A strongly convergent hybrid proximal method in Banach spaces

Similar documents
On Total Convexity, Bregman Projections and Stability in Banach Spaces

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES

A convergence result for an Outer Approximation Scheme

CONVERGENCE AND STABILITY OF A REGULARIZATION METHOD FOR MAXIMAL MONOTONE INCLUSIONS AND ITS APPLICATIONS TO CONVEX OPTIMIZATION

Existence and Approximation of Fixed Points of. Bregman Nonexpansive Operators. Banach Spaces

Maximal Monotone Operators with a Unique Extension to the Bidual

Merit functions and error bounds for generalized variational inequalities

FIXED POINTS IN THE FAMILY OF CONVEX REPRESENTATIONS OF A MAXIMAL MONOTONE OPERATOR

Proximal Point Methods and Augmented Lagrangian Methods for Equilibrium Problems

arxiv: v1 [math.fa] 16 Jun 2011

AN INEXACT HYBRID GENERALIZED PROXIMAL POINT ALGORITHM AND SOME NEW RESULTS ON THE THEORY OF BREGMAN FUNCTIONS. M. V. Solodov and B. F.

AN INEXACT HYBRID GENERALIZED PROXIMAL POINT ALGORITHM AND SOME NEW RESULTS ON THE THEORY OF BREGMAN FUNCTIONS. May 14, 1998 (Revised March 12, 1999)

On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean

Upper sign-continuity for equilibrium problems

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods

Strong Convergence Theorem by a Hybrid Extragradient-like Approximation Method for Variational Inequalities and Fixed Point Problems

Convergence Theorems for Bregman Strongly Nonexpansive Mappings in Reflexive Banach Spaces

AN INEXACT HYBRIDGENERALIZEDPROXIMAL POINT ALGORITHM ANDSOME NEW RESULTS ON THE THEORY OF BREGMAN FUNCTIONS

Maximal monotone operators, convex functions and a special family of enlargements.

A Strongly Convergent Method for Nonsmooth Convex Minimization in Hilbert Spaces

arxiv: v3 [math.oc] 18 Apr 2012

MOSCO STABILITY OF PROXIMAL MAPPINGS IN REFLEXIVE BANACH SPACES

Journal of Convex Analysis (accepted for publication) A HYBRID PROJECTION PROXIMAL POINT ALGORITHM. M. V. Solodov and B. F.

An inexact subgradient algorithm for Equilibrium Problems

Pacific Journal of Optimization (Vol. 2, No. 3, September 2006) ABSTRACT

ENLARGEMENT OF MONOTONE OPERATORS WITH APPLICATIONS TO VARIATIONAL INEQUALITIES. Abstract

On nonexpansive and accretive operators in Banach spaces

Fixed points in the family of convex representations of a maximal monotone operator

Existence results for quasi-equilibrium problems

The sum of two maximal monotone operator is of type FPV

Maximal Monotonicity, Conjugation and the Duality Product in Non-Reflexive Banach Spaces

An Inexact Spingarn s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization

THROUGHOUT this paper, we let C be a nonempty

("-1/' .. f/ L) I LOCAL BOUNDEDNESS OF NONLINEAR, MONOTONE OPERA TORS. R. T. Rockafellar. MICHIGAN MATHEMATICAL vol. 16 (1969) pp.

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces

BREGMAN DISTANCES, TOTALLY

Subdifferential representation of convex functions: refinements and applications

Journal of Convex Analysis Vol. 14, No. 2, March 2007 AN EXPLICIT DESCENT METHOD FOR BILEVEL CONVEX OPTIMIZATION. Mikhail Solodov. September 12, 2005

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

Convergence rate of inexact proximal point methods with relative error criteria for convex optimization

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE. Sangho Kum and Gue Myung Lee. 1. Introduction

Monotone operators and bigger conjugate functions

Forcing strong convergence of proximal point iterations in a Hilbert space

MAXIMALITY OF SUMS OF TWO MAXIMAL MONOTONE OPERATORS

On the convergence properties of the projected gradient method for convex optimization

On an iterative algorithm for variational inequalities in. Banach space

On the simplest expression of the perturbed Moore Penrose metric generalized inverse

The local equicontinuity of a maximal monotone operator

Relationships between upper exhausters and the basic subdifferential in variational analysis

Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces 1

Some Inexact Hybrid Proximal Augmented Lagrangian Algorithms

Spectral gradient projection method for solving nonlinear monotone equations

ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI. Received December 14, 1999

A double projection method for solving variational inequalities without monotonicity

