arxiv: v1 [astro-ph.he] 1 Oct 2018

Similar documents
On the Combined Analysis of Muon Shower Size and Depth of Shower Maximum

Studies on UHECR composition and hadronic interactions by the Pierre Auger Observatory

Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above ev and Composition Implications

arxiv: v1 [astro-ph.he] 25 Mar 2015

Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

PoS(ICRC2017)522. Testing the agreement between the X max distributions measured by the Pierre Auger and Telescope Array Observatories

The cosmic ray energy spectrum measured using the Pierre Auger Observatory

Hadronic interactions of ultra-high energy cosmic rays

Mass Composition Study at the Pierre Auger Observatory

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

Probing QCD approach to thermal equilibrium with ultrahigh energy cosmic rays

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

PoS(ICRC2017)326. The influence of weather effects on the reconstruction of extensive air showers at the Pierre Auger Observatory

The average longitudinal air shower profile: exploring the shape information

arxiv: v1 [astro-ph.he] 7 Mar 2018

Recent measurements of ultra-high energy cosmic rays and their impact on hadronic interaction modeling

The KASCADE-Grande Experiment

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

Latest results and perspectives of the KASCADE-Grande EAS facility

The air-shower experiment KASCADE-Grande

OVERVIEW OF THE RESULTS

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

arxiv: v1 [hep-ph] 19 Nov 2018

Numerical study of the electron lateral distribution in atmospheric showers of high energy cosmic rays

Muon measurements and hadronic interactions at the Pierre Auger Observatory

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

Search for ultra-high Energy Photons with the Pierre Auger Observatory

Zero degree neutron energy spectra measured by LHCf at s = 13 TeV proton-proton collision

Measurement of air shower maxima and p-air cross section with the Telescope Array

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

A CORSIKA study on the influence of muon detector thresholds on the separability of primary cosmic rays at highest energies

Results from the Pierre Auger Observatory

Ultra- high energy cosmic rays

Status and results from the Pierre Auger Observatory

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

Recent results from the Pierre Auger Observatory

arxiv:astro-ph/ v1 4 Aug 2006

Ultrahigh Energy cosmic rays II

The Pierre Auger Observatory in 2007

QCD at Cosmic energies VII

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory

The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída.

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

The optimum distance at which to determine the size of a giant air shower

7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, September 2009 THE AMIGA PROJECT

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

Science case for recording protonoxygen collisions at the LHC

Study of muon bundles from extensive air showers with the ALICE detector at CERN LHC

On the measurement of the proton-air cross section using air shower data

Analytic description of the radio emission of air showers based on its emission mechanisms

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

The AMIGA infill detector of the Pierre Auger Observatory: performance and first data

arxiv: v1 [astro-ph.he] 31 Dec 2018

NEW VIEWS OF THE UNIVERSE. Recent Studies of Ultra High Energy Cosmic Rays. Alan Watson University of Leeds, UK (regular KICP Visitor)

PoS(LeptonPhoton2015)043

TeV energy physics at LHC and in cosmic rays

Recent Results from the KASCADE-Grande Data Analysis

The FRAM Telescope at the Pierre Auger Observatory

arxiv: v2 [astro-ph.he] 17 Oct 2016

Analysis of Errors Due to Aerosols at the Pierre Auger Observatory. Jeremy P. Lopez Advisor: Stefan Westerhoff Nevis Labs, Columbia U.

UHE Cosmic Rays in the Auger Era

Longitudinal profile of Nµ/Ne in extensive air showers: Implications for cosmic rays mass composition study

STUDY ON MASS COMPOSITION OF EXTENSIVE AIR SHOWER WITH ULTRA HIGH ENERGY COSMIC RAYS USING Q PARAMETER AND THEIR MUON COMPONENT

arxiv: v1 [astro-ph.im] 2 Jun 2017

PoS(ICRC2015)424. YAC sensitivity for measuring the light-component spectrum of primary cosmic rays at the knee energies

Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory

Invisible Energy in Cosmic Ray Showers

pa at the LHC and Extensive Air Shower Development

Cosmic Ray Interaction Models: an Overview

Search for clustering of ultra high energy cosmic rays from the Pierre Auger Observatory

