Chapter 9 Electro-Optics

Similar documents
Chapter 9 Electro-Optics

11/29/2010. Propagation in Anisotropic Media 3. Introduction. Introduction. Gabriel Popescu

8. Propagation in Nonlinear Media

7 Optical modulators. 7.1 Electro-optic modulators Electro-optic media

(Introduction) Linear Optics and Nonlinear Optics

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

Non-linear Optics II (Modulators & Harmonic Generation)

Innovation and Development of Study Field. nano.tul.cz

Chapter 9 - Polarization

Summary of Fourier Optics

Ref. p. 110] 7.1 Modulators 85

Wave Turbulence and Condensation in an Optical Experiment

Structure of Surfaces

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Optical Imaging Chapter 5 Light Scattering

Ultracold atoms and molecules

18. Active polarization control

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Electromagnetism II Lecture 7

F85/F86 - Grundpraktikum Optik (Photonics)

THE WAVE EQUATION (5.1)

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Acoustooptic Devices. Chapter 10 Physics 208, Electro-optics Peter Beyersdorf. Document info ch 10. 1

Topological phases of matter give rise to quantized physical quantities

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Cold atoms in optical lattices

Lasers and Electro-optics

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Concepts for Specific Heat

Fourier Approach to Wave Propagation

The Interaction of Acoustic Phonons and Photons in the Solid State

Electromagnetic Properties of Materials Part 2

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Optical Lattices. Chapter Polarization

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm).

Optics, Optoelectronics and Photonics

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals

12. Nonlinear optics I

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

Quantum Corrections for Monte Carlo Simulation

Electromagnetic optics!

4: birefringence and phase matching

Introduction to solid state physics

Electro-optics. Chapter 7 Physics 208, Electro-optics Peter Beyersdorf. Document info

6.730 Physics for Solid State Applications

Diffraction of light by acoustic waves in liquids


Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

MP464: Solid State Physics Problem Sheet

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

Supplementary Figure 1: SAW transducer equivalent circuit

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

Decoherence in molecular magnets: Fe 8 and Mn 12

GRATING CLASSIFICATION

Lecture 12: Phonon heat capacity

flbc in Russia. PIWiREE COHORTS ARE NOT PULL- ING TOGETHER. SIGHTS AND SCENES IN ST. PETERSBURG.

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

Dr. Tao Li

Discrete diffraction in an optically induced lattice in photorefractive media with a quadratic electro-optic effect

AN1106 Maximizing AO Diffraction efficiency. Efficiency is typically defined as the ratio of the zero and first order output beams:

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Review of Semiconductor Physics

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

High-Resolution. Transmission. Electron Microscopy

36. Nonlinear optics: (2) processes

5. Liquid Crystal Display

Introduction to Condensed Matter Physics

LOWELL. MICHIGAN, THURSDAY, AUGUST 16, Specialty Co. Sells to Hudson Mfg. Company. Ada Farmer Dies When Boat Tips

Effects of Various Uncertainty Sources on Automatic Generation Control Systems

Quantum Mechanics: Particles in Potentials

Atomic Physics (Phys 551) Final Exam Solutions

3. LATTICE VIBRATIONS. 3.1 Sound Waves

Supplementary Table 1. Parameters for estimating minimum thermal conductivity in MoS2

Lecture 3 : Electrooptic effect, optical activity and basics of interference colors with wave plates

36. Nonlinear optics: χ(2) processes

B 2 P 2, which implies that g B should be

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Quantum Mechanics. p " The Uncertainty Principle places fundamental limits on our measurements :

[D] indicates a Design Question

Slow Photons in Vacuum as Elementary Particles. Chander Mohan Singal

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA

INSTITUTE BECKMAN. K. Hess, Y. Liu, F. Oyafuso, W.C. Ng and B.D. Klein. The Beckman Institute University of Illinois at Urbana-Champaign

4. The interaction of light with matter

Optical Spectroscopy. Steady State and Time Dependent Fluorescence Measurements. Kai Wen Teng. October 8 th PHYS 403 Fall 2013

# FIR. [ ] = b k. # [ ]x[ n " k] [ ] = h k. x[ n] = Ae j" e j# ˆ n Complex exponential input. [ ]Ae j" e j ˆ. ˆ )Ae j# e j ˆ. y n. y n.

