Temperature-Modulated DSC

Similar documents
Temperature Control Modes in Thermal Analysis

Melting and solidi cation of Pb nanoparticles embedded in an Al matrix as studied by temperature-modulated di erential scanning calorimetry

Modulated-Temperature Thermomechanical Measurements

Temperature-Modulated Differential Scanning Calorimetry Analysis of High- Temperature Silicate Glasses

Modulated DSC Paper #8 Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change

Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene

Application of Isothermal Microcalorimetry for Stability Evaluation of Solid Dosage Form

APPLICATIONS OF THERMAL ANALYSIS IN POLYMER AND COMPOSITES CHARACTERIZATION. Wei Xie TA Instruments

THEORY AND APPLICATIONS OF MODULATED TEMPERATURE PROGRAMMING TO THERMOMECHANICAL TECHNIQUES

DATA ANALYSIS WITHOUT FOURIER TRANSFORMATION FOR SAWTOOTH-TYPE TEMPERATURE-MODULATED DSC

K. Ishikiriyamaa and B. Wunderlich*

The Kinetics of B-a and P-a Type Copolybenzoxazine via the Ring Opening Process

TOPEM the new advanced multi-frequency TMDSC technique

Thermodynamic Properties of Polymer Solutions

Calorimetry: differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC)

The morphology of PVDF/1Gra and PVDF/1IL/1Gra was investigated by field emission scanning

Crystallization and Relaxation Dynamics of Amorphous Loratadine under Different Quench-cooling Temperatures

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite* 1

APPLICATION OF THERMAL METHODS IN THE CHEMISTRY OF CEMENT: KINETIC ANALYSIS OF PORTLANDITE FROM NON- ISOTHERMAL THERMOGRAVIMETRC DATA

Bitumen microstructure by modulated differential scanning calorimetry. Masson, J-F. ; Polomark, G. M.

Common Definition of Thermal Analysis

Impedance Analysis and Low-Frequency Dispersion Behavior of Bi 4 Ti 3 O 12 Glass

Differences/Difficulties of Calorimetry Measurements of 1 st and 2 nd Order Transitions SHANNON LEE 12/5/18

Simultaneous measurement of thermal diffusivity, heat capacity, and thermal conductivity by Fourier transform thermal analysis

MODULATED-TEMPERATURE THERMOMECHANICAL ANALYSIS

Isoconversional and Isokinetic Studies of 2605SA1 Metglass

DSC AND TG/DTA AS PROBLEM-SOLVING TOOLS: CHARACTERIZATION OF PHARMACEUTICAL COMPOUNDS

DSC AS PROBLEM-SOLVING TOOL: BETTER INTERPRETATION OF Tg USING CYCLIC DSC

QUANTITATIVE EVALUATION OF CURING SHRINKAGE IN POLYMERIC MATRIX COMPOSITES

_ TA221 Brochure: Thermal Analysis & Rheology Systems Product Overview. _ TA006 Product Bulletin: Mechanical Cooling Accessory for TMA 2940

Chemometrics and Intelligent Laboratory Systems

Characterization of Solid State Drugs by Calorimetry

Journal of MATERIALS RESEARCH

DSC PT 10. Applications

DSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility

Thermal degradation kinetics of Arylamine-based Polybenzoxazines

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Comprehensive Handbook of Calorimetry and Thermal Analysis

Data Treatment in Non-isothermal Kinetics and Diagnostic Limits of Phenomenological Models

High Pressure DSC Differential Scanning Calorimeter

News & Trends for Thermal Analysis

A DSC STUDY OF THE THERMAL DECOMPOSITION OF 2 METHOXYAMINO 3, 5 DINITRO PYRIDINE

Katarzyna Lewandowska

BROADBAND DIELECTRIC SPECTROSCOPY - BASICS AND SELECTED APPLICATIONS

Thermal analysis of Li 2 O TeO 2 glass

Nucleation Behavior of Polypropylene with a Nan-O-Sil Additive Dr. Previn Shah, Rheoplast Associates

Non-Isothermal Crystallization and Thermal Degradation Kinetics of Biodegradable Poly(butylene adipate-co-terephthalate)/starch Blends

A FINITE ELEMENT COUPLING MODEL FOR INTERNAL STRESS PREDICTION DURING THE CURING OF THICK EPOXY COMPOSITES

Chapter 31. Thermal Methods

Simultaneous Thermal Analyzer (DTA/TGA)

