Part III. The Synchro-Betatron Hamiltonian

Similar documents
Synchro-Betatron Motion in Circular Accelerators

Low Emittance Machines

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

Accelerator Physics Homework #7 P470 (Problems: 1-4)

Low Emittance Machines

Synchrotron Motion with Space-Charge

Beam Dynamics in Synchrotrons with Space- Charge

Transverse Dynamics II

Lecture 2: Modeling Accelerators Calculation of lattice functions and parameters. X. Huang USPAS, January 2015 Hampton, Virginia

The Accelerator Hamiltonian in a Straight Coordinate System

Matrix formalism of synchrobetatron coupling. Abstract

Magnets and Lattices. - Accelerator building blocks - Transverse beam dynamics - coordinate system

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Physics 598ACC Accelerators: Theory and Applications

Physics 598ACC Accelerators: Theory and Applications

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

arxiv: v1 [physics.acc-ph] 22 Aug 2014

A Proposal of Harmonictron

Equations of motion in an accelerator (Lecture 7)

ÆThe Betatron. Works like a tranformer. Primary winding : coils. Secondary winding : beam. Focusing from beveled gap.

Nonlinear Single-Particle Dynamics in High Energy Accelerators

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

Three Loose Ends: Edge Focusing; Chromaticity; Beam Rigidity.

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Longitudinal Dynamics

Suppression of Radiation Excitation in Focusing Environment * Abstract

APPLICATIONS OF ADVANCED SCALING FFAG ACCELERATOR

Energy and Equations of Motion

Accelerator Physics Closed Orbits and Chromaticity. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension

Synchrotron radiation

( ( )) + w ( ) 3 / 2

Synchrotron Motion. RF cavities. Charged particles gain and lose energy in electric field via

Bernhard Holzer, CERN-LHC

Linear and Nonlinear Oscillators (Lecture 2)

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

BMT Equation Analysis and Spin in Accelerator Physics

S9: Momentum Spread Effects and Bending S9A: Formulation

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Longitudinal Momentum Mining of Beam Particles in a Storage Ring

z 0 > 0 z = 0 h; (x, 0)

USPAS Accelerator Physics 2017 University of California, Davis

Dynamics of Structures: Theory and Analysis

Lecture 3 Dynamics 29

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL

1 Time-Dependent Two-State Systems: Rabi Oscillations

An Exactly Solvable 3 Body Problem

Accelerator Physics Final Exam pts.

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

Compressor Lattice Design for SPL Beam

The A, B, C and D are determined by these 4 BCs to obtain

B = 0. E = 1 c. E = 4πρ

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

Extensions of the Longitudinal Envelope Equation

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Longitudinal dynamics Yannis PAPAPHILIPPOU CERN

Low Emittance Machines

Electromagnetic and Gravitational Waves: the Third Dimension

LONGITUDINAL PARTICLE TRACKING CODE FOR A HIGH INTENSITY PROTON SYNCHROTRON

Beam Dynamics with Space- Charge

Vibrations and Waves Physics Year 1. Handout 1: Course Details

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media

FFAG Accelerators. CERN Introductory Accelerator School Prague, September 2014

Quantum Field Theory Example Sheet 4 Michelmas Term 2011

LONGITUDINAL DYNAMICS OF PARTICLES IN ACCELERATORS. Author: Urša Rojec Mentor: Simon Širca. Ljubljana, November 2012

INTRODUCTION TO NMR and NMR QIP

Advanced Newtonian gravity

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ

Gravitational radiation

The kinetic equation (Lecture 11)

Classical Description of NMR Parameters: The Bloch Equations

Practical Lattice Design

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

Longitudinal Beam Dynamics

accelerator physics and ion optics summary longitudinal optics

Request for Comments Conceptual Explanation of Quantum Free-Field Theory

Introduction to Longitudinal Beam Dynamics

Weak focusing I. mv r. Only on the reference orbit is zero

accelerator physics and ion optics summary longitudinal optics

Phys 622 Problems Chapter 5

Number-Flux Vector and Stress-Energy Tensor

221A Lecture Notes Electromagnetic Couplings

Seminar 6: COUPLED HARMONIC OSCILLATORS

SYNCHRO-BETATRON RESONANCES. TOSHIO SUZUKI KEK, National Laboratory for High Energy Physics Tsukuba,IbarWO,305,Japan

