Length of beam system = 910m. S. Reiche X var = ~50m ~ 650m / Y. Kim FEL-KY ~150m. ~60m. LaserHutch2 (access during operation)

Similar documents
Towards a Low Emittance X-ray FEL at PSI

Low slice emittance preservation during bunch compression

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

X-ray Free-electron Lasers

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

Linac optimisation for the New Light Source

Femto-second FEL Generation with Very Low Charge at LCLS

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

LOLA: Past, present and future operation

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

4 FEL Physics. Technical Synopsis

LCLS Commissioning Status

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov

Generation and characterization of ultra-short electron and x-ray x pulses

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

SwissFEL Diagnostics Layout

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

Start-to-End Simulations

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL

Linac Driven Free Electron Lasers (III)

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Update on and the Issue of Circularly-Polarized On-Axis Harmonics

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

Undulator radiation from electrons randomly distributed in a bunch

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

Developments for the FEL user facility

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Vertical Polarization Option for LCLS-II. Abstract

FACET-II Design, Parameters and Capabilities

Echo-Enabled Harmonic Generation

FEL SIMULATION AND PERFORMANCE STUDIES FOR LCLS-II

ACCELERATOR LAYOUT AND PHYSICS OF X-RAY FREE-ELECTRON LASERS

An Adventure in Marrying Laser Arts and Accelerator Technologies

Layout of the HHG seeding experiment at FLASH

FACET-II Design Update

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

THE LASER HEATER SYSTEM OF SWISSFEL

Parameter selection and longitudinal phase space simulation for a single stage X-band FEL driver at 250 MeV

LCLS Injector Prototyping at the GTF

Introduction to single-pass FELs for UV X-ray production

X-band Experience at FEL

Harmonic Lasing Self-Seeded FEL

REVIEW OF DESY FEL ACTIVITIES

Trends in X-ray Synchrotron Radiation Research

The Linac Coherent Light Source II (LCLS II) at SLAC

Tomographic transverse phase space measurements at PITZ.

Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

THE TESLA FREE ELECTRON LASER

Status of X-ray FEL/SPring-8 Machine Construction

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS

Undulator Commissioning Spectrometer for the European XFEL

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

LCLS-II Capabilities & Overview LCLS-II Science Opportunities Workshop. Tor Raubenheimer (P. Emma) February 9 th, 2015

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Photo Injector Test facility at DESY, Zeuthen site.

ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD

Beam Echo Effect for Generation of Short Wavelength Radiation

3. Synchrotrons. Synchrotron Basics

THE TESLA FREE ELECTRON LASER CONCEPT AND STATUS

First operation of a Harmonic Lasing Self-Seeded FEL

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

High-Brightness Electron Beam Challenges for the Los Alamos MaRIE XFEL

THERMAL EMITTANCE MEASUREMENTS AT THE SwissFEL INJECTOR TEST FACILITY

Characterization of an 800 nm SASE FEL at Saturation

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector. Abstract

Some Sample Calculations for the Far Field Harmonic Power and Angular Pattern in LCLS-1 and LCLS-2

Research with Synchrotron Radiation. Part I

Experimental Path to Echo-75 at NLCTA

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

OPERATING OF SXFEL IN A SINGLE STAGE HIGH GAIN HARMONIC GENERATION SCHEME

Simple limits on achieving a quasi-linear magnetic compression for an FEL driver

6 Bunch Compressor and Transfer to Main Linac

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar

Laser Heater Integration into XFEL. Update. Yauhen Kot XFEL Beam Dynamics Meeting

Transverse Beam Optics of the FLASH Facility

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

TECHNICAL ADVISORY COMMITTEE (TAC) REPORT 3. May 19-20, 2000

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Transcription:

Laser Laser HHG Diagnostic ATHOS PORTHOS ARAMIS THz-Pump P A U L S C H E R R E R I N S T I T U T Length of beam system = 910m &'!( Test & Commissioning steps (A,B,C) A11 Conv. Gun & Injector A12 LINAC s A13 ARAMIS ------------------------------------------------------------ B11 PORTHOS ------------------------------------------------------------ C11 LEG C12 ATHOS C13 SEEDING & SLICING Systems, THz-Pump LaserHutch1 Conv. Gun Beam Dump BC1 INJECTOR LEG Head Building S. Reiche 02.10.08 X var = ~50m ~ 650m / Y. Kim FEL-KY84-013-1 ~60m ~150m 2:3 Beam bunker Emergency exits each 70m & location for air handling components Infrastruktur bunker BC2 LaserHutch2 (access during operation) LINAC1 LINAC2 LINAC3 LINAC4 2.1GeV #3.4GeV Seeding & Slicing system 20m 10m UNDULATOR UNDULATOR Beam Dump Beam Dump CRYO-UNDULATOR Beam Dump X-ray front end system 50m Optical system Optical system Optical system FEL3 FEL2 FEL1 Experimental hall!"#$% &'!) &'!* &'!+ Energy of FEL pulse! Saturation! Emergency exits (with overcrossing) (a1) (a2) (b) (c) (d) (e) (f) Head building 50m 50m 250m 100m 100m 80m 190m 50m 100m ~#545m to bridge Length of facility = #930m 350m 450m 470m 650m (Bridge ~52m) Region of main connection of PSI Infrastructure (water, electricity aso.) 90m 840m #930m &'!, &'!- ' &' 0' ('."#/% )' *' +' The PSI-XFEL A Compact Free Electron Laser for X-Ray Wavelengths

Schematic Layout for the PSI-XFEL (RF Gun Option) Photocathode Laser Undulators Beamlines TDS 250 MeV 1.5 GeV ACC1 BC1 TDS ACC2 BC2 ACC3 6.4 GeV Aramis FEL-1 Gun 12 GHz Accelerating Spectrometer Structure 2.1 GeV / 3.4 GeV Slicing Porthos 0.084 0.7 nm FEL-2 0.7 7.0 nm ACC: 3 GHz Accelerating Structures BC: Bunch Compressor FEL: Free Electron Laser FODO: Focusing - Drift - Defocusing - Drift HHG: High Harmonic Generation TDS: Transversely Deflecting Structure Seed Laser HHG D Artagnan Modulator Athos FEL-3 0.7 7.0 nm Advantages Text of new layout (Sven Reiche, Fall 2008) Decoupled operation of all FEL beamlines Wavelength range optimized for optics, resulting one hard-x-ray and two soft X-ray beamlines. Undulator modules fulfills minimum gap requirement of g > 6.5 mm for all wavelengths. Identical modules for both soft X-ray FELs allows for more flexible electron beam distribution.

Electron Source Low emittance gun project at PSI Goal: develop a pulsed-dc gun Develop a two frequency cavity for optimal longitudinal phase space manipulation Cathodes: Single-tip field emitter Field emitter array Photocathode New: RF photocathode gun as an alternative electron source CTF-5 Gun from CERN Larger slice emittance Lower energy spread when compressed to the same peak current Alternatively: larger peak current

The PSI-XFEL Status Re-optimization of the PSI-XFEL design is in progress As a consequence, please note that all numbers stated in this talk are still converging towards their final values In this talk, I will present the current baseline Possible extensions to this baseline will not be presented

3 Beamlines, 5 Operating Modes Beamline 1 Aramis Beamline 2 Porthos Beamline 3 d Artagnan / Athos Wavelength 0.1 0.7 nm 0.7 7.0 nm 0.7 7.0 nm Photon Energy 1.71 12 kev 0.17 1.71 kev 0.17 1.71 kev Tuning Electron Energy Undulator Gap Undulator Gap Undulator Type Cryo, in-vacuum APPLE APPLE Undulator Length 60 70 m 50 60 m 50 60 m K-Value 1.2 1.0 3.2 1.0 3.2 Period 15 mm 40 mm 40 mm Gap 4 mm 6.5 50 mm 6.5 50 mm Electron Energy 2.2 5.8 GeV 2.1 / 3.4 GeV 2.1 / 3.4 GeV Normalized Slice Emittance 0.45 µm 0.45 µm 0.45 µm Electron Bunch Charge 200 pc 200 pc 200 pc