3A. Average specific heat of each free electron at constant volume

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Phase Sensitive Faraday Rotation in. and various Diamagnetic liquid Samples

Transcription:

Chapter 9 Electro-Optics Gabriel Popescu University of Illinois at Urbana Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical and Computer Engineering, UIUC

Electro Optics 1 st order effect: w 1 Pi ii jjrijkej ( ) Ek () i i i i j ijk j k ( ) 4 Dx n n r13ey EDc n ner133ez EDC 6 5 4 Dy n n r13e xedc 4 r kdp 53 Dz ne Ez D n E n n r E E DC DC 11O z Chapter 9: Electro Optics

Electro Optics 4 n n r63e Dc 4 ij n r63edc n ne ' ij W( ) W( ) cos sin n cos sin sin cos n sin cos n ij n ; 4 n e b i 4 n r63 Ez ( DC) biaxial crystal Chapter 9: Electro Optics 3

Modulators Eg KDP(tetra 4m ) r 41, r 5, r 63 only three nonzero elements n KDP 41 5 63 x n ; 1 1 n n n n n n n n x y n 1 n n 1 r 1 1 3 n n r63ez ( DC) Chapter 9: Electro Optics 4

Modulators ( n n ') d n r E ( DC ) d 3 x y 63 z n V V n r 3 63 linearize T V T sin 4 sin s Add QW V Chapter 9: Electro Optics 5

Modulators Let V V sin t m m T sin sin m m t 4 1 1 1 cos sin 1 sin sin m m t m m t 1 1T 1 sin t m m m m linear Chapter 9: Electro Optics 6

Quadratic (Kerr) ( ) 1 i ii jj ijk j k e P s E ( ) E ( DC ) E ( DC ) Chapter 9: Electro Optics 7

Applications of EO longitudinal modulators transverse For LiNiO 3 : 1 3 nx n n r 13 E 1 3 ny n n r13e 1 3 nz ne ne r33e 3 v nl n rv 13 V 3 v n r Ed 13 Phase mod(indep. of polariz.) Chapter 9: Electro Optics 8

Chapter 9 Acousto-optics Gabriel Popescu University of Illinois at Urbana Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical and Computer Engineering, UIUC

Acousto optics optics i j i ijklsklej jkl x 1 6 ac wave: z S13 S5 13 5 3 4 P n n p S E U ( z, t) xa cos( t kz) Chapter 9: Acousto optics 1

Chapter 1: Introduction 11

Acousto optics optics K k K k 1 k k1 nk sin k / K / K sin B ; Bragg angle

Acousto optics optics small ( k k ) Doppler Shift Δk Δv Kvs Quantum mechanics k' k ' conservation of momentum conservation of energy Chapter 9: Acousto optics 13

Anisotropic media k' k k ' n-different ' - negative k'sin ' ksin ; ' n' n sin ' sin ; n sin ' sin n' n' k wavelength of sound Chapter 9: Acousto optics 14

Anisotropic Ex: C k ' k -(e) k ' - scattered in prop. Plane (o) k ' (o) n sin ' e sin n' n ' n n e ', n n e e n n n n Chapter 9: Acousto optics 15 e

Small angle Scattering I scatt I inc sin ( L L ) 3/ k ( nn 1 ) ep ijke S e 4 cos cos 1 i ke j Kin. Energy/ V = ½ W total I ac v s 1 v U U 1 1 3 s vs u vs [ U ] I ac t 1 3 vs S U S z U Chapter 9: Acousto optics 16

Small angle Scattering S 3/ ac 3 Small cos 1 1 s I I ac k ( nn 1 ) I P 3 v 4 cos cos v s M 6 n p v p 3 s table 3/ 3 k ( nn 1 ) v s M I ac 6 3 4 n vs MI ac Chapter 9: Acousto optics 17

Small angle Scattering Detuning: sin B k sin sin 1 ; B k k sin k sin 1 1 ( Bragg) k sin ( ) k 1 cos 1 1 k cos 1 ( ) k(cos 1cos ) k sin B I scat sin L 1 ; I inc 1 s 1 Chapter 9: Acousto optics 18

Finite Beams A B nw ; L ; f f size of acoustic beam 1 ; L nv cos 4v cos s s s -Full v nw w s 1 ; W or nvs cos ( ) f L! Not overlap with undiffracted order 1 Chapter 9: Acousto optics 19

N N spots f nw W f N nv s cos v s B f ; cond B nv s f f n L nv s f L Chapter 9: Acousto optics