Concepts for Specific Heat

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

COHERENT DIPOLE SYNCHRO-BETATRON BEAM-BEAM MODES IN ASYMMETRIC RING COLLIDERS

PATH INTEGRAL SOLUTION FOR A PARTICLE WITH POSITION DEPENDENT MASS

Lecture 20. Parity and Time Reversal

(ˆn + 1)t e e + exp. i g2. The interaction part is, for small times t, given by. (ˆn + 1)t +... ˆσ ee +

Effect of Insertion Devices. Effect of IDs on beam dynamics

Introduction to particle accelerators

Plasma Traps for Space-Charge Studies : Status and Perspectives. Hiromi Okamoto (Hiroshima Univ.)

Bernhard Holzer, CERN-LHC

Transform Solutions to LTI Systems Part 3

Position Dependence Of The K Parameter In The Delta Undulator

Introduction to Collider Physics

S.Y. Lee Bloomington, Indiana, U.S.A. June 10, 2011

Transcription:

Part III Kevin Li Synchro-Betatron Motion 43/ 71

Outline 5 Kevin Li Synchro-Betatron Motion 44/ 71

Canonical transformation to kinetic energy (1) Hamiltonian H(u, P u, s 0, H s ; s) = ( 1 + x ) (E 0 β0 H s qv ) /c m c R P0 Pu 1 ( 1 + x ) A s (9) B 0 R R P = (H 0 qv ) m c, P c 0 = E 0β 0 c Kevin Li Synchro-Betatron Motion 45/ 71

Canonical transformation to kinetic energy (1) Hamiltonian H(u, P u, s 0, H s ; s) = ( 1 + x ) (E 0 β0 H s qv ) /c m c R P0 Pu 1 ( 1 + x ) A s (9) B 0 R R P = (H 0 qv ) m c, P c 0 = E 0β 0 c Kinetic energy E 0 β 0E = E 0 β 0H s qv (10) Kevin Li Synchro-Betatron Motion 45/ 71

Canonical transformation to kinetic energy () Generating function Z F (u, P u, s 0, E; s) = u P u + H s(s 0, E) ds 0 Z V ds 0 = u P u + Es 0 + q E 0β 0 F u = Pu = P u q Z E E 0β0 u ds 0, F F = H s, = se = s0 s 0 E F s = HK = q E 0β0 1 + x R Z E s ds 0 F P u = ũ = u E u = u V, Es = 1 V 1+x/R s Kevin Li Synchro-Betatron Motion 46/ 71

Canonical transformation to kinetic energy (3) Hamiltonian H(u, P ( u, s E, E; s) = R Ē s = 1 Es β 0 ds c 0 E 0 β4 0 E /c m c P 0 ) 1 + x R ( P u q E 0 β 0 E u ds 0 ) 1 ( 1 + x ) (A s B 0 R R Ēs) (11) Kevin Li Synchro-Betatron Motion 47/ 71

Canonical transformation to kinetic energy (3) Hamiltonian H(u, P ( u, s E, E; s) = R Ē s = 1 Es β 0 ds c 0 E 0 β4 0 E /c m c P 0 ) 1 + x R ( P u q E 0 β 0 E u ds 0 ) 1 ( 1 + x ) (A s B 0 R R Ēs) (11) The transverse fields are usually small and vanish upon averaging P u q E 0 β0 E u ds 0 P u Kevin Li Synchro-Betatron Motion 47/ 71

Canonical transformation to kinetic energy (4) We immediately relabel all -variables and can write Hamiltonian P 0 = E 0β 0 c ( H(u, P u, s E, E; s) = 1 + x ) β0 R E 1 γ0 P β u 0 1 ( 1 + x ) (A s B 0 R R Ēs) (1) Kevin Li Synchro-Betatron Motion 48/ 71