3 Beamlines, 5 Operating Modes Wavelength Photon Energy Type Tuning Undulator Mode 1 0.1 0.7 nm 1.71 12 kev SASE Energy Aramis Mode 2 0.7 2.8 nm 0.43 1.71 kev SASE Gap Athos / Porthos Mode 3 1.8 7.0 nm 0.17 0.67 kev SASE Gap Athos / Porthos Mode 4 1* 7 nm 0.17 1.2 kev seeded Gap Athos Mode 5 7 25 nm 48 170 ev seeded Gap d Artagnan * 3 rd harmonic

Schematic Layout Length of beam system = 910m ~ 650m / Y. Kim FEL-KY84-013-1 X var = ~50m ~60m ~150m Test & Commissioning steps (A,B,C) A11 Conv. Gun & Injector A12 LINAC s A13 ARAMIS -------------------------------------------------- B11 PORTHOS -------------------------------------------------- C11 LEG C12 ATHOS C13 SEEDING & SLICING, THz-Pump GPAG Proposal for cross sections LaserHutch2 (access during operation) ~200m ~20m Laser HHG Seeding & Slicing system D Artagnan Diagnostic UNDULATOR ATHOS S. Reiche 02.10.08 X-ray front end system Optical system Experimental hall FEL3 Laser Conv. Gun LEG LaserHutch1 Beam Dump INJECTOR BC1 Beam bunker LINAC1 BC2 LINAC2 LINAC3 <3! LINAC4 20m 10m UNDULATOR PORTHOS Beam Dump Beam Dump CRYO-UNDULATOR ARAMIS 50m Optical system Optical system FEL2 FEL1 ~4m ~4m 2.1GeV / 3.4GeV Beam Dump THz-Pump Head Building Infrastruktur bunker (a1) (a2) (b) (c) (d) (e) (f) Head building 50m 50m 250m 100m 120m 80m 190m 50m 100m ~#545m to bridge Air conditioning & over crossing 350m 450m Length of facility = #930m 570m (Bridge ~52m) 650m 840m PSI-Infra region of main connection to PSI infrastructure 90m #930m Peter Ming

The PSI-XFEL FEL experiments Demonstration of FEL principle Limited use as a user facility X-Ray FEL as spin-offs from linear collider development SLC LCLS, TESLA EU XFEL, JLC(C) SCSS Bunch parameters and time structure constrained by original linear collider design! FELs designed from the outset user facilities Beam parameters, time structure & coherence properties More compact design Synergy with PSI expertise Detector development User facility operation

Comparison of XFELs LCLS SCSS EU XFEL PSI-XFEL Wavelength nm 0.15 0.1 0.1 0.1 Design Peak Brilliance * 8 10 32 5 10 33 5 10 33 1 10 33 ** Electron Energy GeV 14.35 6.1 17.5 5.8 Normalized Slice Design Emittance µm 1.2 0.85 1.4 0.45 Undulator Period mm 30 15 35.6 15 Gain Length m 4.8 3.7 2.5 Saturation Length m 92 80 140 39 Facility Length m 3000 750 3400 910 Start of Operation 2009 2010 2014 2016 Source LCLS TDR (SLAC-R-593) * number of photons / s mm 2 mrad 2 0.1% bandwidth ** calculated with Ming Xie formulae SCSS CDR (Highest photon energy XFEL at each location) XFEL TDR (DESY 2006-097)

Simulations Linac with RF Gun Design Optics #$%&&&&&&&&&&&'()*$%&&&&&&&#$+&&&&&&&&&&&&&&&&&&&& '()*$+&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&,(*-%&&&&&&&&&&&&&&&&&&&&&&&&&&&,(*-+&&&&&&&&&&&&&&&&&&.&/0,0&$1223&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&4" /0,0&$1223 Yujong Kim!"

