Analyticity and Operation Transform on Generalized Fractional Hartley Transform

Similar documents
Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Approximately Inner Two-parameter C0

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

Trigonometric Formula

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

UNIT I FOURIER SERIES T

Chapter4 Time Domain Analysis of Control System

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University


EXERCISE - 01 CHECK YOUR GRASP

Introduction to Laplace Transforms October 25, 2017

EEE 303: Signals and Linear Systems

1973 AP Calculus BC: Section I

EE Control Systems LECTURE 11

Note 6 Frequency Response

Available online at ScienceDirect. Physics Procedia 73 (2015 )

Poisson Arrival Process

Generalized Half Linear Canonical Transform And Its Properties

15. Numerical Methods

Response of LTI Systems to Complex Exponentials

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

FOURIER ANALYSIS Signals and System Analysis

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

Poisson Arrival Process

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

A Bessel polynomial framework to prove the RH

S.E. Sem. III [EXTC] Applied Mathematics - III

( A) ( B) ( C) ( D) ( E)

On the Existence and uniqueness for solution of system Fractional Differential Equations

1 Finite Automata and Regular Expressions

Fourier Series: main points

3.2. Derivation of Laplace Transforms of Simple Functions

Data Structures Lecture 3

CS 688 Pattern Recognition. Linear Models for Classification

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

From Fourier Series towards Fourier Transform

AN INTEGRO-DIFFERENTIAL EQUATION OF VOLTERRA TYPE WITH SUMUDU TRANSFORM

Inverse Thermoelastic Problem of Semi-Infinite Circular Beam


SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

1. Introduction and notations.

What Is the Difference between Gamma and Gaussian Distributions?

Parameter Estimation and Determination of Sample Size in Logistic Regression

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Mixing time with Coupling

On commutative and non-commutative quantum stochastic diffusion flows

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Linear Algebra Existence of the determinant. Expansion according to a row.

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

Math 266, Practice Midterm Exam 2

Ordinary Differential Equations

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Chapter 3 Linear Equations of Higher Order (Page # 144)

How to get rich. One hour math. The Deal! Example. Come on! Solution part 1: Constant income, no loss. by Stefan Trapp

Opening. Monster Guard. Grades 1-3. Teacher s Guide

Chapter 7 INTEGRAL EQUATIONS

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Law of large numbers

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

Chapter 3 Fourier Series Representation of Periodic Signals

Special Curves of 4D Galilean Space

Chapter 5 Transient Analysis

Fourier Techniques Chapters 2 & 3, Part I

ENJOY ALL OF YOUR SWEET MOMENTS NATURALLY

ON H-TRICHOTOMY IN BANACH SPACES

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

IMPROVED ESTIMATOR OF FINITE POPULATION MEAN USING AUXILIARY ATTRIBUTE IN STRATIFIED RANDOM SAMPLING

Boyce/DiPrima/Meade 11 th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

Revisiting what you have learned in Advanced Mathematical Analysis

Continous system: differential equations

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Jonathan Turner Exam 2-10/28/03

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Signals & Systems - Chapter 3

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

MM1. Introduction to State-Space Method

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

New Product-Type and Ratio-Type Exponential Estimators of the Population Mean Using Auxiliary Information in Sample Surveys

Why would precipitation patterns vary from place to place? Why might some land areas have dramatic changes. in seasonal water storage?

REACHABILITY OF FRACTIONAL CONTINUOUS-TIME LINEAR SYSTEMS USING THE CAPUTO-FABRIZIO DERIVATIVE

NEWBERRY FOREST MGT UNIT Stand Level Information Compartment: 10 Entry Year: 2001

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

A FAMILY OF GOODNESS-OF-FIT TESTS FOR THE CAUCHY DISTRIBUTION RODZINA TESTÓW ZGODNOŚCI Z ROZKŁADEM CAUCHY EGO

Transcription:

