Completion of a Dislocated Metric Space

Similar documents
Review of the Riemann Integral

POWER SERIES R. E. SHOWALTER

We will begin by supplying the proof to (a).

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

Sequence and Series of Functions

Some Results on the Variation of Composite Function of Functions of Bounded d Variation

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too.

Chapter 7 Infinite Series

b a 2 ((g(x))2 (f(x)) 2 dx

Reversing the Arithmetic mean Geometric mean inequality

Math 104: Final exam solutions

Basic Limit Theorems

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

Convergence rates of approximate sums of Riemann integrals

{ } { S n } is monotonically decreasing if Sn

Mathematical Notation Math Calculus & Analytic Geometry I

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

Advanced Calculus Test File Spring Test 1

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

M3P14 EXAMPLE SHEET 1 SOLUTIONS

Publications of Problems & Applications in Engineering Research-PAPER ISSN: ; e-issn:

Mathematical Notation Math Calculus & Analytic Geometry I

Orthogonal functions - Function Approximation

Homework 2 solutions

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

Chapter 25 Sturm-Liouville problem (II)

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

Interpolation. 1. What is interpolation?

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Relation of BSTs to Quicksort, Analysis of Random BST. Lecture 9

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Riemann Integral and Bounded function. Ng Tze Beng

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

MAS221 Analysis, Semester 2 Exercises

Riemann Integration. Chapter 1

Math 140B - Notes. Neil Donaldson. September 2, 2009

Convergence rates of approximate sums of Riemann integrals

The Weierstrass Approximation Theorem

The limit comparison test

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Principles of Mathematical Analysis

Topic 9 - Taylor and MacLaurin Series

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

MTH 146 Class 16 Notes

( a n ) converges or diverges.

Integral Operator Defined by k th Hadamard Product

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

Numbers (Part I) -- Solutions

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

1.3 Continuous Functions and Riemann Sums

Chapter 2 Infinite Series Page 1 of 9

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

Topic 4 Fourier Series. Today

Infinite Sequences and Series. Sequences. Sequences { } { } A sequence is a list of number in a definite order: a 1, a 2, a 3,, a n, or {a n } or

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

Review of Sections

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

Multiplicative Versions of Infinitesimal Calculus

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

LEVEL I. ,... if it is known that a 1

3.7 The Lebesgue integral

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Course 121, , Test III (JF Hilary Term)

Limit of a function:

Toeplitz and Translation Operators on the q-fock Spaces *

f(tx + (1 t)y) h(t)f(x) + h(1 t)f(y) (1.1)

Merge Sort. Outline and Reading. Divide-and-Conquer. Divide-and-conquer paradigm ( 4.1.1) Merge-sort ( 4.1.1)

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

Chapter Real Numbers

Important Facts You Need To Know/Review:

MA541 : Real Analysis. Tutorial and Practice Problems - 1 Hints and Solutions

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

On a New Subclass of Multivalant Functions Defined by Al-Oboudi Differential Operator

2 Banach spaces and Hilbert spaces

Integration. Table of contents

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R.

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(II.G) PRIME POWER MODULI AND POWER RESIDUES

Properties of Fuzzy Length on Fuzzy Set

Section 6.3: Geometric Sequences

MA123, Chapter 9: Computing some integrals (pp )

lecture 16: Introduction to Least Squares Approximation

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

COMMON FIXED POINT THEOREMS IN FUZZY METRIC SPACES FOR SEMI-COMPATIBLE MAPPINGS

Journal of Inequalities in Pure and Applied Mathematics

Limits and an Introduction to Calculus

Transcription:

69 Chpter-3 Completio o Dislocte Metric Spce 3 Itrouctio: metric o X [] i We recll tht istce uctio o set X is si to be islocte i) y ) ii) 0 implies y iii) z) z or ll y z i X I is islocte metric o X the X ) is clle islocte metric spce is clle islocte qusimetric i symmetry coitio i) is roppe rom the bove eiitio We bbrevite islocte metric s metric islocte qusi metric s q metric I is q metric D is eie o the X D ) is islocte metric spce X X by D y )