Simulations Linac with RF Gun Projected Emittance #$%&&&&&&&&&&&&&'()*$%&&&&&&#$+&&&&&&&&&&&&&&&&& '()*$+&&&&&&&&&&&&&&&&&&&&&&&&&&!"E2FGHG2I/+D2! " E2JKJLLM! N2 E2HJ2#%D2! O2 E2HJ2#%D2! # E PKH2#% $ )N Q2JKRFL2#%D2$ )O Q2JKLRF2#% $ "/'S T2HKU2SVD2$ )D9B$0/ T2JKLL2#%D2! 1!D9B$0/ T2WJKJ2S/+ A(-2X1&X2! GJ2#% 5/'S2(90$BB'#$()28O2(90$BB'#$)?2-/9$17'B2C(-$&()#'B2 1$9"/-9$()2Q2GJ *GU %2^21'%"/12/)/-?O29"-/'12 9(%/5C'#28$?2"-(./0#/12/%$##')0/?-(5#C2Y2Z[H217/2#(29#-()?/-2[:\ $?)(-'8B/20C-(%'#$02/AA/0#92Y24;]V[G2^24;]V[H Yujong!" Kim

Simulations Linac with RF Gun Phase Space at FEL-1 C(>0-$A-/>0$)#/).$#G0');0 )'>>(7/>0:');7$;#-0$)0#-/01H140:/'%D$)/ $%">(F/;0/)/>AG02-$>"$)A0');0 D(70/)/>AG0.">/';0C(>0#-/01H140:/'%D$)/ 34560!"I0JKLM0N/+E0! " I0OPOQRS! T0 I0UJ0#%E0! G0 I06J0#%E0! # I RPU0#% $ )T V0OPLWQ0#%E0$ )G V0OPQLW0#% $ "/'X Y0UPM0XHE0$ )E.D$2/ Y0OPQQ0#%E0! ;!E.D$2/ Y0JOPO0X/+ C(>0Z;&Z0! 6O0#% Yujong Kim

Simulations Linac with RF Gun Slice Parameters at 6 GeV! "/'L F0MHN0LO0C(20J;&J0F0KG0"% # ;"E3-$./ F0MKGHP0L/+ C(207D(-/0:9).D # ;"E3-$./ F0QGHG0L/+ C(20J;&J0F0KG0"% $).2/'3/;0"/'L0.922/)#0S $).2/'3/;03-$./0/)/2AR03"2/';0S C2(%09).(22/-'#/;0/)/2AR03"2/';! )E3-$./0 F0GHII0"%0C(20J;&J0F0KG0"%! )E3-$./0 F0GHII0"%0C(20J;&J0F0KG0"%!" Yujong Kim

Simulations FEL-1 at 0.1 nm RF Gun FEL 1 Simulations for 1 Å Operation (s2e RF Gun @ 2.7 ka) Saturation Length! 43 m! Pulse Energy! 110 µj! Average Power! 2.9 GW! Bandwidth (rms)! 0.07 %!!"#$% &'!( &'!) &'!* &'!+ Energy of FEL pulse! Saturation! Divergence (rms)! 1.5 µrad! &'!, Size (rms)! 25 µm! &'!- ' &' 0' ('."#/% )' *' +' Pulse at saturation! Spectrum at! saturation! PSI-XFEL: Simulations - 10.11.2008 / S. Reiche Sven Reiche

Simulations FEL-1 at 0.1 nm Low Emittance Gun Saturation Length! 40 m! Pulse Energy! 130 µj! &'!( &'!) Energy of FEL pulse! Average Power! 2 GW! Bandwidth (rms)! 0.04 %!!"#$% &'!* &'!+ Saturation! Divergence (rms)! 1.5 µrad! &'!, Size (rms)! 20 µm! &'!- ' &' 0' ('."#/% )' *' +' Pulse at saturation! Spectrum at saturation! Sven Reiche