Convergence rate estimates for the gradient differential inclusion

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

AN OUTER APPROXIMATION METHOD FOR THE VARIATIONAL INEQUALITY PROBLEM

A GENERALIZATION OF THE REGULARIZATION PROXIMAL POINT METHOD

Convex Optimization Notes

ITERATIVE ALGORITHMS WITH ERRORS FOR ZEROS OF ACCRETIVE OPERATORS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces

A characterization of essentially strictly convex functions on reflexive Banach spaces

A projection-type method for generalized variational inequalities with dual solutions

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

PARALLEL SUBGRADIENT METHOD FOR NONSMOOTH CONVEX OPTIMIZATION WITH A SIMPLE CONSTRAINT

APPROXIMATING SOLUTIONS FOR THE SYSTEM OF REFLEXIVE BANACH SPACE

On pseudomonotone variational inequalities

An Infeasible Interior Proximal Method for Convex Programming Problems with Linear Constraints 1

A Brøndsted-Rockafellar Theorem for Diagonal Subdifferential Operators

Viscosity approximation methods for nonexpansive nonself-mappings

Monotone variational inequalities, generalized equilibrium problems and fixed point methods

Lower semicontinuous and Convex Functions

SHRINKING PROJECTION METHOD FOR A SEQUENCE OF RELATIVELY QUASI-NONEXPANSIVE MULTIVALUED MAPPINGS AND EQUILIBRIUM PROBLEM IN BANACH SPACES

On well definedness of the Central Path

1 Introduction We consider the problem nd x 2 H such that 0 2 T (x); (1.1) where H is a real Hilbert space, and T () is a maximal monotone operator (o

Regularization Inertial Proximal Point Algorithm for Convex Feasibility Problems in Banach Spaces

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods

c 2013 Society for Industrial and Applied Mathematics

Research Article Hybrid Algorithm of Fixed Point for Weak Relatively Nonexpansive Multivalued Mappings and Applications

Convergence Rates in Regularization for Nonlinear Ill-Posed Equations Involving m-accretive Mappings in Banach Spaces

Maximal monotone operators are selfdual vector fields and vice-versa

CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES. Gurucharan Singh Saluja

On Semicontinuity of Convex-valued Multifunctions and Cesari s Property (Q)

Epiconvergence and ε-subgradients of Convex Functions

Local strong convexity and local Lipschitz continuity of the gradient of convex functions

WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES

PROJECTIONS ONTO CONES IN BANACH SPACES

A hybrid proximal extragradient self-concordant primal barrier method for monotone variational inequalities

TWO MAPPINGS RELATED TO SEMI-INNER PRODUCTS AND THEIR APPLICATIONS IN GEOMETRY OF NORMED LINEAR SPACES. S.S. Dragomir and J.J.

Error bounds for proximal point subproblems and associated inexact proximal point algorithms

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

A generalized forward-backward method for solving split equality quasi inclusion problems in Banach spaces

On proximal-like methods for equilibrium programming

THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION

Brøndsted-Rockafellar property of subdifferentials of prox-bounded functions. Marc Lassonde Université des Antilles et de la Guyane

Iterative common solutions of fixed point and variational inequality problems

CONSTRUCTION OF BEST BREGMAN APPROXIMATIONS IN REFLEXIVE BANACH SPACES

Transcription:

J. Math. Anal. Appl. 289 (2004) 700 711 www.elsevier.com/locate/jmaa A strongly convergent hybrid proximal method in Banach spaces Rolando Gárciga Otero a,,1 and B.F. Svaiter b,2 a Instituto de Economia da Universidade Federal de Rio de Janeiro, Avenida Pasteur 250, Rio de Janeiro, RJ, 22290-240, Brazil b Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, RJ, 22460-320, Brazil Received 10 June 2003 Submitted by B.S. Morduhovich Abstract This paper is devoted to the study of strong convergence in inexact proximal lie methods for finding zeroes of maximal monotone operators in Banach spaces. Convergence properties of proximal point methods in Banach spaces can be summarized as follows: if the operator have zeroes then the sequence of iterates is bounded and all its wea accumulation points are solutions. Whether or not the whole sequence converges wealy to a solution and which is the relation of the wea limit with the initial iterate are ey questions. We present a hybrid proximal Bregman projection method, allowing for inexact solutions of the proximal subproblems, that guarantees strong convergence of the sequence to the closest solution, in the sense of the Bregman distance, to the initial iterate. 2003 Elsevier Inc. All rights reserved. Keywords: Proximal point method; Relative error; Inexact solutions; Hybrid steps; Strong convergence; Enlargement of maximal monotone operators 1. Introduction Many problems of applied mathematics reduce to finding zeroes of maximal monotone operators, originated, e.g., in optimization, equilibrium or in variational inequalities. The * Corresponding author. E-mail addresses: rgarciga@ie.ufrj.br (R. Gárciga Otero), benar@impa.br (B.F. Svaiter). 1 Partially supported by FAPERJ Grant E-26/152.130/2001. 2 Partially supported by CNPq Grant 302748/2002-4. 0022-247X/$ see front matter 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2003.09.030