By theorem 5 the topology 70 D iuce by D coicies with r li the ottio o chpter Further the clss B { V )/ X 0}is ope bse or D The presece o the trigle iequlity les Hussor property or some ice properties to X D) I prticulr X D) stisies properties C through C 5 Moreover iv) Cuchy sequeces i X D) Cuchy sequeces i X ) re ieticl v) Coverget sequeces i X D) re Cuchy sequeces hve uique limits X D) is complete i X ) is complete I the trigulr iequlity is elete rom the ioms o the it is iicult to eie the cocept o completio o the resultig istce spce I such morphous spce eve costt sequeces my il to coverge This relte iiculties compel us to reti the trigle iequlity i the iscussio o completeess We ormlly recor the eiitio o completeess: A metric spce X ) is complete i every Cuchy sequece i X ) coverges ' Deiitio: Let X ) Y ) be istce spces A mp : X Y is clle isoistce i or ll y X oe hs ) ) X Y re si to be isoistt i there eist isoistce : X Y oto

7 3 Completio: I wht ollows is islocte metric o oempty set X Lemm 3: is isolte poit o X i X {} or i 0 y Proo: Suppose is isolte poit o X The there eists r 0 such tht y r This implies X {} or i r 0 y Coversely suppose X {} or i 0 y I X {} the clerly is isolte poit o X I X {} the i r 0 y Hece is isolte poit o X which implies r r or ll y Corollry 3: I ) 0the is isolte poit o X Proo: I y the ) y ) so ) or ll y i X So { } X or i ) 0 y Lemm33: I R R re equivlece reltios o isjoit sets A A the R R R is equivlece reltio o A A A Proo: Routie hece omitte

7 Theorem 34: Let X ) be islocte metric spce The there eists complete islocte metric spce X ) isoistce T : X ) X ) such tht T X ) is ese i X Proo: Let I be the collectio o isolte poits o X J X I I be the collectio o sequeces i X which re ultimtely costt elemet lyig i I RI Let J eote the clss o Cuchy sequeces i J We eie reltios RJ respectively o I J s ollows: I ) y) re sequeces i I the ) RI y) i the ultimtely costt vlue o ) coicies with tht o y ) I ) y) re sequeces i J the ) RJ y) i lim y) 0 Veriictio tht J R I is equivlece reltio is esy Let us ow veriy tht R is equivlece reltio Suppose ) J 0 Sice ) is Cuchy sequece i J lim ) 0 hece ) RJ ) provig tht RJ is releive Suppose ) RJ y) or ) y) J The lim y) lim y ) 0 Hece RJ is symmetric I ) y ) z ) J ) R y ) y ) R z ) the there eist two J J itegers such tht y) i y z) i

73 Hece z) y) y z) i m{ } This proves ) RJ z) hece tht RJ is trsitive Let X I J The RRis equivlece reltio o X Let X eote X I X X cotiig the sequece ) eotes the equivlece clss i We eie : X X [0 ) s ollows: ) i y re respectively the y y y I ultimtely costt terms o ) y) lim ) i y y I y J evetully This limit eists sice y ) is Cuchy sequece is iepeet o the choice o the represettive sequece i the equivlece clss y I I ) J y) I the eie y y ) J y) J the eie y lim y) We ow check tht this limit eists is iepeet o the choice o represettive elemets rom the equivlece clsses y ote tht it ollows rom the trigle iequlity tht First we

y) m ym) m) y ym) Sice ) y ) re Cuchy sequeces give 0 there eists positive iteger 0 y y m ) or ll m 0 This implies tht m m such tht 74 m ) y ) y ) provig tht y is Cuchy sequece o rel umbers By the completeess o R this sequece coverges The eiitio o RJ mkes it obvious tht lim y) is iepeet o the choice o the represettive sequeces ) y) Veriictio tht respectively rom the clsses y is -metric o X : Clerly y ) 0 y ) y ) or y X Suppose y ) 0 Let ) y ) y We irst see tht either ) y) re both i I or both i J Suppose o the cotrry ) ) I y ) J Let be the ultimtely costt vlue o Now 0 y ) lim y) But 0 ) y ) Hece 0 ) lim y) 0 cotrry to the ct tht I

Suppose y I ) y ) y with b the ultimtely costt vlues o ) y) respectively 75 The y ) 0 b) 0 b ) y ) y Suppose y J ) y ) y y ) 0 lim y ) 0 ) y ) y Veriictio o the trigulr iequlity is routie Embeig o X i X : I X let ) be the costt sequece ) where the equivlece clss cotiig ) Deie T : X X by T ) It is cler tht T is isoistce We ow veriy tht T X ) is ese i Cse i): X Let X 0 ) I I this cse let be the ultimtely costt vlue o ) The by the eiitio o T T X ) The Thus TX) i this cse Cse ii): ) J Sice ) is Cuchy sequece there eists positive iteger 0 such tht