I Jourl of Mh Alyi, Vol, 008, o 0, 977-986 Alyiciy d Oprio Trform o Grlizd Frciol rly Trform *P K So d A S Guddh * VPM Collg of Egirig d Tchology, Amrvi-44460 (MS), Idi Gov Vidrbh Iiu of cic d umii, Amrvi-444604 (MS), Idi Abrc I hi ppr w hv dicud h lyiciy horm d ivrio formul for h grlizd frciol rly rform d uig h w hv provd uiqu horm Alo w hv dicud frciol rly rform of lcd fucio d obid oprio rform formul for hi rform Kyword: Frciol Fourir rform, rly rform, Tig fucio pc, Grlizd fucio Iroducio: Now dy, frciol igrl rform ply impor rol i igl procig, img rcorucio, pr rcogiio, ccoic igl procig [8], [9] Fourir lyi i o of h mo frquly ud ool i igl procig d my ohr ciific dicipli Bid h Fourir rform for im frqucy rprio of igl, Wigr diribuio, h mbiguiy fucio, h hor im fourir rform d h pcrogrm r of ud g i pch procig rdr, quum phyic I mhmic lirur grlizio of h Fourir rform o h frciol Fourir rform i udr Nmi [0] iroducd h cocp of Fourir rform of frciol ordr, which dpd o coiuou prmr Th grlizio of ordiry fourir rform d i propri wr dicud i Criolro l [3] Zyd [] Drgom [4] c Frciol fourir rform i furhr grlizd o h igrl wih rpc o w mur dρ d w grlizd igrl rform w obid by Zyd [] Bhol d chudhry [] hd xdd frciol fourir rform o h diribuio of compc uppor Th frciol Fourir rform wih corrpod o h clicl Fourir rform d frcio l Fourir rform wih 0 corrpod o h idiy opror I [5] ohr igrl rform of Fourir cl, h i coi rform, i

978 P K So d A S Guddh rform d rly rform, r lo grlizd o h corrpodig frciol igrl rform d udid by diffr mhmici Th rly rform i rciv lriv d covi rl rplcm for h wll ow complx Fourir rform rly rform i gig grr imporc i vrl pplicio I [6] Brcwll ugg h h rly rform i f or fr h h Fourir rform d c b ud rplcm for h Fourir rform Uig h igvlu fucio, ud i frciol Fourir rform, diffr igrl rform i Fourir cl r grlizd o frciol rform by Pi [5] rly rform i lo grlizd o frciol rly rform by him hd how h for ll o giv igr m, m ( ) i h ig fucio of h rly rform d hd giv h formul for frciol rly rform, whr K K d, π [( i ) c(cc φ ) + ( + i ) c( ccφ ) ] I hi ppr fir w dfi grlizd frciol rly rform i cio d prov i lyiciy Th fucio f () i h rcovrd from by m of h ivrio formul i cio 3 Uig ivrio formul w hv provd h frciol rly rformbl grlizd fucio hvig h m rip of dfiiio d h m rform mu b idicl, which i md uiqu horm i cio 3 Frciol rly rform of om lcd fucio d oprio rform formul r obid i cio 4 d cio 5 rpcivly Lly cocluio i giv i cio 6 Alyiciy Of Frciol rly Trform : ' Th Grlizd Frciol rly Trform o E : R d S d 0 L S { R,, > 0 L, if icoφ i coφ i coφ K [( i ) c(ccφ ) + ( + i ) c( ccφ ) ], π whr π φ, h K E( R ) γ K up D K < if { < < r E ( R ) i h ig fucio pc ' Th grlizd frciol rly rform of E ( R ) i dfid,

Alyiciy d oprio rform 979, K, () ' whr E ( R ) i h dul pc of h ig fucio pc Alyiciy Thorm : ' Thorm : L ( ) f E R d i frciol rly rform i dfid () Th i lyic o Supp S { : R,, > 0 D R if h f h [ ](, D K Proof : L (, ) R, w fir prov h : i diffribl d [ { f ( )]( f ( ), K W prov h rul for, h grl rul follow by iducio For om 0, choo wo cocric circl C d C wih cr d rdii r d r rpcivly, uch h 0 < Δ < r 0 < r < r < L Δ b icrm, ifyig Coidr, ( + Δ ) Δ ( ) f ( ), K ) f ( ), ΨΔ ( ), ) Δ whr, ) [ K, ) K ] K ) ΨΔ For y fixd ( + Δ R, {( ccφ K + i coφ K ) D i coφ i coφ, φ d K C, φ, whr, C i coφ π K [i(ccφ ) + i co(ccφ )]