Simulations Accelerator: ASTRA, ELEGANT (Yujong Kim) Undulator: GENESIS 1.3 (Sven Reiche) According to our recent ASTRA+ELEGENT+GENESIS S2E simulations for the PSI-XFEL project, recently, we could control electron energy chirp and energy spread with a lower peak current easily, and we could get much improved spectrum bandwidth with I pk = 1.6 ka instead of 2.7 ka for 0.2 nc. Other FEL performance are similar for both cases. ASTRA + ELEGANT Simulation Results chirp for I pk = 2.7 ka chirp for I pk = 1.6 ka BW ~ 0.1% for I pk = 2.7 ka BW ~ 0.05% for I pk = 1.6 ka GENESIS Simulation No of photon per pulse ~ 1.0 10 11 Saturation length ~ 45 m for 2.7 ka Saturation length ~ 55 m for 1.6 ka Yujong Kim, Sven Reiche

Parameters Photons GENESIS Simulations Mode 1 Mode 2 Mode 3 Wavelength nm 0.7 0.1 2.8 0.7 7 1.8 Photon Energy kev 1.71 12.00 0.43 1.71 0.17 0.67 Saturation Length m 21.52 39.27 25.54 41.52 20.08 32.81 Effective Gain Length m 1.24 2.49 1.23 2.24 0.96 1.60 Peak Power GW 1.6 2.04 7.76 5.16 6.38 5.06 Pulse Energy mj 0.09 0.13 0.51 0.32 0.46 0.33 Peak Brilliance * 7.4 10 30 1.2 10 32 1.8 10 30 2.3 10 31 2.7 10 29 5.5 10 30 Bandwidth % rms 0.08 0.04 0.31 0.12 0.42 0.17 Beam Size µm rms 34.28 19.33 58.07 41.52 95.56 49.51 Divergence µrad 5.87 1.46 15.84 4.88 30.24 9.29 Intensity (50 m drift) J/cm 2 0.03 0.72 0.03 0.17 0.01 0.05 * number of photons / s mm 2 mrad 2 0.1% bandwidth Sven Reiche

Timeline?9!!*"+,-N! #E%$$!&F$">&/!"#$%"&#'("&)!*"+,-!#'.$!/0&)$ 1223 1242 1244 1241 1245 1246 1247 1248 9#&%#!-:-9 9#&%#!9:99 9#&%#!,;!*+,- <//=.$>!?9!!*"+,-!@(=">&%A!0(">'#'("/ 1223 1242 1244 1241 1245 1246 1247 1248 >(0=.$"#/ %$&>A!B(% CD$%"$E.)&//="FG?9!!*"+,-!H%(I$0#!H)&""'"F /#&%#! 0("/#%=0#'(" 9#&%#! (H$%&#'(" 1223 1242 1244 1241 1245 1246 1247 1248 :JK :("/()'>&#$ @&/$)'"$!H&%&.$#$%/ &">!)&A(=#/ >$/'F" %$/(=%0$!$/#'.&#$ LJK 172!O$D '"I$0#(%!#$/#'"F @=')>'"F!&">!'"B%&/#%=0#=%$ 0(.H("$"#!H%(>=0#'(".(M$! '"I$0#(% '"/#&))&#'(" Hans Braun