Canonical transformation to reference orbit system (1) Hamiltonian P 0 = E 0β 0 c ( H(u, P u, s E, E; s) = 1 + x ) β0 R E 1 γ0 P β u 0 1 ( 1 + x ) (A s B 0 R R Ēs) (13) Reference orbit σ = s s E Kevin Li Synchro-Betatron Motion 49/ 71

Canonical transformation to reference orbit system () Generating function Z F 3 (ũ, P u, σ, E; s) = ũp u s E (σ, E) de = ũp u + σe σ 1 β0 se+s 1 β0 F 3 ũ = P F 3 u = P u, = u = ũ P u F 3 σ = δ = E 1 «β0 = 1 γ β0 1 γ 0 «F 3 s = δ = E 1 β0 «, F 3 E = s E E = H 0 qv E 0 β 0 Kevin Li Synchro-Betatron Motion 50/ 71

Canonical transformation to reference orbit system () Generating function Z F 3 (ũ, P u, σ, E; s) = ũp u s E (σ, E) de = ũp u + σe σ 1 β0 se+s 1 β0 F 3 ũ = P F 3 u = P u, = u = ũ P u F 3 σ = δ = E 1 «β0 = 1 β0 F 3 s = δ = E 1 «β0 γ γ 0 1 «, F 3 E = s E E = H 0 qv E 0 β 0 Kevin Li Synchro-Betatron Motion 50/ 71

Canonical transformation to reference orbit system (3) We immediately relabel all -variables Hamiltonian ( H(u, P u, σ, δ; s) = 1 + R) x ( β0 δ + 1 ) β0 1 γ0 P β u 0 1 ( 1 + x ) (A s B 0 R R Ēs) + δ (14) Kevin Li Synchro-Betatron Motion 51/ 71

Expansions around reference orbit system (1) We set Γ(δ) = β 0 Hamiltonian ( ) δ + 1 β 1 0 γ0 β 0 and obtain ( H = 1 + x ) Γ(δ) R Pu 1 ( 1 + x ) (A s B 0 R R Ēs) + δ (15) Kevin Li Synchro-Betatron Motion 5/ 71

Expansions around reference orbit system () Taylor expansion in P u : Γ P u Γ 1 Γ P u Taylor expansion in δ: ( β0 δ + 1 ) β0 1 γ0 β 0 1 + δ δ γ 0 + δ3 γ 0 Taylor expansion in δ: β 0 1 ( ) δ + 1 β 1 0 γ0 β 0 ( 1 δ + 1 + 1 ) γ0 δ Kevin Li Synchro-Betatron Motion 53/ 71

Canonical transformation to closed orbit system (1) Hamiltonian ( H 1 + x ) ( Γ 1 ) R Γ P u 1 B 0 R = Γ x R Γ + 1 Γ P u + 1 x Γ R P u 1 B 0 R ( 1 + x R ) (A s Ēs) + δ ( 1 + x ) (A s R Ēs) + δ Kevin Li Synchro-Betatron Motion 54/ 71

Identification of terms Hamiltonian H = Γ x R Γ + 1 Γ P u + 1 x Γ R P u 1 ( 1 + x ) (A s B 0 R R Ēs) + δ Dispersion: linear synchro-betatron coupling Chromaticity: terms P u δ k Magnetic field terms Eliminate the first order synchro-betatron coupling by moving to the closed orbit system (ˆx, ˆp x, ˆσ, ˆδ) where all first order synchro-betatron terms ˆxδ k and ˆp xδ k cancel; this will naturally introduce dispersion Kevin Li Synchro-Betatron Motion 55/ 71

Identification of terms Hamiltonian H = Γ x R Γ + 1 Γ P u 1 x + Γ R P u 1 ( 1 + x ) (A s B 0 R R Ēs) + δ Dispersion: linear synchro-betatron coupling Chromaticity: terms P u δ k Magnetic field terms Eliminate the first order synchro-betatron coupling by moving to the closed orbit system (ˆx, ˆp x, ˆσ, ˆδ) where all first order synchro-betatron terms ˆxδ k and ˆp xδ k cancel; this will naturally introduce dispersion Kevin Li Synchro-Betatron Motion 55/ 71

