2.4E-4 0.16285 9.50E-5 2.7 0.01247 0.57245 1.6E-4 0.20937 2.48E-4 3.0 0.01676 0.51295 1.3E-4 0.18153 2.09E-4 3.3 0.08563 0.50820 1.0E-4 0.11988 1.95E-4 3.6 0.08173 0.42822 8.0E-5 0.11066 5.35E-5 4.0 0.03329 0.39051 6.0E-5 0.15314 8.98E-5 4.5 0.07966 0.35284 5.2E-5 0.14492 1.11E-5 5.0 0.08343 0.31789 5.0E-5 0.10947 5.81E-5 19

Table S9. Parameters fitted from the Arrhenius plots in Figure 5 considering multiple relaxation processes for 2 ZnDy and 3 CoY. Complex 2 Value Standard error R 2 A 0.0352 0.0021 B 1 0.8604 0.0845 0.99 B 2 6.0532 0.0213 C 0.0032 0.0032 n 2.63 0.6245 0 4.71 10-7 s 2.78 10-7 0.98 U eff 32.9 K 5.57 Complex 3 Value Standard error R 2 A 0.1077 0.0044 B 1 2.9688 0.2434 0.99 B 2 7.6276 1.6147 C 5.6605 6.0440 n 4.9752 0.6252 0 5.79 10-5 s 1.43 10-5 0.98 U eff 7.5 K 0.59 Table S10. Wave functions with definite projection of the total moment m J > for the lowest two Kramers doublets (KDs) of individual Dy III fragments for complexes 1 CoDy and 2 ZnDy. E/cm 1 Wave functions Complex 1 Complex 2 0.0 16% ±15/2>+36% ±13/2>+6% ±11/2>+21% ±9/2>+13% ±5/2> 14.9 8% ±15/2>+14% ±11/2>+34% ±9/2>+14% ±5/2>+16% ±3/2>+11% ±1/2> 0.0 46% ±15/2>+33% ±13/2>+6% ±11/2>+9% ±9/2>+4% ±7/2> 33.6 8% ±11/2>+33% ±7/2>+23% ±5/2>+20% ±3/2>+12% ±1/2> 20

Table S11. Calculated energy levels (cm 1 ), g (g x, g y, g z ) tensors and m J values of the lowest eight Kramers doublets (KDs) of individual Dy III fragment, and zero-field splitting parameters D (E) (cm 1 ), g tensors of the lowest spin-orbit state of individual Co II fragment of complexes 1 3 using CASSCF/RASSI with MOLCAS 8.2. Complex 1 KDs Dy Co E/cm 1 g m J D (E) g 1 0.0 0.334 3.988 13.947 ±13/2 36.8 ( 0.9) 2.337 2.320 2.003 2 14.9 0.706 2.899 ±9/2 13.613 3 52.4 0.380 0.693 ±11/2 13.638 4 74.3 0.072 1.278 15.737 ±3/2 3.401 5 150.4 5.027 ±7/2 11.413 6 191.4 7.606 6.811 ±5/2 2.931 7 218.2 2.705 5.476 ±1/2 9.905 8 263.0 1.092 1.774 15.660 ±15/2 Complex 3 Co D (E) g 2.391 40.8 ( 1.0) 2.375 2.008 Complex 2 Dy KDs E/cm 1 g m J 0.270 1 0.0 0.940 16.640 ±15/2 21

2 33.6 3 58.7 4 83.7 5 160.8 6 196.2 7 233.3 8 275.0 0.380 1.637 16.625 0.282 1.056 13.526 0.431 1.283 14.822 3.202 4.882 10.673 7.827 5.824 3.127 1.590 3.880 7.999 1.284 4.137 14.615 ±7/2 ±13/2 ±1/2 ±9/2 ±3/2 ±5/2 ±11/2 Table S12. Exchange energies (cm 1 ) and main values of the g z for the lowest four exchange doublets of complex 1 CoDy. E/cm 1 g z 1 2 3 4 0.0 18.837 0.7 18.837 2.4 9.157 3.4 9.157 14.9 17.487 15.5 17.487 18.0 9.833 18.5 9.833 22

Reference (S1) O. Kahn, Molecular Magnetism, VCH, Weinheim, Germany, 1993. (S2) (a) SAINT Software Users Guide, Version 7.0, Bruker Analytical X-Ray Systems, Madison, WI, 1999. (b) Sheldrick, G. M. SADABS, Version 2.03, Bruker Analytical X-Ray Systems, Madison, WI, 2000. (S3) Sheldrick, G. M.; SHELXTL, Version 6.14, Structure Determination Software Suite, Bruker AXS, Inc., Madison, WI, 2000 2003. 23