Anisotropy studies with the Pierre Auger Observatory

arxiv: v2 [hep-ph] 23 Jun 2016

Search for EeV Protons of Galactic Origin

arxiv: v1 [astro-ph.he] 8 Apr 2015

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

Results from the Telescope Array Experiment

First Results from the Pierre Auger Project

Recent Results of the Telescope Array Experiment. Gordon Thomson University of Utah

arxiv: v2 [astro-ph.im] 24 Nov 2009

Auger FD: Detector Response to Simulated Showers and Real Event Topologies

Impact of the Fluorescence Yield selection on the reconstructed shower parameters

Correlation between the UHECRs measured by the Pierre Auger Observatory and Telescope Array and neutrino candidate events from IceCube

arxiv: v1 [astro-ph.he] 27 Dec 2018

CORSIKA modification for electric field simulations on pions, kaons and muons

The Pierre Auger Observatory Status - First Results - Plans

On the energy deposition by electrons in air and the accurate determination of the air-fluorescence yield

arxiv: v1 [astro-ph.he] 14 Jul 2017

arxiv: v1 [astro-ph] 30 Jul 2008

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

Hadronic Interactions and Cosmic Ray Physics

A Multimessenger Neutrino Point Source Search with IceCube

Hadronic Interaction Models and Accelerator Data

arxiv: v1 [astro-ph.he] 28 Jan 2013

Transcription:

Tests of hadronic interactions with measurements by Pierre Auger Observatory arxiv:80.00586v [astro-ph.he] Oct 08 Raul R. Prado,,3, for the Pierre Auger Collaboration 4, Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, D-5738 Zeuthen, Germany IKP, Karlsruhe Institute of Technology (KIT), Postfach 3640, D-760 Karlsruhe, Germany 3 Instituto de Física de São Carlos (IFSC/USP), Av. Trabalhador São-carlense 400, 3566-590, São Carlos, Brazil 4 Av. San Martin Norte 304, 563 Malargüe, Argentina Abstract. The hybrid design of the Pierre Auger Observatory allows for the measurement of a number of properties of extensive air showers initiated by ultra-high energy cosmic rays. By comparing these measurements to predictions from air shower simulations, it is possible to both infer the cosmic ray s mass composition and test hadronic interactions beyond the energies reached by accelerators. In this paper, we will present a compilation of results of air shower measurements by Pierre Auger Observatory which are sensitive to the properties of hadronic interactions and can be used to constrain the hadronic interaction models. The inconsistencies found between the interpretation of different observables with regard to primary composition and between their measurements and simulations show that none of the currently used hadronic interaction models can provide a proper description of air showers and, in particular, of the muon production. Introduction The Pierre Auger Observatory [] is designed to measure ultra-high energy cosmic rays (E > 0 7 ev) through the detection of extensive air showers (EAS). The two main parts of the observatory are the Fluorescence Detector (FD), composed of 7 telescopes grouped in 4 sites and the Surface Detector (SD), which consists of an array with 660 water-cherenkov detectors (WCDs) distributed over 3000 km. The FD measurements allow the reconstruction of the longitudinal profile of EAS, whereas the SD can measure the spatial distribution of particles on the ground and their arrival times. The information obtained from both detectors can be used to reconstruct a number of EAS observables. By comparing the measurements of these observables to predictions from Monte Carlo simulations using hadronic interaction models, one can either infer the cosmic-ray s mass composition or study the properties of hadronic interactions by testing the models. For each one of these goals, a different set of observables turns out to be more suitable. The most reliable observable for mass composition inference is X max, the depth of maximum energy deposit. Lighter primaries penetrate deeper into the atmosphere than heavier ones, producing on average showers with larger X max values. It is well known that the X max is mostly driven by the properties of only the first interaction, which starts the dominant electromagnetic cascade producing most of the electron and positron contribution to the energy deposit profile. Although the exact relation between X max, the primary energy, and mass depends on e-mail: raul.prado@desy.de Full author list: http://www.auger.org/archive/authors_08_05.html the properties of hadronic interactions, the theoretical uncertainties on the predictions of X max by the most recent hadronic models are relatively small when compared to other observables (e.g. number of muons). The difference between the model predictions of X max is ±0 g/cm (which translates into a difference in ln A of ±0.8) and is constant over energy []. Because of this, the cosmic-ray composition derived from the X max measurements is commonly used as a reference, allowing the hadronic models to be tested by comparing the composition interpretation from other observables with that using X max. The X max measurements by Auger can be found in Ref. [3, 4]. The muonic component of EASs is particularly interesting in the context of testing hadronic interactions. Muons are mostly produced by the decay of charged mesons when their energies are low enough such that their decay length is comparable to the interaction length. Before reaching such low energies, a number of generations of hadron-air interactions is required. As a consequence, the muonic component is sensitive to the chain of hadronic interactions and, in particular, to their particle production properties. It is well known that the current hadronic models cannot provide a satisfactory description of the muon production in EAS. The most popular manifestation of this fact is the so-called muon deficit problem, i.e. the number of muons (N µ ) predicted by EAS simulations is significantly smaller than that in measurements. This deficit has been observed by several experiments [5 0]. Therefore, experimentally accessing the muonic component of EAS, through the measurements of N µ as well as further observables sensitive to muons, is of extreme value in constraining hadronic models and possibly infer properties of hadronic interactions.

