Catalytic Science and Technologies by the Catalysis Society of Japan のご案内

Similar documents
日本政府 ( 文部科学省 ) 奨学金留学生申請書

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

二国間交流事業共同研究報告書 共同研究代表者所属 部局独立行政法人理化学研究所 創発物性科学研究センター

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

The unification of gravity and electromagnetism.

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

SOLID STATE PHYSICAL CHEMISTRY

東ソー株式会社 - 明日のしあわせを化学する - TOSOH CORPORATION The Chemistry of Innovation. TOSOH CORPORATION The Chemistry of Innovation

Development of Advanced Simulation Methods for Solid Earth Simulations

Illustrating SUSY breaking effects on various inflation models

京都 ATLAS meeting 田代. Friday, June 28, 13

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006).

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

モータ用モデル予測電流制御における 予測用モータモデルの磁気特性表現の改善

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

Taking an advantage of innovations in science and technology to develop MHEWS

GRASS 入門 Introduction to GRASS GIS

Product Specification


Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

ROSE リポジトリいばらき ( 茨城大学学術情報リポジトリ )

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

観光の視点から見た民泊の現状 課題 展望

NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して. Educational Research based on Newspaper In Education (NIE)

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

特別推進研究 研究期間終了後の効果 効用 波及効果に関する自己評価書

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Yutaka Shikano. Visualizing a Quantum State

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

Introduction to Multi-hazard Risk-based Early Warning System in Japan

XENON SHORT ARC LAMPS キセノンショートアークランプ

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

SML-811x/812x/813x Series

THE HOLISTIC LOVE REPORT

山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Title rays. Citation Advanced Materials Research, 409: 5. Issue Date Journal Article. Text version author.

2018 年度推薦入学選考 (11 月 15 日実施 ) 英語分野問題 ( 1 ページ 8 ページ )

Thermal Safety Software (TSS) series

Validity Expired Engineering Education Programs at Bachelor Level Accredited by JABEE Last updated: 2 April 2018

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

Analysis of shale gas production performance by SGPE

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

October 7, Shinichiro Mori, Associate Professor

9.Mistakes occur no matter ( ) careful you try to be. ( ア )how ( イ )what ( ウ )with ( エ )on

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

Case study: Errors of AIS

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

Chemical Management Manual. Ver. 1

IAU IAU commission president vice-president 8 9 IAU. 2. IAU Division structure. Commission 31 SKYPE 4.

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

独立行政法人国立科学博物館. Independent Administrative Institution National Museum of Nature and Science. Profile 2018

16. Yamamoto, S. (in press). Non-reciprocal but peaceful fruit sharing in the wild bonobos of Wamba. Behaviour, in press.

地理学における災害 防災研究の動向 IGC 2004 を通して 赤石直美 *

Video Archive Contents Browsing Method based on News Structure Patterns

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

Hypocenter Distribution of Deep Low-frequency Tremors in Nankai Subduction Zone, Japan

Relation of machine learning and renormalization group in Ising model

Method for making high-quality thin sections of native sulfur

Estimation of Gravel Size Distribution using Contact Time

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

東呉大學日本語文學系碩士論文 指導教授 : 陳淑娟教授. Can-do を利用した初級会話活動の試み 大学日本語学科一年生を対象に

CURRICULUM VITAE. SATOSHI ABE, Ph.D.

有機金属化学 : 最新論文からのトピックス 4

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Landolt-Börnstein 購入済み巻号リスト

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

NSPA510BS RoHS Compliant

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

External Review Report for Earthquake Research Institute The University of Tokyo 外部評価報告書. September 2014 平成 26 年 9 月 東京大学地震研究所

都市モデリング全 5 巻 Urban Modelling. 5 vols.

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

Listening Comprehension Sample 1

NEW Ó Ó Ó Ó *VENT DETAIL X2 KNIGHT RIDER DARK SMOKE (C00) X2 GREY MATTER J.BLUE STEEL (C04) X2 INVERSE J.RED ION (C05) *ボーナスレンズ J.