R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 701 proximal point method [21] is among the main tools for finding zeroes of maximal monotone operators in Hilbert spaces, and is also the departure point for the design and analysis of other algorithms. In some relevant instances, the operator which zeroes are to be found are defined in Banach spaces. Illustrative examples are elliptic boundary value problems (see, e.g., [17]), which have the Sobolev spaces, W m,p (Ω), as their natural domain of definition. Thus, methods for finding zeros of maximal monotone operators in non-hilbertian spaces are also relevant. Extension of the proximal point method to Banach spaces have received some contributions in the wors of [1,7,9,14 16]. Let T : B P(B ) denote a maximal monotone operator from a reflexive real Banach space B to parts of its topological dual B. Our main problem is to find zeroes of T : Find x B such that 0 T(x). (1) The proximal point method, for solving this problem, can be formulated as follows: starting from x 0 B it generates a sequence of iterates by taing x +1 as the solution of the th proximal subproblem, i.e., the unique x B such that [ 0 T(x)+ λ f (x) f (x ) ], (2) where f : B R { }is a strictly convex and Gâteaux differentiable function on the interior of its domain satisfying some technical assumptions. f is the Gâteaux derivative of f and {λ } is an exogenous sequence of positive parameters. In [14 16] the authors present inexact versions of the method. In [16] the error criteria are presented in the spirit of those in [21], which are of absolute type. In [14,15] the methods allow for a relative error through the use of an additional hybrid step extending the wors of [22,23,25]. In any case, for the more general situation, convergence results can be resumed to those in [7]. It was proved in [7] that if domt int(domf) and T has zeroes then the sequence {x } is boundedand all its wea cluster points are zeroes of T. Actually, it is also requested in [7] that f be onto, in order to ensure existence of a solution of (2). Additionally, if f is sequentially wea-to-wea continuous, then there exists a unique wea cluster point. When f = 1/2 x 2 B and B is a Hilbert space, (2) reduces to the classical proximal point method in Hilbert spaces, and we have wea convergence to a solution [21]. Note that in this case, f is the identity function, hence sequentially wea-to-wea continuous. In a non-hilbertian Banach space, the assumption of f being sequentially wea-towea continuous seems to be too demanding. In fact in [10,12] there are counterexamples showing that in B = l p or B = L p (1 <p<+ ) the function f = r p (r>1) does not satisfy this assumption, excepting in the case just mentioned and also the case B = l p, 1 <p<+, andf = p p (see, for example, Proposition 8.2 in [5]). Thus, we identify the following main questions concerning proximal lie methods in non-hilbertian spaces: (1) Whether or not the whole sequence converges wealy to a solution? (2) Which is the relation of the wea limit with the initial iterate? (3) What about strong convergence? Under some particular conditions, as discussed in [9,11], the method has strong convergence. This includes the case when the operator T is the subdifferential of a totally

702 R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 convex function g. Ifg is not totally convex, the sequence generated by the exact proximal point method may not converge strongly, even in Hilbert spaces, as Güler proved by means of a counterexample [13]. A recent wor showing other counterexamples and the difficulties to ensure strong convergence is [3]. This problem has been addressed in [24], where it is presented a hybrid proximal-projection method in Hilbert spaces that guarantees strong convergence of the sequence of iterates to the closest solution to the initial iterate. On Banach spaces we mention the recent wors in [2,4]. In [4] the authors present a general approach for convergence of exact proximal lie methods. In [2] there is an analysis allowing for approximations of the operator T, but the regularizing parameters are taing converging to zero. The method in [24], joined with the wor in [14], is the starting point for this wor, which has as its main objective to answer, at least partially, the questions above. We present a hybrid proximal point Bregman projection method that guarantees convergence of the whole sequence to the closest solution, in the sense of the Bregman distance, to the initial iterate. The convergence is always strong. Moreover, the method allows for ɛ-enlarged inexact solutions satisfying an error criterion of relative type. 2. Preliminaries From now on, B is a reflexive real Banach space. We will use the notation v,x for the duality product v(x) of x B and v B. Convergence in the wea (respectively strong) topology of a sequence will be indicated by w (respectively ). s Let F be the family of functions f : B R, which are strictly convex, lower semicontinuous and G-differentiable. The Bregman distance associated to f F is defined as D f : B B R, D f (y, x) = f(y) f(x)+ f (x), y x. (3) From this definition, it is straightforward to verify that D f satisfies the three-point equality (see, e.g., [25] or [10]): D f (y, x) = D f (z, x) + D f (y, z) + f (x) f (z), z y, (4) for any x,y,z B. Asf is strictly convex, the function D f (,x) is nonnegative, strictly convex and D f (y, x) = 0 if and only if x = y (see, e.g., 1.1.9 of [10]). Given a nonempty closed and convex set C B and any x B,theBregman projection, associated to f F, ofx over C, usually denoted by Π f C (x), is defined as the solution of the convex optimization problem min y C D f (y, x), i.e., Π f C (x) = arg min D f (y, x). (5) y C The modulus of total convexity of f F is the function ν f : B R + R, definedas ν f (x, t) = inf D f (y, x). (6) {y B: y x =t}