R = data/sim QII-04 p QII-04 Mixed p Mixed..4.6.8 sec θ Figure. Results of the top-down analysis [8]. See text for details. R had.8.6.4. 0.8 0.6 0.4 Systematic Uncert. QII-04 p QII-04 Mixed p Mixed 0.7 0.8 0.9...3 R E In this paper, we will present a selected compilation of measurements by the Pierre Auger Observatory which can be used to test hadronic interaction models. In Sec., we present the results of the so-called Top-Down analysis, in which a set of hybrid events are compared in detail with simulations in a way that it is possible to disentangle the contributions from the electromagnetic and muonic components of EAS. In Secs. 3 and 4, we present the results of two analyses based on EAS observables which are purely muonic: the number of muons measured in highly inclined events (Sec. 3) and the muon production depth (Sec. 4). In Secs. 5 and 6, two analyses based on the parameter risetime (t / ) are presented: the measurements of the azimuthal asymmetry of risetime(sec. 5) and the so-called s -method (Sec. 6). Finally, in Sec. 7 we summarize the results. Top-Down analysis By using the experimental setup of Auger, the muon content of EAS can be directly measured in highly inclined events (θ > 60 ) by using the atmospheric attenuation to eliminate the electromagnetic component (see Sec. 3). However, it is not possible to isolate the muonic from the electromagnetic component at the detector level for vertical events (θ < 60 ). To overcome this difficulty, an original analysis procedure was developed aiming to evaluate the muon content in hybrid events by means of a detailed comparison with Monte Carlo simulations. The full description of the analysis and the results can be found in Ref. [8]. For a set of 4 high quality hybrid events with 0 8.8 < E/eV < 0 9., the first analysis step was to find simulated events in which the longitudinal profile matches those measured by the FD. By construction, these simulated events have an X max and energy compatible with the corresponding measured event. The above procedure allows us to compare the SD signals from measured and simulated events without having to account for differences in the longitudinal development of the showers. The first step of this comparison can be seen in Fig. (left), where we show the average ratio R between the shower size parameter S 000 obtained from data and simulations as a function of the shower zenith angle sec(θ). Apart from two different hadronic models, Epos LHC [] and QGSJet II- 04 [], we also show two different composition assumptions: proton only and a mixed composition scenario obtained from the interpretation of the X max measurements by Auger. It can be seen that for any model and composition scenario, the ratio R is greater than., which shows that the ground signal of measured events is at least 0% larger than the simulated ones with the same longitudinal development. Furthermore, an evolution of R with zenith angle is observed, which will be important for the next step of the analysis. In a second step, the particle distributions in simulated events were rescaled in a way to make the data and simulations compatible in terms of the shower size S 000. Given that the different components of the shower evolve differently with zenith angle and a large zenith angle range is covered by the present analysis, it becomes possible to separately rescale the electromagnetic component, represented by R E, and the hadronic component, represented by R had. While R E is directly related to the shower energy scale, R had is responsible for scaling the muon content, meaning that by increasing R had the N µ in the shower would also increase by the same factor. A model derived from simulations was used to perform the rescaling and the results can be seen in Fig. (right). To make the ground signal of simulations compatible with those observed in the data, an increase from 30% to 70% of R had is required, considering all the possible combinations of hadronic models and composition assumptions. On the other hand, it is observed that the energy scale factor is never required to increase by more than 0% and the case without rescaling (R E ) is covered by the systematic uncertainties in all cases. The results described above represent a manifestation of the muon deficit problem. The best case scenario of the mixed composition assumption with Epos LHC as hadronic model still requires an increase of 30% on the N µ predicted by simulations at energies 0 9 ev. For the first time, the muon deficit was evaluated by disentangling the contribution of the muonic component from the energy scale. 3 Number of muons in highly inclined showers An efficient way of measuring muons using the SD without contamination from the electromagnetic component is by using the atmosphere as a shield. Above a certain atmospheric depth ( 000 g/cm ), the electromagnetic component is strongly attenuated while most muons still penetrate down to the ground. Such large atmospheric depths are