76 ) i m Let The by virtue o the ct tht m J ) 0 ) ˆ lim Hece T X ) is ese i X ) is complete: Let ) 0 X be Cuchy sequece i m 0 implies m Sice T X ) is ese i tht z ) Hece 0 X 0 There eists 0 such tht There is o hrm i ssumig tht 3 3 0 X or ech positive iteger there eists m m m m z z ) z ) ) z ) m 3 i m 0 3 3 3 Hece z is Cuchy sequece i T X ) Sice T is isoistce z ) is Cuchy sequece i X Moreover z z ) z z ) i m 0 Let z eote z m m z ) z ) z z ) z i X such

77 lim z z m) m i 0 3 3 lim z ) 0 provig tht X ) is complete This completes the proo o theorem 34 Deiitio 35: Let X ) X ) be metric spces X ) be completio o X ) i is si to i) X ) is complete ii) there is isoistce T : X ) X ) such tht T X ) is ese i X Note: I X ) is complete metric spce the its completio is X ) itsel Lemm 36: Let X ) be - metric spce X ) be completio o X ) Let T : X Xbe isoistce embeig X i X with T X ) ese i X The poit y o Xis isolte poit i oly i y T) or some isolte poit o X Proo: Suppose y is isolte poit o X Suppose i possible y TX ) the sice T X ) is ese i X there eists sequece { T )} i T X ) such tht lim T ) 0 By lemm 3 it ollows tht y is ot isolte poit o X cotrictio

Hece y T) or some i X Now T is isolte poit o X hece tht o T X ) Sice X T X ) re isoistt is isolte poit o X Coversely suppose is isolte poit o X Sice T is isoistce T ) is isolte poit o T X ) Suppose to obti cotrictio T ) is ot isolte poit o X The or ech positive iteger k there eists elemet k i X such tht k 0 k T Sice k X either k T X) or there eists yk i T X ) such tht y ) T 0 k k k 78 Now Also yk T yk k ) k T k k y k sice y ) T k k k k Hece 0 yk T which by lemm 3 cotricts the ct tht T ) k is isolte poit o T X ) Theorem 37: Let X ) be metric spce X ) X ) be completios o X ) Ti : X ) Xi i ) i ) be isoistces such tht Ti X ) is ese i X i The there eists isoistce o to T : X ) X ) such tht ollowig igrm is commuttive Proo:

79 T Deiitio o T : I X is isolte poit o Xthe ) isolte poit o X hece T T is isolte poit o X is Deie T ) T T I X is ot isolte poit there eists sequece z ) i X such tht { Tz } coverges to i X ) Sice T is isoistce { T z } is coverget hece ) Cuchy sequece so { z } is Cuchy sequece i X Sice T is isoistce { T z } is Cuchy sequece i X ) Sice X ) is complete there eists z X such tht lim T z z) 0 This z is iepeet o the choice o the sequece { z } i X Deie T ) z By eiitio T T T T is isoistce: I y X T T T ) T T ) T T T ) T T ) T ) T ) T ) T ) So I y X X limt y limt y where y X the

80 T T lim limt T lim y limt lim T T ) y ) lim T y y ) ) whe X X y X or whe X y Xthe rgumet is similr Hece T is isoistce T is bijectio : Iterchgig the plces o X X we get i similr wy isoistce S : X X such tht T ST Sice ST T TT T We hve TST TT T A STT ST T Sice T X ) is ese i X T X) i X We get TS ietity o X ST is ietity o X Hece S T re bijectios

8 33 Completio o the metric ssocite with - metric: Pscl Hitzler [] itrouce - metric ssocite with metric use this metric i provig some ie poit theorems tht re eee i progrmmig lguges I this sectio we estblish tht the metric ssocite with the completio o metric o spce is the completio o the metric ssocite with the metric Deiitio 33: Let ) X be metric spce Deie o X X by i 0 i y y is metric o X is clle the metric ssocite with Clerly 0 y ) wheever y I s{ } r 0 X write B s r r r ) { y / s r} The V ) B ) { } V ) B ) { } r The collectio { V ) / Xr 0} { V ) / Xr 0} geerte the sme topology o X However coverget sequeces i X re ot ecessrily the sme sice costt sequeces re coverget sequeces with respect to while this hols wrt or with ) 0 oly r s r s r