980 P K So d A S Guddh Sic for y fixd R fixd igr d rgig from 0 o, D K ) i lyic iid d o C, w hv by Cuchy igrl formul, Δ M D i (, ) ΨΔ ( ) π z Δ z ( )( ) C dz, whr,, z, ) ( + Bu for ll z C d rricd o compc ub of R, 0, M D K i boudd by co K Thrfor w hv, K DΨΔ ( ) Δ ( r r) r ub of ' E Thu Δ 0, D ΨΔ ( ) d o zro uiformly o h compc R hrfor i follow h () ΨΔ covrg i E( R ) o zro Sic w coclud h () lo d o zro hrfor ( i S Bu hi i ru for ll, c ( diffribl wih rpc o i lyic d D [ ](, D K 3 Ivr Ad Uiqu Thorm : 3 Ivr Of Frciol rly Trform: Grlizd frciol rly rform dfid i () c b wri icoφ i coφ i coφ ( i ) c(ccφ ) + ( + i ) c( ccφ ) d π ( i π ) i co φ f ( ) (cc φ + ( + i ) f ( ) (cc φ,

Alyiciy d oprio rform 98 Pu (ccφ ) v v viφ ccφ Tig rly ivr of boh id which i m rly rform, iv i i coφ φcoφ ( vi φ ) cv d ( i ) f ( ) + ( + i ) f ( ) i ( ) co φ i ( ) co φ If f () i v h f ( ) h, w g i coφ g ( v) c v dv, iv i φco φ φ whr g( v) v i ) i coφ g( v) c v dv, wh f () i v Puig g (v) d olvig, w g d K(, ) ccφ i coφ i coφ whr K c(ccφ ) icoφ Now if f () i odd h f ( ) g( v) c v dv ( i i i( φ + coφ ) ), i coφ g( v) c v dv Agi puig g (v) d olvig, w g + ( + i ) i coφ ( )

98 P K So d A S Guddh d K(, ) ccφ i coφ i( φ ) i coφ whr, K c(ccφ ) i coφ π 3 Uiqu Thorm : Thorm : If d { g( ) r frciol rly rform of f () d g () rpcivly for o d upp f S : S { : R, d upp g S : S { : R, ( { g( ) h f g i h of quliy of D ' (I ) if { ) Proof : By ivrio horm, f g lim N π N N K [ { g( ) ]d Thu f g i D ' (I ) 4 Frciol rly Trform Of Slcd Fucio : Frciol rly Trform of lcd fucio r buld follow

Alyiciy d oprio rform 983 TABLE Sr No Sigl { Frciol rly rform ( (φ i) i φ δ ( ) { δ ( ) i coφ π i + co φ [ co(ccφ ) i i(ccφ ) ] 3 δ ( ) { δ ( ) i coφ π 4 i { ( + i ( ) ( ) ) φ φ i i( cφ ) i 5 co { ( + co ( ) ( ) ) φ φ i co( cφ ) i 5 Oprio Trform Formul : I hi cio w prov om oprio rform formul for frciol rly rform, for which followig wo lmm c b ily provd 5 Lmm : Frciol rly rform giv i cio, c lo b xprd i coφ i coφ i coφ π 5 Lmm : { f ( ) icoφ i coφ i coφ π [ co(ccφ ) i i(ccφ ) ] [ co(ccφ ) + i i(ccφ ) ] d d