Rµ /(E/0 9 ev).4..0.8.6.4..0 Auger data EPOS LHC QGSJET II-04 0 9 0 0 E/eV p ln Rµ.0 0.8 0.6 0.4 0. 0.0 EPOS LHC QGSJET II-04 QGSJET II-03 QGSJET0 N E = 0 9 ev, θ = 67 He Auger data 680 700 70 740 760 780 800 80 X max / g cm p Figure. Results of the analysis of the muon content in highly inclined events [7]. reached by highly inclined events. In this analysis, events with zenith angle 6 < θ < 80 measured by both SD and FD are selected and their muon content is reconstructed. The full analysis description and results can be found in Ref. [7]. Because of the complicated dependencies of the muon density (ρ µ ) with the zenith angle (θ) and azimuthal angle (φ) of an event and the axis distance of a station (r), a template fit method was adopted to describe the distribution of muons on the ground of measured events. The templates were built using Monte Carlo simulations of proton primaries at 0 9 ev using QGSJet II-03 [] as the hadronic model. The measured SD signals were then fitted by using the templates in which the normalization parameter (N 9 ) was left free. By applying the same fit to simulated events, the bias on N 9 was estimated. After correcting for the bias, an unbiased estimator for the template normalization R µ was obtained. For any given zenith angle, N µ can be recovered from R µ. For example, R µ = corresponds to. 0 7 muons at the ground level above 0.3 GeV (muon energy threshold in the WCDs) for θ = 70. The average R µ over energy bins as a function of energy is shown in Fig. (left), where the energy was reconstructed independently of R µ from the FD measurements. The predictions for proton and iron primaries using two hadronic models are also shown for comparison. The systematic uncertainties, depicted with square brackets, are dominated by the uncertainties on the energy scale. By comparing our measurements with predictions of simulations, we can observe that, even considering the lowest values of R µ allowed by the systematic uncertainties, the muon content of inclined events would imply a very heavy composition interpretation. The compatibility of this interpretation with the composition scenario expected from the X max measurements is tested in Fig. (right), where we show ln R µ versus X max at 0 9 ev. One can conclude that, by assuming the X max composition, the measured value of R µ is significantly larger than that expected from the simulation, regardless of the hadronic model. This fact shows another manifestation of the muon-deficit problem, which is complementary to the result presented in Sec. in terms of the event zenith angle. 4 Muon production depth The time structure as measured by the SD contains a lot of information about the EAS development. The analyses presented in the next three sections make use of the time traces recorded by the WCDs to reconstruct EAS properties. Since a muon propagates nearly linearly from its production point down to the ground, its arrival time can be mapped into their production depths by using simple geometrical considerations. In practice, this procedure requires SD stations with a large muon purity and a precise knowledge of the muon time delay. The former requirement is satisfied by selecting stations far from the shower axis in highly inclined showers, while a model based on simulations is used to correct for the muon time-delay. After reconstructing the muon production depth for each event, the maximum of the profile (X µ max) can be determined, the energy evolution of its moments can be evaluated, and compared to predictions by simulations. The X µ max carries the information about the depth of the first interaction, folded with the longitudinal development of the hadronic component of the EAS which is responsible for the muon production. It has been shown that X µ max is very sensitive to the properties of pion-air interactions [4, 5]. A first version of the muon production depth analysis was published in Ref. [6], and recently, an updated version has been released in Ref. [3]. Among other improvements, the updated analysis extends the zenith angle and the lateral distance range of the selected stations, increasing significantly the number of available events. With the resulting larger statistical power, it is possible to derive not only the X µ max, but also the σ[x µ max]. In Fig. 3, we show both X µ max and σ[x µ max] as a function of energy in comparison with the prediction from simulations of proton and iron primaries. Similarly to what can be seen in the results published in Ref. [6], the composition interpretation of the X µ max implies the presence of primaries as heavy as iron for QGSJet II-04 [7] and even heavier for Epos LHC. This interpretation is clearly inconsistent with that obtained from the X max measurements, which means that the hadronic models cannot properly describe the longitudinal development of muon production yet.