R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 703 A function f F is totally convex if ν f (x, t) > 0forallx B and t>0. Additionally, if inf x E ν f (x, t) > 0 for each bounded subset E B then f is called uniformly totally convex. Iff F is totally convex, then ν f (x, st) sν t (x, t), s 1, t 0, x B, (7) and the Bregman projection associated to f is well defined (see, e.g., [10, 1.2.2]). The assumptions on f F to be considered in the sequel are the following: (H1) The level sets of D f (x, ) are bounded for all x B. (H2) Uniform total convexity of f, or equivalently (see [10, 2.1.2]), sequential consistency: Forall{x }, {y } B such that {x } is bounded and lim D(y,x ) = 0, it holds that x y s 0. (H3) The G-derivative of f, f, is uniformly continuous on bounded subsets of B. Regarding condition (H2), uniform total convexity has been called total convexity on bounded sets in [11], where it is proved that functions f with this property exist in reflexive spaces only (Corollary 4.3). We mention that (H2) also implies sequential consistency with boundedness of the sequence {x } replaced by boundedness of {y } (see [14, Proposition 5]). Examples of functions in F satisfying assumptions (H1) (H3), and also surjectivity of f, are the powers of the norm, f r = (1/r) r, r>1, in any uniformly smooth and uniformly convex Banach space B (see [14]). We recall that a point-to-set operator T : B P(B ) is monotone if w w,x x 0 for all x,x B and all w T(x), w T(x ). A monotone operator is called maximal monotone if its graph G(T ) ={(x, v) B B v T(x)} is not properly contained in the graph of any other monotone operator. Given ɛ 0, the ɛ-enlargement of a maximal monotone operator T, introduced in [6,8], is defined by T ɛ (x) = { u B v u, y x ɛ, y B, u T(y) }, (8) for any x B. Thus, T T ɛ, in particular, T 0 = T. The graph of T is demiclosed [8]: if v T ɛ (x ) for all, with ɛ converging to ɛ,andv converges in the wea (respectively strong) topology of B to v and x converges in the strong (respectively wea) topology of B to x, thenv T ɛ ( x). Since we shall try proximal lie methods for solving problem (1), we then mae some comments concerning existence of solutions for the regularized subproblems (2). Denoting by J the normalized duality mapping, then an operator T : B P(B ) is maximal monotone if, and only if, T + λj is onto for any λ>0 (see, e.g., [18]). When J is replaced by the G-derivative of a regularizing function f F then T + λf is onto provided maximal monotonicity of T and surjectivity of f : B B (see [7]). We show next that the assumption of surjectivity of f can be avoided provided existence of solutions for (1). Lemma 2.1. Let T : B P(B ) be maximal monotone. If T 1 (0) and f F satisfies (H1), then for any λ>0 and x B problem 0 T + λ [ f f (x) ] has a (unique) solution.