Identification of terms Hamiltonian H = Γ x R Γ + 1 Γ P u 1 x + Γ R P u 1 ( 1 + x ) (A s B 0 R R Ēs) + δ Dispersion: linear synchro-betatron coupling Chromaticity: terms P u δ k Magnetic field terms Eliminate the first order synchro-betatron coupling by moving to the closed orbit system (ˆx, ˆp x, ˆσ, ˆδ) where all first order synchro-betatron terms ˆxδ k and ˆp xδ k cancel; this will naturally introduce dispersion Kevin Li Synchro-Betatron Motion 55/ 71

Identification of terms Hamiltonian H = Γ x R Γ + 1 Γ P u 1 x + Γ R P u 1 ( 1 + x ) (A s B 0 R R Ēs) + δ Dispersion: linear synchro-betatron coupling Chromaticity: terms P u δ k Magnetic field terms Eliminate the first order synchro-betatron coupling by moving to the closed orbit system (ˆx, ˆp x, ˆσ, ˆδ) where all first order synchro-betatron terms ˆxδ k and ˆp xδ k cancel; this will naturally introduce dispersion Kevin Li Synchro-Betatron Motion 55/ 71

Identification of terms Hamiltonian H = Γ x R Γ + 1 Γ P u + δ + 1 K x + 1 g ( x y ) + 1 6 (K g + f) ( x 3 3 x y ) K = 1 R, g = B 1 B 0 R, f = B B 0 R Dispersion: linear synchro-betatron coupling Chromaticity: terms P u δ k Magnetic field terms Eliminate the first order synchro-betatron coupling by moving to the closed orbit system (ˆx, ˆp x, ˆσ, ˆδ) where all first order synchro-betatron terms ˆxδ k and ˆp xδ k cancel; this will naturally introduce dispersion Kevin Li Synchro-Betatron Motion 55/ 71

Identification of terms Hamiltonian H = Γ x R Γ + 1 Γ P u + δ + 1 K x + 1 g ( x y ) + 1 6 (K g + f) ( x 3 3 x y ) Dispersion: linear synchro-betatron coupling Chromaticity: terms P u δ k Magnetic field terms Eliminate the first order synchro-betatron coupling by moving to the closed orbit system (ˆx, ˆp x, ˆσ, ˆδ) where all first order synchro-betatron terms ˆxδ k and ˆp xδ k cancel; this will naturally introduce dispersion Kevin Li Synchro-Betatron Motion 55/ 71

Canonical transformation to closed orbit system () Generating function F (x, ˆp x, σ, ˆδ; nx s) = xˆp x + σˆδ + (X k (s)x P k (s)ˆp x + S k (s)) δ k k=1 nx x = ˆx + P k (s)δ k p x = ˆp x + k=1 nx X k (s)δ k k=1 Kevin Li Synchro-Betatron Motion 56/ 71

Canonical transformation to closed orbit system () Generating function F (x, ˆp x, σ, ˆδ; s) = xˆp x + σˆδ + σ = ˆσ δ = ˆδ F s = nx nx (X k (s)x P k (s)ˆp x + S k (s)) δ k k=1 nx k (X k (s)ˆx P k (s)ˆp x + S k (s)) δ k 1 k=1 k=1 l=1 n X k=1 mx kx k (s)p l (s)δ k+l 1 `X k (s)x P k(s)ˆp x + S k(s) δ k Kevin Li Synchro-Betatron Motion 56/ 71

Canonical transformation to closed orbit system (3) Hamiltonian H = Γ x R Γ + 1 Γ p x + 1 K x + 1 g ( x y ) + 1 6 (K g + f) ( x 3 3 x y ) + δ K = 1 R, g = B 1 B 0 R, f = B B 0 R Insert expansions for Γ, 1/Γ and x, p x, σ, δ Fix a k, collect all terms ˆxδ k and ˆp x δ k and determine the coefficients X k (s), P k (s) and S k (s) such, that these terms vanish Hamiltonian in closed coordinate system Kevin Li Synchro-Betatron Motion 57/ 71