Muon Production Depth Manuela Mallamaci Figure 3: Xmax µ (left) and the corresponding fluctuations (right) as a function of the primary energy. Data (black squares) are shown with statistical (black line) and systematic uncertainties (gray band) and compared to simulations (see text for the details). 500-000 m 000-000 m Figure 3. Results of the muon production depth analysis [3]. max (secθ).6 p max (secθ).6 QGSJETII-04 December 06 have been used in this analysis. Considering p the applicability ranges of this work and the selection criteria described in Sec., the number of UHECR events here analyzed is 7. Data have been studied as a function of the primary energy. A bin width log 0 (E/eV)=0. is chosen for energies log 0 (E/eV) between 9. and 9.8. Not having enough statistics to keep the same QGSJETII-04 binning, data are integrated in one bin for log 0 (E/eV) in the range [9.8-0]. For each energy bin, the first two moments of the Xmax µ distribution are evaluated on data and are compared directly to the expectations obtained 0 9 0 0 from Monte E Carlo [ev] simulations after the reconstruction 0 9 0 0 procedure E [ev] (Sec. Figure ). 4. We Results noteofthat the azimuthal data andasymmetry Monte Carlo analysisare of risetime both equally [8]. biased by the reconstruction, so the relative distance to the reference lines does not vary in Xmax µ (see below conversion to the mean logarithmic 5 Azimuthal mass lna ) asymmetry and no systematics of the are risetime associated to these scribed effects. by t On the contrary, the physical X max µ / /r = a + b cos ζ + c cos ζ, where the factor would display the mass and model spread as systematics, r is included as discussed to account previously. for the almost linear dependence Both analyses presented in this and in the next section are of t The overall systematic error on the first two moments of / on the Xmax µ the distance r from the shower. The degree based on the risetime parameter (t / ). It is defined as the distribution turns out to be around 4 g/cm and 3 g/cm of asymmetry of t / can be quantified by the asymmetry time of increase from 0% torespectively, 50% of the integrated and due signal to two sources: factor defined theas small b/(a dependence + c). For larger ofasymmetry the selection factors, of each efficiency WCD station. of the Given quality that cuts muons the on average primary arrive mass ( thepeak g/cmof t ) / and atthe ζ = time 0 is more variability pronounced. of data. An earlier at the detector than electrons, t / turns out to additional systematic error of 7.5 g/cm be sensitive to the relationship between these two components. can be associated In nearly with vertical the events, selection the asymmetry and procedure factor is expected to vanish for symmetry reasons. The same behavior This toimplies fit thethat, MPDforprofiles example, and increasing needsthe to be relative takenum- ber of muons arriving in into account in the determination of lna (see below). The results on Xmax µ a given station would result in a is expected for very inclined showers, in which the shower are shown in Fig. 3 (left) by black squares, with their statistical (black line) faster increase in the WCD signal and thus a smaller t /. front is dominated by muons that are very weakly atten- energy andbin, consequently the number present of events very similar is indicated. time struc- Because and systematic of this, the t / uncertainties parameter is suitable (gray band). for compositionfrom inferences the comparison and tests of hadronic with the models. For eachuated tures for all azimuthal regions. In between these two extremes, the asymmetry factor presents a maximum. It is ob- predictions, the inconsistency among models and data is evident. In Because t the case / is a station quantity with a very complicated dependence on parameters like shower zenith-angle, of, data are at odds with predictions served that for theall zenith reasonable angle which masses, corresponds in thetowhole this max- in particular (θ max ) carries iron information expectations, about athe mild relative incom- amount station energy azimuthal-angle range. Considering and stationinstead lateral-distance, QGSJetII-04 it is andimum of muons in EAS and consequently can impractical patibility to arises define at onethe unique highest t energies. We have also checked that when converting Xmax µ be used to X max µ as an observable sensitive to composition and hadronic interaction / -based parameter for by each event. Instead, the two analyses presented in this using the reconstruction bias (Fig. left) averagedproperties. on mass/models, The full description we obtainofathe good analysis agreement and results paper follow approaches in which these above mentioned dependencies with the results are explored shown in in order Fig. to3obtain and with information results presented can be found in [8]. in Ref. [8]. about The theinconsistencies EAS development. outlined In this section, here make the azimuthal it difficult to draw In Fig. firm 4, weconclusions show the energy onevolution composition of secwith θ max derived in energy dependence of t our measurement / will be explored. of Xmax : µ we see that the predictions of Xmax µ bins. The predictions from simulations are from the two hadronic models It is observed that the average t / as a function of the also shown station are azimuthal significantly angle different (ζ) presentsina maximum absolute at value the point ( 35 g/cm for two hadronic interaction models for proton and iron ). primaries. However, The weleft can(right) noteplot thatshows the muonic the results in which elongation the shower rate, front i.e. reaches the rate the ground of change the earliest, of Xmax µ with for theprimary sub-dataset energy, of stations is predicted with 500 to < be r/m about < 000 where the relative contribution of the electromagnetic component to the signal is the largest. This point is defined as of the sec θ max measurements imply, in general, the pres- (000 < r/m < 000). The composition interpretation ζ = 0. The shape of t / as a function of ζ can be well de- 6 ence of heavier primaries on average, when compared to PoS(ICRC07)509