704 R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 Proof. Fix λ>0andx B. To simplify the notation, define ˆT : B P(B ), ˆT = T + λ [ f f (x) ]. Since f is a proper lower semi-continuous convex function, its subdifferential is maximal monotone [19]. Moreover, domf = B. Thus, dom T int dom(λ[f f(x)]) = domt and from [20] we conclude that ˆT is maximal monotone. Recall that B is reflexive. So we can assume, choosing an equivalent norm, that B and its dual B are locally uniformly convex (see [27]). Thus we assume that the duality map J is single valued. For any positive integer, the inclusion 0 ˆT + (1/)J has solution (see, e.g., Theorem 2.11 in [18, p. 123]), which we call x. Therefore, for each there exist a ˆv B such that 0 =ˆv + (1/)Jx, ˆv ˆTx. Hence, there also exist v B satisfying ˆv = v + λ [ f (x ) f (x) ], v Tx. Note that v + (1/)Jx = λ[f (x) f (x )],forall. Tae now any x T 1 (0).Using the three-point equality (4), monotonicity of T and nonnegativity of D f we get D f ( x,x ) = D f ( x,x) D f (x,x)+ f (x) f (x ), x x = D f ( x,x) D f (x,x)+ λ 1 v + (1/)Jx, x x D f ( x,x) + (λ) 1 Jx, x x = D f ( x,x) + (λ) 1[ Jx, x Jx,x ]. Since J is the duality map, Jp,q (1/2) p 2 + (1/2) q 2 and Jp,p = p 2. Thus, D f ( x,x ) D f ( x,x) + (λ) 1[ (1/2) x 2 (1/2) x 2] D f ( x,x) + 1 λ x 2. Now, in view of (H1), the sequence {x } is bounded and so is {Jx }. Hence, 1 lim ˆv = lim Jx =0. As B is reflexive and {x } is bounded, there exist a subsequence {x j } j which converges wealy to some x B. Sinceˆv j ˆT(x j ),forallj, and the graph of ˆT is demiclosed, it follows 0 ˆT(x ). Unicity follows from monotonicity of T and strict monotonicity of f. 3. The algorithm In this subsection we present the method under consideration. It accepts inexact solutions of the subproblems, with a criterion which allows for ɛ-enlarged solutions satisfying a relative error measure bounded from above. The algorithm requires an exogenous bounded

R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 705 sequence {λ } R ++ and an auxiliary totally convex function f F. Itisdefinedas follows: Algorithm 1. (1) Choose x 0 B. (2) Given x, choose λ > 0andfindɛ 0, x and v satisfying (3) Let v T ɛ ( x ), e = v + λ [ f ( x ) f (x ) ], (9) andsuchthat e, x x +ɛ λ D f ( x,x ). (10) x +1 = arg min D f (x, x 0 ), (11) x H W where H = { x B: v,x x } ɛ (12) and W = { x B: f (x 0 ) f (x ), x x 0 }. (13) Observe that at iteration, with x and λ be given, we are trying to solve the th proximal subproblem (2). But in a relaxed form (9) (10), which allows for a pair ( x,v ) in the graph of T ɛ (an enlargement of T ) and also an error e for the inclusion. Anyway, if x is the exact solution of problem (2), then there exists v B satisfying 0 = v + λ [ f ( x ) f (x ) ], v T( x ). Hence, x and v satisfies (9) (10) with ɛ = 0ande = 0. Thus, in order to show good definition of the algorithm we just need to ensure existence of solutions for the proximal subproblems and nonemptyness of the closed and convex set H W. In fact, as discussed in the previous section, total convexity of f guarantees good definition of the Bregman projection over H W. Let S denote the set of solutions of the main problem (1), i.e., the zeroes of the maximal monotone operator T, S = T 1 (0). Since the case S is the interesting one we separate the analysis. We start by settling the issue of good definition of the algorithm. Proposition 3.1. Let f F be a totally convex function and assume that at least one of the following conditions holds: (a) S and f satisfies (H1),or (b) f : B B is surjective. Then the algorithm is well defined. Moreover, for all, S H W.