As metioe i 4 eistece o poits with positive sel istce les to uplestess i the etesio o the cocept o cotiuity i metric spces s well This is eviet rom the ollowig Emple: Let be metric o set X which is ot metric so tht the set A { / ) 0} is oempty I is the metric ssocite with the the ietity mp i : X ) X ) is cotiuous i the usul sese But i A the costt sequece ) coverges i X ) while it oes ot coverge i X ) Deiitio: I X ) be metric spce Y ) be the metric spce ssocite with We cll : X Y sequetilly cotiuous i lim ) 0 lim ) 0 Propositio 33: lim ) 0 i either i) evetully ie there eists N such tht or N or ii) ) c be split ito subsequeces y ) z ) where y or every z or y lim z ) 0 Proo: Assumelim ) 0 The or y subsequece u ) o ) lim ) 0 I there oes ot eist N such tht u or ll N let u y ) be the possibly iite) subsequece o ) such tht y or ll Let z ) be the subsequece o ) tht remis ter eletig ech y Clerly z or y lim ) 0 Further z or every so z lim z ) 0 Coversely ssume tht the coitio hols 8

83 The lim ) 0 Deiitio: I s { } ) is sequece i X we sy tht ) is s -Cuchy sequece or simply s - Cuchy i ) is Cuchy sequece i X s ) Propositio 333: I sequece ) i X is - Cuchy the ) is - Cuchy Coversely i ) is - Cuchy is ot evetully costt the ) is - Cuchy Proo: Sice 0 m) m) - Cuchy - Cuchy Coversely suppose tht ) is - Cuchy Give 0 N ) such tht ) i N) m N) So i m N) N) m the m ) m I ) is ot evetully costt N) there eists m N) such tht m The ) ) ) m m ) m ) m Thus i ) is ot evetully costt the or ll m N) N) ) m Hece ) is - Cuchy

84 Emple 334: Let X 0 ) y the y 0 i i y y I ) is y sequece i 0 ) the ) is - Cuchy i 0 there eists N ) such tht m This implies tht lim 0 Coversely i lim 0 the 0 N ) such tht or m N) N) Hece m or m N) N) Costt sequeces re ot - Cuchy but - Cuchy Theorem 335: Let X ) be metric spce be the metric ssocite with o X X ) be the completio o X ) be the metric ssocite with o X The X ) is the completio o X ) I prticulr i X ) is complete metric spce the X ) is complete metric spce We prove tht i) X is ese i X ) ii) Every - Cuchy sequece i X is coverget Proo o i) Let X X The there eists sequece ) i X such tht lim ) 0 Sice X so tht implies tht X is ese i X ) lim ) 0 This

85 Proo o ii) Let ) be - Cuchy i X I ) is evetully costt the there eists N X such tht or N I this cse lim ) 0 or N hece ) is coverget Suppose ) is ot evetully costt The by propositio 333 ) is - Cuchy sequece Sice X ) is complete there eists X such tht lim ) 0 Sice 0 ) ) 0 lim ) 0 Hece ) coverget to This completes the proo o ii) 34 Fie poit theorems: Let X ) be metric spce : X X be mppig Write V ) z ) { / V ) 0} Clerly every poit o z ) is ie poit o but the coverse is ot ecessrily true We cll poits o z ) s coiciece poits o The set z ) is close subset o X Mthew s theorem [8] sttes tht cotrctio o complete metric spce hs uique ie poit The sme theorem hs bee justiie by lterte proo by Pscl Hitzler[8] We preset etesio o this theorem or coiciece poits

Theorem 34[]: Let X ) be complete metric spce : X X be cotrctio The there is uique coiciece poit or Proo: For y Cosequetly i Hece { X the sequece o itertes stisies 86 where is y cotrctive costt m m m m = } is Cuchy sequece i X ) I the ) lim lim So lim ) Sice ) Sice 0 ; lim ) 0 Hece 0 Uiqueess : I 0 the ) ) so tht ) ) ) ) )