First order dispersion function k = 1: setting the coefficienty to vanish yields First order dispersion function X 1(s) + (K + g)p 1(s) K = 0 P 1(s) + X 1(s) = 0 D(s) = P 1(s) D (s) + (K + g)d(s) = K Kevin Li Synchro-Betatron Motion 58/ 71

Second order dispersion function k = : setting the coefficienty to vanish yields Second order dispersion function X (s) + K + (K + g)p (s) + K γ0 X1(s) + Kg + f «P 1(s) = 0 P (s) X 1(s) + X (s) + KX 1(s)P 1(s) = 0 D (s) + (K + g)d (s) + D (s) K D (s) K D(s) + D(s) = P 1(s), D (s) = P (s) K 3 + Kg + f «D(s) = K γ0 Kevin Li Synchro-Betatron Motion 59/ 71

Closed orbit Hamiltonian (1) Hamiltonian up to third order in closed orbit coordinates H(ˆx, ˆp x,, ŷ, ˆp y, ˆσ, ˆδ; s) = 1 η ˆδ + 1 3 ν ˆδ3 + 1 ˆp x + 1 ˆp y + 1 K ˆx + 1 g (ˆx ŷ ) + 1 6 (K g + f) (ˆx 3 3 ˆx ŷ ) q P 0 (A rf s Ēs) (16) Kevin Li Synchro-Betatron Motion 60/ 71

Closed orbit Hamiltonian () Variable annotation ˆx = x Dδ ˆp x = p x D δ ˆσ = σ Dp x + D x + DD δ ˆδ = δ η = KD 1 γ0 ν = KD γ0 1 D (s) KD (s) 3 γ0 Kevin Li Synchro-Betatron Motion 61/ 71

Dynamic electric field (1) Assumptions: The RF cavity to be placed in a straight section: x R = 0 The RF cavity is placed in a low dispersion region: D(s) 0 The RF field is given by E rf = V 0 δ h (s) sin(ω rf t) with δ h (s) a periodic delta-function with the period πr. Then, the dynamic field term in the Hamiltonian is q (A rf s P Ēs) = q ( 0 P 0 t Arf s ) s V dt = q E rf dt P 0 = qv 0 (δ h (s) cos(ω rf t) cos(ϕ 0 )) qv 0σ P 0 ω rf πr sin(ϕ 0 ) P 0 ω 0 Kevin Li Synchro-Betatron Motion 6/ 71

Dynamic electric field () We can decompose δ h (s) cos(ω rf t) to δ h (s) cos(ω rf t) = 1 4πR n= ( exp ih s ) ( R + iω rft + exp ih s ) R iω rft Kevin Li Synchro-Betatron Motion 63/ 71

Averaging the Hamiltonian (1) Averaging over many turns, only the terms for which h = ω rf ω 0 δ h (s) cos(ω rf t) 1 πr cos = 1 πr cos ω rf t ω rf hσ R «ω 0 s R contribute 3, hence «It follows that q A rf s P Ēs = 0 with ϕ = hs/r. = qv 0 cos ««hσ cos(ϕ 0) R qv0σ πr P 0ω 0 sin(ϕ 0) πrp 0ω rf qv 0 (cos(ϕ ϕ0) cos(ϕ0) (ϕ ϕ0) sin(ϕ0)) πrp 0ω 0h 3 ω 0 = β 0c R the revolution frequency Kevin Li Synchro-Betatron Motion 64/ 71

Averaging the Hamiltonian () In addition the variables we encountered earlier become η = 1 η ds = 1 D(s) C C R ds 1 γ0 = α 1 ν = 1 C γ 0 = β 3 γ 0 = 1 γ T ν ds = 1 C 1 γ 0 ( D(s) Rγ 0 1 D (s) D ) (s) ds 3 R γ0 η and ν the first and the second order slippage factors. α and β the first and the second order momentum compaction factors. (17) (18) Kevin Li Synchro-Betatron Motion 65/ 71