the composition expected from the X max measurements (see Ref. [8]). The difference is of order of ln A. The only case in which both observables are consistent is for QGSJet II-04 at 000 < r/m < 000. The inconsistency with the X max composition and between the two different axis distance ranges, for QGSJet II-04, are indications of a problem with the description of the t / asymmetry by the models. Since the t / is sensitive to the muon content of EAS, these problems can be related to the muon deficit. 6 The Delta method The second analysis based on risetime to be presented in this paper makes use of the dependence of t / on the distance r from the shower axis to derive a new event parameter s. From the t / measured for each SD station within an event, the parameter i = (t / t bench / )/σt / is computed, where t bench / is obtained from a benchmark and σt / is the uncertainty on t /. s is defined as the average of i over N selected stations, s = i i /N. Two intermediate steps are important for the derivation of s : the definition of the benchmarks and the estimation of the t / uncertainties. First, the benchmark is defined as the average behavior of t / as a function of r observed in data for a given reference primary energy. By construction, the s vanishes at the reference energy. The benchmark curve was parametrized accounting for its dependence on the zenith angle. Secondly, the t / uncertainties are determined through a detailed study of the subsets of SD twins stations, which are pairs of stations located effectively at the same position, and pairs, which are stations within the same event at different positions but at approximately the same distance from the shower axis. A detailed parametrization of σt / was then performed by accounting for its dependences on r, θ, and the station signal S. The full description of the method and the results can be found in Ref. [9]. In Fig. 5, we show the s in energy bins as a function of the primary energy together with the predictions by simulations with two hadronic models. The two plots show the results for the two SD arrays, with SD stations spaced by 750 m on the left and 500 m on the right. The energy bins chosen for the definition of the benchmarks are 7.7 < lg(e/ev) < 7.8 and 9. < lg(e/ev) < 9. for the 750 and 500 m array, respectively. The composition interpretation from the comparison of the measured s with the predictions from simulations is not consistent with the one from the X max measurements (see Ref. [9]). Although strong similarities can be seen on the energy evolution of ln A, a systematic difference of ln A to is observed, where the composition derived from s is heavier than the one from X max. These differences on ln A are of the same order as the differences observed in the t / azimuthal asymmetry analysis (see Sec. 5). Thus, the s method provides us with further evidence that the hadronic models cannot properly describe the t / parameter, assuming that the uncertainties on the X max predictions are relatively small. Again, this can be related to the muon deficit problem, since the t / is sensitive to both electromagnetic and muonic components. It is worthwhile noting that, apart from testing the predictions of the hadronic models, the s method can also be effectively used for composition inferences through a cross calibration procedure with the X max measured by the FD (see Ref. [9] for the composition results). 7 Summary The experimental setup of the Pierre Auger Observatory offers great capability for testing hadronic interactions. While the calorimetric energy and the longitudinal development of the showers (X max ) can be measured by the FD, the SD provides the lateral distribution of the particles on the ground as well as the particle arrival time distributions. By combining measurements of both detectors, it is possible to reconstruct a number of properties of EAS that can be used to test the consistency of the EAS description with the simulations with hadronic interaction models. We have presented here a selection of five analyses. In Secs. and 3, the muon content of EAS was measured with two different approaches and using datasets with complementary zenith angle ranges. The muon deficit in simulations was observed in both cases. An increase of at least 30% on the number of muons in simulation predictions is required to make the muon content measurements consistent with the composition interpretation from the X max measurements. In Sec. 4, the measured arrival time distributions of the particles at the ground were used to access the longitudinal development of the muonic component. The maximum of the muon production depth was reconstructed and, by comparing its moments to simulation predictions, it is observed that the hadronic models cannot provide a consistent description of the muon production profile and the X max. In Secs. 5 and 6, two analyses based on the t / parameter were presented: the t / azimuthal asymmetry analysis and the s method. The results from both analyses show again an inconsistency in the descriptions of these observables when using the X max as a reference. The discrepancy in this case is not as large as in the case of the pure muonic observables (N µ and X µ max) and it might be also related to the deficit of muons in simulations. More precise constraints on the hadronic models will be possible in the future with AugerPrime, the upgrade of the Pierre Auger Observatory [0]. By using dedicated muon detectors of two types (SSD and AMIGA), more information about the muonic component will be obtained and valuable experimental input will be provided for the study of hadronic interactions. References [] A. Aab et al. (Pierre Auger Collab.), Nucl. Instrum. Methods Phys.. A 798, 7 (05), 50.033 [] T. Pierog, Proc. of 35th ICRC (07) [3] A. Aab et al. (Pierre Auger Collab.), Phys. Rev. D 90, 005 (04), 409.4809 [4] J. Bellido (for the Pierre Auger Collab.), Proc. of 35th ICRC (07), 708.0659 [5] T. Abu-Zayyad et al. (HiRes/MIA Collab.), Phys. Rev. Lett. 84, 476 (000), astro-ph/9944