Appendix A. List of Publications (A D) and Research Associates (E) of Bernhard Wunderlich

ISO INTERNATIONAL STANDARD. Plastics Differential scanning calorimetry (DSC) Part 4: Determination of specific heat capacity

Influence of Substituent on Thermal Decomposition of 1H-1,2,4-Triazole

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

Modelling of viscoelastic properties of a curing adhesive

Thermal Analysis. Fundamentals and Applications to Polymer Science. Second Edition

G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers"

Dielectric Spectroscopy Analysis of Recycled PET with Different Synthetic Polymer Blends

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Capturing the mechanical aging kinetics by thermal analysis

Polymerization Mechanisms and Curing Kinetics of Novel Polymercaptan Curing System Containing Epoxy/Nitrogen

Maleke ashtar University of Technology, Esfahan, Iran (Received: 10/5/2015, Accepted: 1/26/2015)

Glass transition and enthalpy relaxation of amorphous lactose glass

Temperature Dependent Dielectric and Thermal Properties of Whey Protein Gel

Sub -T g Relaxation in Thin Glass

Thermodynamic stability and transformation of pharmaceutical polymorphs*

Calorimetric Principles and TAM III

Thermal Analysis. Short Courses POLYCHAR 25 Kuala Lumpur. Copyright 2017 by Jean-Marc Saiter

Microcalorimetric techniques

TAWN tests for quantitatively measuring the resolution and sensitivity of DSCs (version 2.1)

SPECIFICITY OF DECOMPOSITION OF SOLIDS IN NON-ISOTHERMAL CONDITIONS

Available online at Procedia Engineering 45 (2012 ) YAO Miao*, CHEN Liping, YU Jinyang, PENG Jinhua

CURRICULUM VITAE. Degree Awaited M.Phil 2007 DAVV, Indore, India Physics 70% Vikram University, India

Supporting Information

The Direction of Spontaneous Change: Entropy and Free Energy

Application of the Avrami, Tobin, Malkin, and Urbanovici±Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene $

Kinetic Investigation of Thermal Decomposition Reactions of 4 -Demethypodophyllotoxin and Podophyllotoxin. PuHong Wen

Hyper-Mobile Water around Ions, Charged Polymers, and Proteins Observed with High Resolution Microwave Dielectric Spectroscopy

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed

Calorimetry in Food Processing: Analysis and Design of Food Systems COPYRIGHTED MATERIAL

Frequency and Composition Dependence on the Dielectric Properties for Mg-Zn Ferrite.

Chapter 5: Molecular Scale Models for Macroscopic Dynamic Response. Fluctuation-Dissipation Theorem:

Thermal Characterisation of the Influence of Additives on the Curing of Phenolic Novolak Composites. Stephen Lele BSc

Glass Transition as the Rheological Inverse of Gelation

journal of August 2006 physics pp

APPROXIMATIONS FOR THE TEMPERATURE INTEGRAL Their underlying relationship

Viscoelasticity of a Single Polymer Chain

Structural Relaxation and Refractive Index of Low-Loss Poly(methyl methacrylate) Glass

How fast are chemical reactions?

Liquid to Glass Transition

Kinetics and Curing Mechanism of Epoxy and Boron Trifluoride Monoethyl Amine Complex System

The Cluster Size and Change of Water Molecules in Poly(vinyl alcohol) Film by Heating

Effect of A-Zeolite on the Crystallization Behavior of In-situ Polymerized Poly(ethylene terephthalate) (PET) Nanocomposites

Characteristics of Thermosonic Anisotropic Conductive Adhesives (ACFs) Flip-Chip Bonding

Synergy of the combined application of thermal analysis and rheology in monitoring and characterizing changing processes in materials

Role of Ge incorporation in the physical and dielectric properties of Se 75 Te 25 and Se 85 Te 15 glassy alloys

Influence of the thermodynamic state of bisphenol A and aliphatic epoxy oligomers on the temperature dependences of Newtonian viscosity

Study of Thermal Decomposition Kinetics of Palm Oleic Acid-Based Alkyds and Effect of Oil Length on Thermal Stability

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics

A NEW MEASUREMENT AND EVALUATION METHOD FOR DSC OF PCM SAMPLES

Transcription:

?e?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @?@?f@?@?@? @?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?@?@?f@?@ @?@?@@@?@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@@?@?@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e@??e?@?@ @?@?@@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@?@@@?@?@ @?@?f@?@?@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?f@?@?@?f@?@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@??e?@h?@?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @?@?f@?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@?@?@f?@?@ @?@?@@@?@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@@?@?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e?@?@?@e??@?@ @?@?@@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@@@?@?@?@?@@@?@?@ @?@?f@?@?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@f?@?@?@f?@?@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@??@h?@ Netsu Sokutei 29121-26 2001 10 17 2001 12 10 Temperature-Modulated DSC Akihiko Toda (Received October 17, 2001; Accepted December 10, 2001) The method of temperature-modulated DSC is reviewed in terms of its applicability and valuable characteristics. This method is frequently employed as a convenient tool for the measurement of heat capacity and its relaxation phenomena. T-M DSC can differentiate processes sensitive to temperature modulation, and hence the application is also valuable for the separation of different processes taking place simultaneously and for the examination of kinetics of phase transitions and chemical reactions. 90 DSCT-M DSCDSC 1-7) DSC DSC reversing heat flow RHF total heat flow THFTHF DSC T-M DSC DSC T-M DSCTHF RHF non-reversing heat flownrhf NRHF THF RHF DSC60 Fig.1 2 physical ageing vitrificationconstrained amorphous phase1 T-M DSC 8) T-M DSCFig.2 2002 The Japan Society of Calorimetry and Thermal Analysis. 21

number of papers year Fig.1 Number of papers applying T-M DSC in the field of physical and chemical sciences. T / C0 / mj K 1 ϕ / deg R φ / deg Fig.3 Plots of calibration coefficient, R, against phase angle, ϕ, on a master curve for the modulation period of 28 s. Purge gases are He and N 2. Fig.2 (c) (d) (e) t / s T-M DSC results for the reaction process of an epoxy-amin system at β 2.0 K min 1, T s 0.4 K and period 80 s. T s QFig.2 C 0e i ϕ Figs.2(c) and (d) T s βt Re[ T s e i (ω t ε ) ] (1) Q Q Re[ Qe i (ω t δ ) ] (2) Qe i (ω t δ ) C 0e i ϕ d Ts e i (ω t ε ) (3) dt C 0e i ϕ ( Q / ω Ts )e i (ε δ π ) 2 (4) DSC ϕ 9) 10) R C s / C 0 ϕ 1 Fig.3 C s 11) ω 0 ( ) C s 2 C 0 1 Aω 2 (5) Ce i α C ' i C " 11) C RHF β C RHFTHF Q NRHFTHF RHFFig.2(e)Fig.2 RHF RHFTHF NRHF DSC 10 100 12) 22

DSC Q e i (ω t δ ) in mw tan α Ts e i (ω t ε ) in K T / Fig.4 Typical examples of Lissajous diagram of modulated heat flow and sample temperature in the melting region of PET crystals. Fig.5 T-M DSC results in the glass transition of amorphous PET at β 1.0 K min 1 and period 40 s. 1 T-M DSC1 Fig.423 13-15) β 1 1 β heating only heating only (4) 16) C / mj K 1 t / min Fig.6 Plots of the time sequence of the apparent heat capacity (thick line) overlapped with the exothermic heat flow (thin line) of polyethylene crystallization under quasi-isothermal condition of T s127.5 with T s0.2 K and period 52 s. DSC Fig.5 RHF DSC 17) DSC THF DSC RHF NRHF 23

Fig.7 C ' Schematic Cole-Cole plot of the apparent heat capacity in transition regions. DSC Fig.6 18) 19,20) X 21) fold 1 1 DSC RHF RHF Reversing Reversing τω Fig.7 τ ωτ 1 Fig.8 90 F' T 1/ω 18) F' T Te i ω t C s d Te i ω t dt i (C s F ' T) ω T / Plots of THF (thick line) and RHF (thin lines) in the melting region of ice trapped in pores and nylon 6 crystals. d Te i ω t (6) dt 1/ω τ ωτ 1 26) RHF THF RHFTHF Fig.8 RHF ( ωτ 0) THF (7) NRHF ( ωτ 0) 0 (8) 24