87 ) 0 Hece Theorem 34[] : Let ) sequetilly cotiuous Assume tht X be metric spce : X X be ) ) m{ y ) } wheever 0 The hs uique coiciece poit wheever Cl ) is oempty or some X Proo: Recll ) { ) / 0} write V ) Z { / V ) 0} Sice is sequetilly cotiuous so is V I Z the V ) m{ ) } m{ V ) V } V V ) Wheever V ) 0 i e Z ------------- ) k I ) Z= the V V k k Hece V ) is coverget ------------- ) Let be cluster poit o ) i ) i N = lim i ) k =lim i k k ) Cl )

88 Sice V is sequetilly cotiuous k V ) = lim V i k ) ) Let = lim V i = V ) Also = lim V i ) = V ; k V V ) ------------------ 3) From ) 3) it ollows tht V ) =0 ie 0 I ) V ) 0 V the = ) = ) I ) 0 ) = ) <m{v )V ) )}= ) which is cotrictio Hece )=0 BE Rhoes [3] presete list o eiitios o cotrctive type coitios or sel mp o metric spce X ) estblishe implictios oimplictios mog them there by cilittig to check i y ew cotrctive coitio implies y oe o the coitios metioe i [3] so s to erive ie poit theorem Amog the coitios i [3] Seghl s coitio is sigiict s goo umber o Cotrctive coitios imply Seghl s coitio We ow cosier vliity o islocte versios o these coitios

Let X ) be islocte metric spce : X X be mppig y be y elemets o X Cosier the ollowig coitios Bch) : There eists umber 0 such tht or ech y X ) Rkotch) : There eists mootoe ecresig uctio : 0 ) [0) such tht or ech y X y 3 Eelstei) : For ech y X y ) ) 4 K) :There eists umber 0 y X y ) y ) 89 such tht or ech 5 Bichii): There eists umber h 0 h such tht or ech ) hm y ) y X y 6 For ech y X y ) m y ) 7 Reich): There eist oegtive umbers b c stisyig b c such tht or ech y X y ) b y ) c 8 Reich) : There eist mootoiclly ecresig uctios b c rom 0 ) to [0 ) stisyig t) b t) c t) such tht or ech y X y ) b y ) c

90 9 There eist oegtive uctios b c stisyig sup y b y c y} such tht or ech y X y yx ) t bt y ) ct where t y 0 Sehgl): For ech y X y ) m y ) y Theorem 343[]: I is sel mp o islocte metric spce X ) stisies y o the coitios ) through 9) the hs uique ie poit provie Cl ) is oempty or some X Proo: I [3] BE Rhoes prove tht whe is metric ) ) 3) 0) 4) 5) 6) 0) 4) 7) 8) 0) 5) 7) 9) 0) whe 0 is replce by y these implictios hol goo i metric spce s well sice y 0 i metric spce It ow ollows tht hs ie poit which is uique whe ) hs cluster poit or some

9 Emple 344[]: Deie y For y i R is islocte metric o R I 0 0) ) B I 0 0 B ) = i i Also 0 B ) i < Emple 345[]: Deie : R R by ) Every oegtive rel umber is ie poit o but 0 is the oly coiciece poit ) )= + =0 0 Thus 0 is the oly coiciece poit while ll oegtive rel umbers re ie poits Theorem 346[4] : Let X ) be complete -metric spce sel mp o X 0h I is sequetilly cotiuous or ll y with 0 ) ) h m{ ) y y )}) the hs uique coiciece poit Proo: Assume tht stisies ) For X y positive iteger write m) { ) )} [ m )] =Sup{ u v) /{ u v} m)} We irst prove the ollowig Lemm: For every positive iteger m there eists positive iteger k m such tht [ m)] k m

9 Proo: To prove this it is eough i we prove tht [ m )] m m where m m { ) } ) We prove this by usig iuctio Assume tht ) is true or m ie [ m )] m We hve to prove or m ie [ m )] m ) We hve [ ) m)] Also i m m{ ) m m } } i ) m m i m m { ) ) } 3) Hece [ m )] =Sup { ) / 0 i j m } i j =Sup {{ ) m m } i j { ) / 0 i j m }} m{ ) m m [ ) m]} m rom ) 3) Hece [ m )] Proo o the Theorem: I m This proves the lemm i m j m