706 R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 Proof. Observe first that the proximal subproblems (9) (10) always has exact solution. We mean, for any x B and λ > 0thereare( x,v ) G(T ) with e = 0(ɛ = 0), which obviously satisfy (10). In fact, apply Lemma 2.1 under assumption (a) and Lemma 2.10 and Corollary 3.1 of [7], under assumption (b), to get solution for the th proximal subproblem (2). Thus, good definition of the algorithm is reduced to the existence of the Bregman projection in (11). Which, in turn is reduced to nonemptyness of the set H W,since f is totally convex (see, e.g., [10]). We separate the proof in two cases corresponding to S and S =. Assume first that S.Sincev T ɛ ( x ) we have, for any x S, that v, x x ɛ. Hence, in view of (12), S H always. It is enough to prove that S W, with W given by (13). We proceed by induction in. If = 0thenW 0 = B, which obviously contains S. Assume now that S W for a given. ThenS H W. It implies that H W, hence there exists a unique x +1 defined by (11). Thus, x +1 satisfies the necessary condition 0 f (x +1 ) f (x 0 ) + N H W (x +1 ), obtaining f (x 0 ) f (x +1 ), x x +1 0, x H W. (14) In particular, (14) holds for any x S. It follows, from (13), that S W +1. In the second case we have S = and we proceed by induction on also. For = 0 we now that W 0 = B and H 0 contains, e.g., x 0, thus W 0 H 0. Suppose by induction that H n W n for n = 0, 1,...,. Choose z D(T ), r ={max x n z n = 0, 1,...,}+1. Define the function h : B R {+ }putting h(x) = 0forany x B[z, r]={x B x z r} and h(x) =+ for any x out of B[z, r]. Sinceh is a lower semi-continuous proper and convex function its subdifferential h is a maximal monotone operator [19]. Since z int(dom h) we also have maximal monotonicity of the sum T = T + h [20]. Note that T (x) = T(x)for any x B(z,r) and, using also [26, Corollary 7.3], we get T ɛ + h (T ) ɛ. Hence T ɛ n ( x n ) (T ) ɛ n ( x n ) and v n (T ) ɛ n ( x n ), n = 0, 1,...,. Consequently, x n, x n, v n also satisfy the conditions of the algorithm applied to the problem of finding zeroes of the maximal monotone operator T. Calling S the set of solutions of this problem we get that S. In fact, dom(t ) is contained in B[z, r], thus bounded. It follows that T has zeroes (see, e.g., [5]). Then, the discussed case ensures that x +1 is well defined and S H +1 W +1. 4. Convergence analysis We establish next some general properties of the iterates generated by the algorithm, which hold regardless of whether or not the solution set of problem (1), S, isempty.we recall that Proposition 3.1 gives sufficient conditions for the existence of such iterates. Lemma 4.1. Let f F, x 0 B and W be defined as in (13). Suppose that the algorithm, starting from x 0, reaches iteration.then

R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 707 (a) For any w W it holds D f (w, x 0 ) D f (w, x ) + D f (x,x 0 ). (15) (b) x is the Bregman projection, associated to f,ofx 0 over W,i.e., x = Π f W (x 0 ) = arg min D f (x, x 0 ). (16) x W (c) If the algorithm reaches iteration + 1 also, then D f (x +1,x ) + λ 1 e,x x +1 D f (x +1, x ). (17) Proof. To prove item (a) tae any w W. From (13), f (x 0 ) f (x ), w x 0. Using also the three-point property, (4), it follows that D f (w, x 0 ) = D f (w, x ) + D f (x,x 0 ) + f (x 0 ) f (x ), x w D f (w, x ) + D f (x,x 0 ), which proves item (a). Item (b) follows from (a) and nonnegativity and strict convexity of D f (,x ). Just note that, in view of (13), x W. Assume now that x +1 is well defined by Eq. (11). By the three-point property, (4), and (9) we have D f (x +1,x ) D f (x +1, x ) = D f ( x,x ) + f (x ) f ( x ), x x +1 = D f ( x,x ) + λ 1 [ v, x x +1 e, x x +1 ] D f ( x,x ) + λ 1 [ ɛ e, x x + e,x +1 x ] λ 1 e,x +1 x. Here we used, in the first inequality, that x +1 H and in the last inequality the error criterion (10). The next proposition resumes the global behavior of the algorithm. Proposition 4.2. Let f F satisfying assumptions (H2) and (H3). Suppose that λ λ for all and some λ and assume that the algorithm generates an infinite sequence {x } with ɛ converging to zero and λ 1 e s 0. Then either {D f (x,x 0 )} converges, {x } is bounded and each of its wea accumulation points belongs to S,orS =, {x } is unbounded and lim D f (x,x 0 ) =+. Proof. From (11) we now that for any, x +1 H W W. Hence, Lemma 4.1(a) gives us D f (x +1,x 0 ) D f (x +1,x ) + D f (x,x 0 ) D f (x,x 0 ).