Transcription:

触媒技術の動向と展望創刊 20 周年記念企画別冊英語版 Special Edition for the 20 th Anniversary of Publication of Annual Survey of Catalytic Science and Technologies by the Catalysis Society of Japan のご案内 触媒学会では 1993 年度から事業の一環として 触媒技術の動向と展望 と題した年鑑の出版を行っております 創刊 20 周年記念号の 2012 年度版では 金属触媒 酸化物触媒 生体 錯体触媒 重合触媒 キャラクタリゼーション 光触媒 石油化学 高分子合成 バイオベース化学の九つの触媒分野における研究開発の歴史と将来展望をまとめた特集を掲載しております この特集の英語版ならびに大学 高専 国公立研究機関における研究活動 ( 研究者総覧 ) の英語版を別冊として製本し 販売いたします この別冊は海外の触媒研究者に日本における触媒の研究動向 研究者を紹介する際にもお役立ていただける内容となっています また 大学院にて触媒研究を行っている院生等にとりましても必読の書となっています つきましては本別冊の有用性をご賢察の上 ぜひご購入いただきますようにご案内申し上げます なお 5 冊以上まとめてご購入いただけます場合は割引価格を準備いたしていますので事務局までお問い合わせください 創刊 20 周年記念企画別冊英語版 (379 頁 ) 価格 6,000 円 ( 消費税込 ) ご購入は 住所 会社名及び部署名 お名前 電話番号 FAX 番号 E-mail アドレス を明記のうえ 触媒学会事務局まで E-Mail(catsj@pb3.so-net.ne.jp) または FAX (03-3291-8225) にてお申し込みください Special Edition for the 20 th Anniversary of Publication of Annual Survey of Catalytic Science and Technologies by the Catalysis Society of Japan 1. Contributions to the Special Edition 1.1 Prosperous future of catalysis: Greetings from the President Tokyo Metropolitan University Masatake Haruta 3 1.2 A submission to the 20 th anniversary commemorative edition The Catalyst Manufacturers Association, Japan Yujiro Saito 5 1.3 The history and development of metallic catalysts Industrial Catalyst Laboratory Takashiro Muroi 8 1.4 Complication towards evolution in the history of oxide catalysts for selective oxidation Catalyst Research Center, Hokkaido University Wataru Ueda 18 1.5 Development of homogeneous catalysis and biocatalysis over past two decades Chemical Resources Laboratory, Tokyo Institute of Technology Munetaka Akita 26 1.6 Recent trends in olefin polymerization catalyst development Mitsui Chemicals Singapore R&D Center Pte.Ltd. Haruyuki Makio, Terunori Fujita 38

1.7 Past, present and future of catalyst characterization Catalyst Research Center, Hokkaido University Kiyotaka Asakura 51 1.8 History and outlook of photocatalyst research The University of Tokyo Kazuhiko Maeda, Kazunari Domen 60 1.9 Development of the Japanese chemical industry over past decades and prospect6s for research in the 21 st century Mitsubishi Chemical Group Science and Technology Research Center Corp. Tohru Setoyama 72 1.10 Historical Stream, Trends and Outlook for Polymerization Catalysts Tokyo Metropolitan University Kotohiro Nomura 80 1.11Bio-based chemicals towards green innovation Kyoto Gakuen University Sakayu Shimizu 92 2. Recent activities of Japanese academic organizations Aichi University of Technology 107 Akita University 107 Asahikawa National College of Technology 109 Central Research Institute of Electric Power Industry 110 Chiba Institute of Technology 111 Chiba University 112 Chuo University 115 Doshisha University 117 Ehime University 119 The University of Electro-Communications 121 Gifu University 122 Gunma University 125 Hakodate National College of Technology 126 Hirosaki University 126 Hiroshima University 127 Hokkaido University 130 Hokkaido University of Education 144 University of Hyogo 146 Ibaraki National College of Technology147 Ichinoseki National College of Technology 147 International Christian University 148 Ishinomaki Senshu University 149 Japan Advanced Institute of Science and Technology 150 Kagoshima University 152 Kanagawa University 153 Kansai University 156 Keio University 159 Kinki University 160 The University of Kitakyushu 161 Kitami Institute of Technology 162 Kobe University 166 Kochi National College of Technology 169 Kochi University 169 Kogakuin University 170 Kyoto Institute of Technology 171 Kyoto University 172 Kyushu Institute of Technology 184 Kyushu University 186 Kumamoto University 198 Meiji University 199 Meisei University 200 Mie University 200 University of Miyazaki 201 Muroran Institute of Technology 203 Nagaoka University of Technology 204 Nagasaki University 205 Nagoya Industrial Science Research Institute 208 Nagoya Institute of Technology 208 Nagoya Municipal Industrial Research Institute 209 Nagoya University 210 Nara Institute of Science and Technology 219 Nara Women s University 220 National Defense Academy 221 National Institute of Advanced Industrial Science and Technology 222 National Institutes of Natural Sciences 237 Nihon University 239 Numazu National College of Technology 241 Okayama Ceramics Research Foundation 242