984 P K So d A S Guddh 53 Lmm : icoφ i coφ i i coφ φ [ i(ccφ ) + i co(ccφ ) ] d π i coφ iφ { f ( ) 54 Formul : If FrT h d ( i coφ [ { ] { f ( ) d Proof : Sic i coφ i coφ i coφ π co φ d i Cφ d Solvig w g ico [ co(ccφ ) i i(ccφ ) ] d ' [ co(cc φ ) i i(cc φ ) ] d [ { ] { f ( ) φ 55 Formul: If FrT { h + i φ d { f ( ) + i φ { d ' ( icoφ { { f ( Proof : { ) Q [ ] ) { 56 Formul: + c) (c+ c ) i coφ { co(ccφ c) + iφ i(ccφ c) f ( ) { Proof : w ow h, + c) ( + c) i coφ i coφ i coφ π (c+ c ) d + i φ { f ( ) + i φ d (c+ c ) i coφ i coφ { i(cc φ c) { co(ccφ( + c) ) i i(ccφ( + c) ) d (c+ c ) i coφ i coφ { co(ccφ c) i coφ { i(ccφ c) + iφ { i(ccφ c) f ( ) d 57 Formul : i coφ { f ( Proof : Coidr, d d d d d i coφ π ) { co(ccφ ) i i(ccφ ) d

Alyiciy d oprio rform 985 i coφ iφ iφ iφ i {coφ + coφ { f ( ) i coφ { f ( ) { f ( ) + i coφ 58 Formul : L b fixd rl umbrth mppig f ( ) i coiuou lir mppig o S o S d { f ( ) Whr i rl umbr i coφ i coφ [ co(ccφ ) i i(ccφ ) ] { Proof : By h dfiiio of frciol rly rform, { f ( ), i coφ i coφ i coφ [ co(ccφ ) i i(ccφ ) ] π Puig x d olvig w g { f ( ) f ( ) d i coφ i coφ [ co(ccφ ) i i(ccφ ) ] { 59 Formul: If FrT f ( ) ( h i i( ) co φ ( ) co φ Proof : By h dfiiio of frciol rly rform, i( ) coφ f ( ) ( i coφ i coφ i coφ [ co(ccφ ) i i(ccφ ) ] i( ) coφ Puig i π T d olvig w g f ( ) ( i ( ) co φ ( ) co φ f ( ) d

986 P K So d A S Guddh 6 Cocluio : Th grlizd frciol rly rform i dvlopd i hi ppr Th oprio rform formul provd i hi ppr c b ud, wh hi rform i ud o olv ordiry or pril diffril quio REFERENCES Ahmd I Zyd, A Covoluio d produc horm for h rciol Fourir rform, IEEE Sigl procig lr, Vol 5, No 4, April 998 B N Bhol d Chudhry M S, Frciol Fourir rform of Diribuio of compc uppor Bull cl Mh Soc, 94 (5), P 349-358, 00 3 Criolro,l, Mulipliciy of frciol Fourir rform d hir rliohip IEEE Tr o igl proc Vol48, No, J 000, P 7-4 4 D Drgom Frciol Fourir rld fucio, Opic Commuicio, Vol 8, P 9-98, July 996 5 Pi Soo-Chg, Ji-Jiu Dig, Frciol coi, i d rly rform, IEEE, Vol 50, No 7, July 00 6 R N Brcwll, Th rly Trform, Oxford U K Oxford Uiv Pr, 986 7 R Scilr, Ergiv S d Ciiz N, Th u of h rly rform i gophyicl pplicio Gophyic, Vol 55, No, (Nov 990), P 488-495 8 Ti Aliv d Bi Mri J, O Frciol Fourir rform mom, IEEE Sigl procig Lr, Vol 7, No, Nov 000 9 Ti Aliv d Bi Mri J, Wigr diribuio d frciol Fourir rform for -dimiol ymmric bm, JOSA A, Vol 7, No, Dc 000, p 39-33 0 Vicor Nmi, Th frciol ordr Fourir rform d i Applicio o quum mchic, J I Mh Appic, (998), 5, 4-65 Rcivd: Fbrury 4, 008