708 R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 Thus, the sequence {D f (x,x 0 )} is nondecreasing and n D f (x +1,x ) D f (x n+1,x 0 ) D f (x 0,x 0 ) = D f (x n+1,x 0 ). (18) =0 Assume first that {Df (x,x 0 )} is bounded, thus convergent. Then the sum in (18) converges. Consequently lim D f (x +1,x ) = 0, which in turn implies that x +1 x s 0 (see (H2)). Since {λ 1 e } is bounded, Lemma 4.1(c) ensures that lim D f (x +1, x ) = 0 also. Then, x +1 x s 0and x x s 0. Observe also that in this case {x } is necessarily bounded. In fact, if the sequence {x } is unbounded then there is some subsequence {x j } such that lim x j x 0 =+ and D f (x j,x 0 ( ) ν f x 0, x j x 0 ) x j x 0 ν f (x 0, 1) (19) for Large enough. Here we used the property, described in Eq. (7), of totally convex functions. From (19) we get that lim D f (x j,x 0 ) =+. A contradiction. Combining now (9), e s 0 and property (H3) we get that v s 0. Taing any wea limit x of the bounded sequence { x } we find x j w x, v j T ɛ j ( x j ), v j s 0and lim ɛ j = 0. Then, 0 T 0 (x ) = T(x ) in view of demiclosedness of T (). In particular, S. Let us suppose now that S =. Then, by the preceding assertion, lim D f (x,x 0 ) = +. Sincef has full domain then lim D f (x,x 0 ) =+ also implies that {x } is unbounded in view of (H3), because in such situation D f (,x 0 ) is bounded on bounded subsets of B (see [14, Proposition 4]). Thus boundedness of {D f (x,x 0 )} and {x } are equivalent. 4.1. Strong convergence We are now in conditions to resume the main properties of the algorithm for the case of interest: when the operator has zeroes. Essentially, the algorithm generates a strongly convergent sequence to the solution of (1), which is closest to the initial iterate in the Bregman distance sense. Theorem 4.3. Assume that S.Letf F be a regularizing function satisfying assumptions (H1), (H2) and (H3), and suppose that λ λ for all and some λ. Then, the algorithm starting from any x 0 B generates an infinite sequence {x }. Moreover, if (λ 1 e,ɛ ) s 0 then {D f (x,x 0 )} converges to inf z S D f (z, x 0 ) and {x } converges strongly to ˆx = Π f S (x0 ) = arg min z S D f (z, x 0 ). Proof. Note that the Bregman projection of the initial iterate x 0 over S, ˆx = Π f S (x0 ),exists because the solution set is closed, convex and we assumed it to be nonempty and f is totally convex. From (11) we now that D f (x +1,x 0 ) D f (x, x 0 ) for all x S H W and, particularly, for ˆx. SinceD f (x +1,x 0 ) D f (x,x 0 ) (see Lemma 4.1(a)), it holds D f (x,x 0 ) D f ( ˆx,x 0 ). (20)

R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 709 Then, {D f (x,x 0 )} converges and {x } is bounded. Let α = lim D f (x,x 0 ) = sup D f (x,x 0 ), (21) and choose any wealy convergent subsequence x j w x. Then, from Proposition 4.2, x S. Consequently, D f ( ˆx,x 0 ) D f (x,x 0 ) lim inf D f (x j,x 0 ) = α, (22) where the last inequality follows from the lower semi-continuity of an f F. Thus, of D f (,x 0 ). From Eqs. (20) (22) we get α = D f ( ˆx,x 0 ) = D f (x,x 0 ). Consequently, x =ˆx, meaning that {x } has a unique wea accumulation point and converges wealy to ˆx. Moreover, from Eq. (15) in Lemma 4.1(a), with w =ˆx W, and taing limits, it follows lim sup D f ( ˆx,x [ ) lim sup Df ( ˆx,x 0 ) D f (x,x 0 ) ] = 0. Thus, lim D f (x, ˆx) = 0. Then, property (H2) ensures x strong. s ˆx, i.e., the convergence is Corollary 4.4. Let f F be a regularizing function satisfying assumptions (H1), (H2) and (H3), and suppose that λ λ for all and some λ. Assume that S and that for all we choose the error criterion e x x +ɛ λ D f ( x,x ) (23) instead of (10) with the the additional assumption that e = 0 when x = x. Then, the algorithm remains well defined. Moreover, if {λ 1 e } is bounded then (λ 1 e,ɛ ) s 0 and {x } converges strongly to ˆx = Π f S (x0 ) = arg min z S D f (z, x 0 ) and {D f (x,x 0 )} converges to D f ( ˆx,x 0 ). Proof. Good definition of the algorithm follows from Proposition 3.1(a). Concerning the global behavior of the method just note that this error criterion is more demanding that the error in (10). Since S then the argument used in the proof of Theorem 4.3 until (20) ensures that D f (x,x 0 ) converges and {x } is bounded. Then, the sum in (18) converges s 0 (see (H2)). Since and lim D f (x +1,x ) = 0,whichinturnimpliesthatx +1 x {λ 1 e } is bounded Lemma 4.1(c) ensures that lim D f (x +1, x ) = 0also.Then,x +1 x s 0and x x s 0. Hence ɛ converges to zero. Combining now (23) and property (H3) we get lim λ 1 e D f ( x,x ) lim x x = 0. Thus, (λ 1 e,ɛ ) s 0 and we can apply Proposition 4.2 and Theorem 4.3. 4.2. The case of no solutions: S = We resume next the properties of the algorithm when the operator has not zeroes.