Okayama University 243 Oita University 247 Osaka University 249 Osaka Prefecture University 267 Research Institute of Innovative Technology for the Earth 272 RIKEN 273 Ritsumeikan University 274 Ryukoku University 275 Sagami Chemical Research Institute 276 Saitama University 278 Seikei University 279 Industrial Research Center of Shiga Prefecture 280 Shimane Institute for Industrial Technology 281 Shimane University 282 Shinshu University 283 Shizuoka University 285 Sophia University 288 Tohoku University 290 Tokai University 297 The University of Tokushima 299 The University of Tokyo 301 Tokyo Institute of Technology 309 Tokyo Metropolitan University 323 Tokyo University of Agriculture and Technology 325 Tokyo University of Science 327 Tokyo University of Science Yamaguchi 329 Tottori University 330 University of Toyama 332 Toyama Industrial Technology Center 336 Toyohashi University of Technology 336 Toyota Technological Institute 339 University of Tsukuba 339 Ube National Collage of Technology 341 Utsunomiya University 341 Waseda University 344 Yamaguchi University 350 University of Yamanashi 351 Yokohama National University 353 INDEX 356

Special Edition of the 20 th Anniversary of CATSJ survey The history and development of metallic catalysts Takashiro Muroi 1900 1950 1960 1970 1980 1990 2000 2010 Transition metal catalysts Fischer-Tropsch catalyst Franz Fischer, Hans Tropsch (developed in 1920's, Max Planck Institite) ZnO/Cr 2 O 3 Methanol catalyst Alwin Mittasch, Mathias Pier (BASF, 1923) Ni for Hydrogenation Paul Sabatier Jean B Senderens (1897) Pt-group metals PtO 2 H 2 O Adams' Catalyst Roger Adams (1922) Ammonia synthesis catalys Fe/K/Al 2 O 3 (BASF, 1920) (Fritz Haber, Carl Bosch) [Nobel prize] (1918, 1931) Coal to Hydrogen, WGS & Reforming catalyst (BASF, 1923) Sasol Fe-Coal-to- FT oil Sasol 1 Arge 1955 Sasol 2 Synthol, 1976 Sasol 3, 1995 150,000bpd (in 2011,Coal/Natural gas mix) CuO/ZnO Low Pressure Methanol catalyst (ICI, 1960's) CuO/CuCr 2 O 4 Adkins-Lazier catalyst (1937) Raney Ni Hydrogenation catalyst W R Grace (1924) Supported Ag Ethylene-to-EO catalyst (1937) Methane to Hydrogen, SMR Ni Refroming catalyst Pt Reforming UOP (1948) Auto emission Pd catalyst (1975) Urushibara Ni Hydrogenation catalyst (1952) Ethylene-to-EO Shell, Davy process (1956) Pt-Re Reforming Chevron (1968) Auto emission 3-way Catalyst PtRhPd (1977) Ammonia catalyst Ru/ K or Cs/Carbon (A Ozaki-K Aika, 1980's) Methane to Syngas POx Refroming catalyst (1970's) Shell GTL Co/SiO 2 Fixed bed 12,500bpd Bintulu, Malaysia (1993) NOx storage reduction Pt /M/Al 2 O 3 (1995) Ammonia catalyst Ru/Cs/Graphite Carbon (BP-KBR, 1995) Organometallic complex catalysts for Ammonia synthesis (Hidai, Nishibayashi 1980s-) CO 2 to Methanol RITE, Japan (2000) Oryx GTL Co/SiO 2 slurry 34,000bpd Sasol/ Qatar QP (2006) PAFC, PEFC, PAFC Pt anode, MCFC Ni anode (1970's) SOFC Ni/YSZ cathode- YSZ electrolyte-lsm/ysz anode system (1980's) Sample Formulated Raney Ni W R Grace (1990s) Ethylene-to-EO, MEG Alpha processt Mitsubishi, Shell (199x) Pd Perovskite Intelligent DeNOx Catalyst Daihatsu Motors (2002) Pearl GTL Co/SiO 2 Fixed bed 140,000bpd Shell/ Qatar (2011) Kerosene Steam Reforming Ru/ZrO 2 catalyst Idemitsu Kosan (2005) Pt/CeO 2 Heat resistant Catalyst Toyota Motors (2008) Ancher Catalyst Nissan Motors (2008) Pt /Asbestos catalyst Sulfuric acid (P Phillips, 1831) Ammonia oxidation for Nitric acid F Kuhlmann (Pt) (1838) W Ostwald (Pt Strips) (1908) K Kaiser (Pt gauze) (1909) Wilhelm Ostwald [Nobel prize] (1909) Methanation Ru/Al 2 O 3 Osaka Gas (1970s) Ozone decomp Pd/Al 2 O 3 Engelhard (1980s) HCl to Cl 2 Oxychlorination RuO 2 /TiO 2 Sumitomo Chemical (2003) Vinyl acetate PdAu alloy catalyst Bayer (1972) Butadiene diacetoxylation PdTe alloy (1982) Mitsubishi Chemical Allyl acetate PdCu/SiO 2 catalyst Showa Denko (1994) Methacrolein-to-MMA-1 Catalyst Direct Metha process Asahi Chemical, PdPb alloy (1998) Paul Sabatier [Nobel prize] (1912) PEFC Cathode/Anode Pt (1970's) Au nanosize Catalyst M Haruta (1987) PROX Ru/TiO 2 (1990's) Methacrolein-to-MMA-2 Catalyst Asahi Chemical, Au/Ni (2008) Pd-Ag alloy film High Purity H 2 (1950's) Pd alloy membrane reactor for H 2 (1980's) 121212 Industrial Catalysts Laboratory, 5-8-5 Kariya, Ushiku, 300-1235 Ibaraki, Japan