The final decoupled synchro-betatron Hamiltonian Synchro-betatron Hamiltonian H(ˆx, ˆp x, ŷ, ˆp y, σ, δ; s) = 1 ηδ + 1 3 νδ3 qv 0 πrp 0 ω rf ( cos ( ) ) hσ cos(ϕ 0 ) R + 1 ˆp x + 1 ˆp y + 1 K x + 1 g (ˆx ŷ ) qv 0σ πr P 0 ω 0 sin(ϕ 0 ) + 1 6 (K g + f) (ˆx 3 3 ˆx ŷ ) (19) Kevin Li Synchro-Betatron Motion 66/ 71

The final decoupled synchro-betatron Hamiltonian Synchro-betatron Hamiltonian H(ˆx, ˆp x, ŷ, ˆp y, σ, δ; s) = 1 ηδ + 1 3 νδ3 qv 0 πrp 0 ω rf ( cos ( ) ) hσ cos(ϕ 0 ) R + 1 ˆp x + 1 ˆp y + 1 K x + 1 g (ˆx ŷ ) qv 0σ πr P 0 ω 0 sin(ϕ 0 ) + 1 6 (K g + f) (ˆx 3 3 ˆx ŷ ) (19) Kevin Li Synchro-Betatron Motion 66/ 71

Longitudinal Hamiltonian We relabel q e, V 0 V m, P 0 p 0, σ ζ. Should look familiar... Longitudinal Hamiltonian H(s) = 1 qv 0 ηδ πrp 0ω rf H(t) = 1 βcηδ + h = ω rf ω 0, ω 0 = βc R evm πhp 0 cos cos hσ R hζ R ««cos(ϕ 0) «cos(φ s) «+ qv0σ πr P 0ω 0 sin(ϕ 0) evm sin(φs) ζ p 0C Kevin Li Synchro-Betatron Motion 67/ 71

Longitudinal Hamiltonian Kevin Li Synchro-Betatron Motion 67/ 71

Longitudinal Hamiltonian We relabel q e, V 0 V m, P 0 p 0, σ ζ. Should look familiar... we have recovered Giovanni s formula! Longitudinal Hamiltonian H(s) = 1 qv 0 ηδ πrp 0ω rf H(t) = 1 βcηδ + h = ω rf ω 0, ω 0 = βc R evm πhp 0 cos cos hσ R hζ R ««cos(ϕ 0) «cos(φ s) «+ qv0σ πr P 0ω 0 sin(ϕ 0) evm sin(φs) ζ p 0C Kevin Li Synchro-Betatron Motion 67/ 71

Longitudinal action Synchrotron tune qv 0 ηh Q s = πe 0 β0 cos(ϕ 0 ) Kevin Li Synchro-Betatron Motion 68/ 71

Conclusions Summary A hopefully comprehensive overview of why and how to derive a general practical Hamiltonian for circular accelerators starting from the most basic first principles Kevin Li Synchro-Betatron Motion 69/ 71

Books Goldstein, Herbert, Poole, Charles, and Safko, John: Classical Mechanics; 3rd ed., Addison-Wesley, 00 Jackson, John David: Classical Electrodynamics, 3rd edition, New York : Wiley, cop., 1999 Huang, Kerson: Statistical Mechanics; nd ed., Wiley, 1987 Peskin, Michael E, and Schroeder, Daniel V: An Introduction to Quantum Field Theory; 1995 ed., Westview, 1995, Includes exercises Kevin Li Synchro-Betatron Motion 70/ 71

Articles Suzuki, T.: Hamiltonian Formulation for Synchrobetatron Resonance Driven by Dispersion in RF Cavities, IEEE Trans. Nucl. Sci. 3, volume 3, 7375, 1985 Symon, Keith R.: Derivation of Hamiltonians for Accelerators, ANL/APS/TB-8, 1997 Tzenov, Stephan I: Contemporary Accelerator Physics, World Scientific, New Jersey, NJ, 001 Kevin Li Synchro-Betatron Motion 71/ 71