710 R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 Theorem 4.5. Assume that S =.Letf F be a regularizing function satisfying assumptions (H2) and (H3) with surjective derivative. Suppose that λ λ for all and some λ. Then, the algorithm starting from any x 0 B generates an infinite sequence {x }. If (λ 1 e,ɛ ) s 0 then lim D f (x,x 0 ) =+ and {x } is unbounded. Proof. Since f is surjective Proposition 3.1(b) ensures good definition of the algorithm. The second part of the statement follows from S = and Proposition 4.2. References [1] Y.I. Alber, R.S. Burachi, A.N. Iusem, A proximal point method for nonsmooth convex optimization problems in Banach spaces, Abstract Appl. Anal. 2 (1997) 97 120. [2] Y.I. Alber, D. Butnariu, G. Kassay, Convergence and stability of a regularization method for maximal monotone inclusions and its applications to optimization, Preprint, 2002, available at http://math2.haifa.ac.il. [3] H. Bausche, E. Matousova, S. Reich, Projection and proximal point methods: convergence and counterexamples, Preprint, 2003, available at http://www.cecm.sfu.ca/preprints03/preprints03.html. [4] H. Baushe, P. Combettes, Construction of best Bregman approximations in reflexive Banach spaces, Proc. Amer. Math. Soc. 131 (2003) 3757 3766. [5] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in: Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, IL, 1968), American Mathematical Society, Providence, RI, 1976, pp. 1 308. [6] R.S. Burachi, A.N. Iusem, B.F. Svaiter, Enlargement of monotone operators with applications to variational inequalities, Set-Valued Anal. 5 (1997) 159 180. [7] R.S. Burachi, S. Scheimberg, A proximal point algorithm for the variational inequality problem in Banach spaces, SIAM J. Control Optim. 39 (2001) 1633 1649. [8] R.S. Burachi, B.F. Svaiter, ɛ-enlargements of maximal monotone operators in Banach spaces, Set-Valued Anal. 7 (1999) 117 132. [9] D. Butnariu, A.N. Iusem, On a proximal point method for convex optimization in Banach spaces, Numer. Funct. Anal. Optim. 18 (1997) 723 744. [10] D. Butnariu, A.N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic, Dordrecht, 2000. [11] D. Butnariu, A.N. Iusem, C. Zalinescu, On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal. 10 (2003) 35 61. [12] R. Gárciga Otero, Inexact versions of proximal point and cone-constrained augmented Lagrangians in Banach spaces, Ph.D. thesis, IMPA, Rio de Janeiro, 2001. [13] O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991) 403 419. [14] A.N. Iusem, R. Gárciga Otero, Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces, Numer. Funct. Anal. Optim. 22 (2001) 609 640. [15] A.N. Iusem, R. Gárciga Otero, Augmented Lagrangian methods for cone-constrained convex optimization in Banach spaces, J. Nonlinear Convex Anal. 3 (2002) 155 176. [16] G. Kassay, The proximal points algorithm for reflexive Banach spaces, Studia Univ. Babeş-Bolyai Math. 30 (1985) 9 17. [17] U. Mosco, Perturbation of variational inequalities, in: Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, IL, 1968), American Mathematical Society, Providence, RI, 1970, pp. 182 194. [18] D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type, Martinus Nijhoff, The Hague, 1978. [19] R.T. Rocafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970) 209 216. [20] R.T. Rocafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970) 75 88.

R. Gárciga Otero, B.F. Svaiter / J. Math. Anal. Appl. 289 (2004) 700 711 711 [21] R.T. Rocafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877 898. [22] M.V. Solodov, B.F. Svaiter, A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator, Set-Valued Anal. 7 (1999) 323 345. [23] M.V. Solodov, B.F. Svaiter, A hybrid projection-proximal point algorithm, J. Convex Anal. 6 (1999) 59 70. [24] M.V. Solodov, B.F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programming Ser. A 87 (2000) 189 202. [25] M.V. Solodov, B.F. Svaiter, An inexact hybrid generalized proximal point algorithms and some new results on the theory of Bregman functions, Math. Oper. Res. 51 (2000) 479 494. [26] B.F. Svaiter, A family of enlargements of maximal monotone operators, Set-Valued Anal. 8 (2000) 311 328. [27] S.L. Troyansi, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1970/1971) 173 180.