The history and development of metallic catalysts 1. Introduction The fundamentals of industrial catalysts used in modern chemical and environmental processes were discovered by the middle of the 20th century. In these first-generation processes, severe reaction conditions were applied, resulting in high construction and utility costs and performance that was inferior to that found in modern chemical plants. The second generation catalysts developed in the latter half of the 20th century were more sophisticated. They not only extended the variety of usable feedstocks and products manufactured, but also reduced the consumption of material and energy inputs, thus achieving higher profitability and lower environmental emissions. These catalysts were developed primarily for continuous and commercial-scale processes, and contributed to the establishment of a modern and prosperous chemical industry. Even in ammonia synthesis, the highest pressure and high temperature process in the chemical industry, Japanese chemists discovered a Ru/Cs-based high-performance catalyst in the 1980s that can function at much lower pressure and temperature. The first commercial use of this Ru/Cs-based catalyst was by BP-KBR in 1996. Further progress and enhanced contributions from catalysts is expected moving forward in order to combat global warming and an anticipated shortage of fossil fuel resources in the near future. 1) 2. The history of metallic catalysts 2.1 1831-1900 (In the beginning) Metallic catalysts were already utilized in the nascent stages of the chemical industrial revolution in the 19th century in Europe. An asbestos-supported Pt (P. Phillips, 1831) was the first catalyst that appeared in industry for the commercial production of sulfuric acid, an important material for producing sodium carbonate by the Leblanc process (N. Leblanc, 1791). The chamber process (introduced in 1746), or NO 2 -catalysed SO 2 oxidation process, was gradually switched to the new catalytic process. In 1913, F. Slama and H. Wolf patented, a catalyst made of a salt of vanadic acid with alkali promotors on a porous support for this process. The V 2 O 5 -alkali catalyst became popular soon after this finding, replacing all the Pt-catalysed processes. Nitric acid, another basic material in the chemical industry, was produced by acidolysis of KNO 3 with sulfuric acid when Alfred Nobel developed dynamite in 1866. The concept of vapor phase oxidation of ammonia to nitric acid was proposed by F. Kuhlmann in 1838, but the first industrial process was only developed in the 1920s, when an ample supply of gunpowder was required and the Pt gauze (multiple layers of a fine wire mesh) catalyst was invented. The activity of various finely-dispersed metallic hydrogenation catalysts was studied by Paul Sabatier, who together with Jean B. Senderens in France discovered the Ni catalyst for hydrogenation of unsaturated compounds in 1897. In the same year Joseph Crosfield & Sons succeeded in producing hardened (or hydrogenated) oil via Ni catalyzed hydrogenation of fish and vegetable oils in the UK. 2.2 1900-1960 (Rise of metallic catalysts and coal era) Many new catalytic processes were developed during the golden era of 1900 to the 1920s. Production of nitric acid was started via catalytic oxidation of ammonia with a coil of Pt strips by Wilhelm Ostwald in 1906, and soon after with a Pt gauze catalyst developed by K Kaiser in 1909. Further, ammonia was produced via the calcium cyanamide process from calcium carbide.