93 i j i j ) ) [ m )] m i j i i h m{ ) ) ) i j j i j j ) ) ) ) } h[ m)] Also j j m { ) ) } I m re positive itegers such tht m the by ) m m ) ) h ) k h k ; k m - - ) or some 0 h ------------------------ ------------------------ h [ m )] ) m - +) by bove lemm) By the lemm k 0 k m [ m )] k Assume k ) h [ m)] h k k k k h

94 I k =0 [ m )] ) + ) ) +h ) h m Hece ) h m h h This is true or every m > Sice 0 h < lim Hece { m )} is Cuchy sequece i X ) h = 0 Sice X is complete z X so tht lim ) z We prove tht z z 0 0 z z z z z) z By sequetil cotiuity o lim z) z 0 Hece z z 0 hece z is coiciece poit o Suppose z z re coiciece poits o The z z )= z z 0 similrly z z)=0 I z z) 0 the by ) z z)= z ) z h m{ z z ) z z z z z z z z }

95 h z z) cotrictio Hece z z)=0hece z zthis completes the proo We ow prove ie poit theorem or sel mp o metric spce stisyig the logue o 9) i [3] Theorem 347[4]: Let X ) be complete metric spce : X X be sequetilly cotiuous mppig such tht there eist rel umbers 0 0 mi{ } stisyig 4 t lest oe o the ollowig or ech i ) ) ii iii y X ) ) [ + y ) ] ) ) [ ) + y ] The hs uique coiciece poit Proo: Puttig ) y i the bove = m { } we get Agi puttig y = ) i the bove i) ii) iii) yiels ) ) )

96 I h=m { } the 0 h ) h I m re positive itegers such tht m ) h h sice 0 h ; lim h 0 m the Hece { )} is Cuchy s sequece i X ) Sice X is complete z i X lim ) = z Sice is sequetilly cotiuous lim ) = z) i X ) Sice 0 z z z ) z It ollows tht z z =0 Hece z is coiciece poit Uiqueess : I z zre coiciece poits o the by hypothesis Either z z) z z) or 0 or z z) Sice 0 Hece z z 0 we must hve z z)=0 4 The metric versio or the cotrctive iequlity 0) i the moiie orm ) give below yiels the ollowig Theorem 348[4] : Let X ) be complete metric spce : X X be sequetilly cotiuous mppig Assume tht there eist o-egtive costts i stisyig 3 4 5 < such tht or ech y X with y

97 ) ) ) 5 4 3 y y y y y The hs uique coiciece poit Proo:Cosier ) ) ) 5 4 3 = ) ) 3 4 5 ) ) ) 3 5 3 4 3 4 ) ) 4 3 4 5 ) where 4 3 4 5 0 I m the

98 m m ) ) m = ) Hece { )} is Cuchy s sequece i X ) hece coverget Let lim the ) lim sice is sequetilly cotiuous ) So = lim ) lim Sice 0 =0 Hece ) = Hece is coiciece poit or Uiqueess: I 0 ) = )

99 Cosier ) ) ) ) where 4 5 ) 0 Hece 4 3 5 It is ot out o plce to preset here ew ie poit theorems or sel mps o complete metric spces erive by the uthor re publishe i vrious jourls A ew o theorems re liste without proo here uer Theorem 349[5]: Let X ) be complete -metric spce Let A B S T : X X be cotiuous mppigs stisyig I T X ) A X ) S X ) B X ) II The pirs S A) T B) re wekly comptible III S T m{ A B A S) By T} For ll y X where0 the A B S T hve uique commo ie poit Theorem 340[5]: Let X ) be complete metric spce Let A B S T : X X be cotiuous mppig stisyig I T X ) A X ) S X ) B X ) II The pirs S A) T B) re wekly comptible

III For ll A S) By T S T { } A B A B o yo X where 0 0 the A B S 4 T hve uique commo ie poit Theorem 34[6]: Let X ) A B S T : X X be cotiuous mppigs stisyig I T X ) A X ) S X ) B X ) be complete metric spce Let II The pirs S A) T B) re wekly comptible III 00 5 S T A B A S) 3 By T 4 A T By S) For ll y X where 3 4 5 0 3 4 the A B S T hve uique 0 5 commo ie poit Theorem:34[6]: Let X ) be complete metric spce Let S T : X X be cotiuous mppigs stisyig S T T S T S) 3 Sy T 4 T T 5 Sy S) or ll y X where 3 4 5 0 3 4 5 the S T hve uique ie poit