DSC ( C 'Cs) / ( Fmelt /β ) C / mj K 1 C " / ( Fmelt /β ) t / s Fig.9 Quasi-isothermal measurement for the reaction process of an epoxy-amin system with period 80 s and T s 0.2 K. τ Fig.7 24) 23 C " THF F E ω C " E RT 2 (9) F Kissinger plot 22) 18) 1/ω RHF Fig.2(c)- (e) RHF THF NRHF Fig.9 23) RHF THF F exo RHFωτ0THF F exo NRHF Fig.8 24) NRHF ( ωτ 0) F exo (10) RHFTHF, DSCRHFTHF 27) Fig.10β τ ( β ) 24) Ce i α C s F /β 1 iωτ ( β ) log(ω) Fig.10 Frequency and heating rate dependences of the real and imaginary parts of the apparent heat capacity at the peak temperature in the melting region of polyethylene crystals under heating only condition. β 0.2 (), 0.4 (), 0.8 () and 1.6 K min 1 (). (11) β τ β 25

τ β R T 24) τ β x R T x /(1x) (12) x 0.51 x 0.5 T x 1.0 log R T T-M DSC T-M DSC DSC 1) P. S. Gill, S. R. Sauerbrunn, and M. Reading, J. Therm. Anal. 40, 931 (1993). 2) M. Reading, D. Elliott, and V. L. Hill, J. Therm. Anal. 40, 949 (1993). 3) M. Reading, A. Luget, and R. Wilson, Thermochim. Acta 238, 295 (1994). 4) B. Wunderlich, Y. Jin, and A. Boller, Thermochim. Acta 238, 277 (1994). 5) A. Boller, Y. Jin, and B. Wunderlich, J. Therm. Anal. 42, 307 (1994). 6) I. Hatta, Jpn. J. Appl. Phys. 33, L686 (1994). 7), Thermochim. Acta 304/305 (1997); J. Therm. Anal. 54 (1998); Thermochim. Acta 330 (1999). 8) 22, 82 (1995). 9) T. Ozawa and K. Kanari, Thermochim. Acta 288, 39 (1996). 10) I. Hatta and S. Muramatsu, Jpn. J. Appl. Phys. 35, L858 (1996). 11) A. Toda, T. Arita, C. Tomita and M. Hikosaka, Polymer 41, 8941 (2000). 12) M. Nishikawa and Y. Saruyama, Thermochim. Acta 267, 75 (1995). 13) I. Hatta, H. Ichikawa, and M. Todoki, Thermochim. Acta 267, 83 (1995). 14) K. Ishikiriyama, A. Boller and B. Wunderlich, J. Therm. Anal. 50, 547 (1997). 15) J. Pak and B. Wunderlich, J. Polym Sci. B38, 2810 (2000). 16) I. Hatta and A. A. Minakov, Thermochim. Acta 330, 39 (1999). 17) A. Hensel, J. Dobbertin, J. E. K. Schawe, A. Boller, and C. Schick, J. Therm. Anal. 46, 935 (1996). 18) A. Toda, T. Oda, M. Hikosaka, and Y. Saruyama, Polymer 38, 231 (1997). 19) I. Okazaki and B. Wunderlich, Macromolecules 30, 1758 (1997). 20) K. Ishikiriyama and B. Wunderlich, Macromolecules 30, 4126 (1997). 21) B. Goderis, H. Reynaers, R. Scherrenberg, V. B. F. Mathot, and M. H. J. Koch, Macromolecules 34, 1779 (2001),. 22) A. Toda, T. Arita, and M. Hikosaka, J. Therm. Anal. Calor. 60, 821 (2000). 23) G. Van Assche, A. Van Hemelrijck, H. Rahier, and B. Van Mele, Thermochim. Acta 268, 121 (1995). 24) A. Toda, C. Tomita, M. Hikosaka, and Y. Saruyama, Polymer 39, 5093 (1998). 25), 26, 161 (1999). 26) K. Kanari and T. Ozawa, J. Therm. Anal. 49, 979 (1997). 27) W. Chen, A. Toda, I. K. Moon, and B. Wunderlich, J. Polym. Sci. B37, 1539 (1999). DSCT-M DSC DSC T-M DSC 1 Akihiko Toda, Faculty of Integrated Arts and Sciences, Hiroshima Univ., TEL. 0824-24-6558, FAX. 0824-24-0757, e-mail: atoda@hiroshima-u. ac.jp 26