s 750 m array s 500 m array proton proton 0.5 0.5 0 iron 0 iron -0.5-0.5 - - QGSJetII-04 7.6 7.8 8 8. 8.4 8.6 8.8 log(e/ev) - - QGSJetII-04 8.6 8.8 9 9. 9.4 9.6 9.8 0 log(e/ev) Figure 5. Results of the s method analysis [9]. [6] H. Dembinski (IceCube Collab.), EPJ Web Conf. 45, 0003 (07) [7] A. Aab et al. (Pierre Auger Collab.), Phys. Rev. D 9, 03003 (05), 408.4 [8] A. Aab et al. (Pierre Auger Collab.), Phys. Rev. Lett. 7, 900 (06), 60.08509 [9] R.U. Abbasi et al. (Telescope Array Collab.), Phys. Rev. D 98, 000 (08), 804.03877 [0] J.A. Bellido et al., Phys. Rev. D 98, 0304 (08), 803.0866 [] T. Pierog et al., Phys. Rev. C 9, 034906 (05), 306.0 [] S. Ostapchenko, Phys. Rev. D 83, 0408 (0), 00.869 [3] M. Mallamaci (for the Pierre Auger Collab.), Proc. of 35th ICRC (07), 708.0659 [4] S. Ostapchenko, M. Bleicher, Phys. Rev. D 93, 0550 (06), 60.06567 [5] T. Pierog et al., Proc. of the 34th ICRC (05) [6] A. Aab et al. (Pierre Auger Collab.), Phys. Rev. D 90, 00 (04), 407.599 [7] S. Ostapchenko, Nucl. Phys. Proc. Suppl. 5, 43 (006), hep-ph/0433 [8] A. Aab et al. (Pierre Auger Collab.), Phys. Rev. D 93, 07006 (06), 604.00978 [9] A. Aab et al. (Pierre Auger Collab.), Phys. Rev. D 96, 003 (07), 70.0749 [0] A. Aab et al. (Pierre Auger Collab.) (06), 604.03637