Status Low Emittance Gun Test Stand Completed measurements at 250 500 kev FB3&3#+*&B32'( %!""#$%#&'(&#)*+,-,&. /0'1*&'2#)134# 5'+'46'1#7""8#9:&,-# ;'0&'46'1#7""<! =*('1#30&,4,>*&,3:!?@#4'*(91'4':&(! AB'14*-#! 0B3&3#+*&BC! D,EB#E1*2,':&#&'(&( $9J@L )<>;;9:?@ FK:>;KL =*('1#03,:&,:E#(&*6,-,&.G#HI"##4#J0C#&3#0CK )C@?;LK: &K8L?@?@#4'*(91'4':&(#4'&*-( 2)36?@#4'*(91'4':&(#5=L#+3*&'2#;; % 2. 36 789:;8<%)==>?>@:?A 2. 31 2. 35 2. 34 %'8%E9;%>:J;9CC9;>K:I %'8%E9=;@L%2%<K:;M%KN@L9;>K:I %-M@KLA%" '8 O0P52@GQ%*O2.R %-M@KLA%" '8 O0P55@GQ%*O2.R %&;9>:C@JJ%&;@@C%%E9=;@L%2%<K:;M%KN@L9;>K:I% %-M@KLA%Q%" && O0P56@GQ%*O0.R. /. 0. 1. B>@CD%%EFGH<I 789:;8<%)==>?>@:?A 2)31 ";%>:J;9CC9;>K: 'K:D>;>K:>:T%><NLKU@<@:;JV %"O0P6%@G %"O0P04%@G %%F@9J8L@<@:;J 2)35. 6. 2.. 26. /.. /6. S.. )C@?;L>?%B>@CD%EFGH<I Marco Pedrozzi

Status Low Emittance Gun Test Stand Commissioning of 4 MeV Upgrade Double solenoid magnets 500 kv pulser Energy measurements Emittance measurement 2 cell RF cavity prototype

Status Field Emitter Arrays!"#$%&'(&)** Q>Q$,&&,/ : ;<%&'=)6$3'5.&'9$'0$,%)>$,*%)3.$&,.2'$?2.8$6'@-9)$'>26,.2'5$<).8'6A$B)6@3)6$ )6()$)<2**2'5$?2.8$-9@5.)6$.2%A Blunted -tip./0%12 Sharp 589: 34567%12 :;<%&'=)6$,%)>$@520'&<2./!"#$%&%'!(!)*+*!!,+-!.$ : C&'6@3.2'5$'0$02&*.$6'@-9)$(,.)6$!"#D$ 1,&38$EFFG TF>TF$,&&,/ : ;<%&'=)6$)<2**2'5$*.,-292./$ H3'<%,&2*'5$,0.)&$EF$8'@&*$3'5.25@'@*$ )<2**2'5D$*25(9)$(,.)6$!"#I /-0/- 012 %),R$3@&&)5. FAS$%P : C&)92<25,&/$38,&,3.)&2J,.2'5$'0$9,*)&$.&2(()&)6$%8'.'$02)96$)<2**2'5$?2.8$ *25(9)$(,.)6$!"# HKF0*D$GFF5<IA :LFF$MN$OP$.)*.$*.,56$-)25($&)25*.,99)6$ 25$+17$0'&$!"#$25=)*.2(,.2'5$,.$82(8)&$,33)9)&,.25($$(&,62)5.A 1-01- +,-'&,.'&/$0'&$123&'4,56$7,5'.)385'9'(/$ P'5*26)&,-9)$2<%&'=)<)5.$'0$.8)$ <,5@0,3.@&25($%&'3)**A$ #382)=)6$&)*@9.*$.'$-)$3'<-25)6$25$U2(8$ V&,62)5.$)5=2&'5<)5.$0'&$+"VA PSI November 10!" 2008 / M. Pedrozz Marco Pedrozzi Laboratory for Micro- and Nanotechnology

Status 250 MeV Injector Civil Construction November 10

Status 250 MeV Injector Civil Construction November 26

Status PSI-XFEL Preparation of the scientific case Re-optimization of the FEL design Preparation of Technical Design Report Arthos: SASE Porthos: SASE Aramis Arthos: short seed N K-edge XANES KAg(CN) 2 on carbon I+ I- Arthos: long seed metallic Co L 3 and L 2 -edges metallic Cu K-edge 390 395 400 405 410 415 Photon Energy [ev] 770 775 780 785 790 795 800 Photon Energy [ev] 8950 9000 9050 9100 Photon Energy [ev] Bruce Patterson

Thank You to the PSI-XFEL Team Special Thanks for slides and illustrations: Hans Braun, Yujong Kim, Peter Ming, Bruce Patterson, Marco Pedrozzi, Sven Reiche