Scalar QCD. Axel Maas with Tajdar Mufti. 5 th of September 2013 QCD TNT III Trento Italy

Similar documents
The Physics Of Yang-Mills-Higgs Systems

Scalar particles. Axel Maas. 7 th of May 2010 Delta 2010 Heidelberg Germany

Describing Gluons. Axel Maas. 28 th of July 2009 Pathways to Confinement Rio de Janeiro Brazil

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

Properties of gauge orbits

On the Landau gauge three-gluon vertex

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

Analytical study of Yang-Mills theory from first principles by a massive expansion

QCD Green Functions:

On bound states in gauge theories with different matter content

Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge

Infrared properties of Landau propagators at finite temperature from very large lattices

Chiral symmetry breaking in continuum QCD

What s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices

Gluon Propagator and Gluonic Screening around Deconfinement

Gauge Theories of the Standard Model

Hamiltonian Flow in Coulomb Gauge Yang-Mills Theory

QCD Phases with Functional Methods

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

Lecture 10. September 28, 2017

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

arxiv:hep-ph/ v1 12 Oct 1994

Recent results for propagators and vertices of Yang-Mills theory

(De-)Confinement from QCD Green s functions

The Phases of QCD. Thomas Schaefer. North Carolina State University

QCD Factorization and PDFs from Lattice QCD Calculation

The static potential in the Gribov-Zwanziger Lagrangian

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Quantum Field Theory 2 nd Edition

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

The Strong Interaction and LHC phenomenology

Baroion CHIRAL DYNAMICS

An exact result for the behavior of Yang-Mills Green functions in the deep infrared region

Richard Williams. Hèlios Sanchis-Alepuz

Quarks, Leptons and Gauge Fields Downloaded from by on 03/13/18. For personal use only.

arxiv: v1 [hep-lat] 1 May 2011

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

6.1 Quadratic Casimir Invariants

Finite Temperature Field Theory

Bethe Salpeter studies of mesons beyond rainbow-ladder

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Lecture 5 The Renormalization Group

On the observable spectrum of theories with a Brout-Englert-Higgs effect

PoS(Baldin ISHEPP XXII)015

Theory toolbox. Chapter Chiral effective field theories

NTNU Trondheim, Institutt for fysikk

Quark Model of Hadrons

arxiv: v1 [hep-ph] 17 Apr 2014

Cornell University, Department of Physics

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

arxiv: v1 [hep-lat] 31 Jan 2011

Espansione a grandi N per la gravità e 'softening' ultravioletto

Green s Functions and Topological Configurations

Chiral symmetry breaking in continuum QCD

Rethinking Flavor Physics

Functional RG methods in QCD

Polyakov Loop in a Magnetic Field

Faddeev equations: a view of baryon properties

Factorization, Evolution and Soft factors

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

QCD at finite density with Dyson-Schwinger equations

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

Quark tensor and axial charges within the Schwinger-Dyson formalism

Deconfinement and Polyakov loop in 2+1 flavor QCD

Introduction to Quantum Chromodynamics (QCD)

Spectra of Light and Heavy Mesons, Glueball and QCD Effective Coupling Gurjav GANBOLD Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna

The Big Picture. Thomas Schaefer. North Carolina State University

G 2 -QCD at Finite Density

Bare Perturbation Theory, MOM schemes, finite volume schemes (lecture II)

Finite-temperature Field Theory

Dual quark condensate and dressed Polyakov loops

Confinement from Correlation Functions

PoS(QCD-TNT-II)030. Massive gluon propagator at zero and finite temperature

Richard Williams. Collaborators: Alkofer, Eichmann, Fischer, Heupel, Sanchis-Alepuz

Fit to Gluon Propagator and Gribov Formula

NTNU Trondheim, Institutt for fysikk

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

Scale hierarchy in high-temperature QCD

Introduction to Elementary Particles

The mass of the Higgs boson

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

Some remarks on relational nature of gauge symmetry

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Mass Components of Mesons from Lattice QCD

Dimensional reduction near the deconfinement transition

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

The Phases of QCD. Thomas Schaefer. North Carolina State University

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

arxiv:hep-lat/ v1 15 Jun 2004

Reφ = 1 2. h ff λ. = λ f

A short overview on strong interaction and quantum chromodynamics

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature

Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge

Transcription:

Scalar QCD Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy

Scalar QCD Bound States, Elementary Particles & Interaction Vertices Axel Maas with Tajdar Mufti 5 th of September 2013 QCD TNT III Trento Italy

Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure

Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure Simple(r) tensor structures

Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure Simple(r) tensor structures Rich bound state spectrum

Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure Simple(r) tensor structures Rich bound state spectrum Cheap lattice simulations Test case for functional equations

Why Scalar QCD? Only confinement no chiral symmetry breaking Confinement independent of Lorentz structure Simple(r) tensor structures Rich bound state spectrum Cheap lattice simulations Test case for functional equations Limited by (possible) triviality But triviality cutoff can be high enough

Scalar QCD Gauge theory

Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν A a μ ν = μ A a a ν ν A μ WA Gluons A μ a

Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν A a μ ν = μ A a ν ν A a μ +gf a bc A μ b A ν c WA WA A Gluons A μ a abc Coupling g and some numbers f

Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k A a μ ν = μ A a ν ν A a μ +gf a bc A μ b A ν c WA WA A Gluons A μ a D μ ij =δ ij μ h Scalar quarks h i abc Coupling g and some numbers f

Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a a A μ Gluons A μ b A ν c h WA A WA h WA Scalar quarks h i Coupling g and some numbers f abc and t a ij Gauge group SU(2)

Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a a A μ Gluons A μ b A ν c h WA A WA h WA Scalar quarks h i Coupling g and some numbers f abc and t a ij Gauge group SU(2) No 'baryon number'

Scalar QCD Gauge theory L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 Gluons A μ a Scalar quarks A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a h i A μ b A ν c Couplings g, v, λ and some numbers f abc and t a ij h WA h h A WA h WA Gauge group SU(2) No 'baryon number'

Scalar QCD Gauge theory L= 1 4 A a μ ν Gluons A μ a Scalar quarks A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a h i A μ b A ν c Couplings g, v=0, λ=0 and some numbers f abc and t a ij h WA h h A WA h WA Scalar self-interaction set to zero Gauge group SU(2) No 'baryon number'

Symmetries L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a A μ b A ν c

Symmetries L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a A μ b A ν c Local SU(2) gauge symmetry Invariant under arbitrary gauge transformations ϕ a (x) A a μ A a μ +(δ a b μ g f a bc A c μ )ϕ b h i h i +g t ij a ϕ a h j

Symmetries L= 1 4 A a μ ν A a μ ν +( D μ ij h j ) + D ik μ h k +λ(h a h a + v 2 ) 2 A a μ ν = μ A a ν ν A a μ +gf a bc D ij μ =δ ij μ iga a ij μ t a A μ b A ν c Local SU(2) gauge symmetry Invariant under arbitrary gauge transformations ϕ a (x) A a μ A a μ +(δ a b μ g f a bc A c μ )ϕ b h i h i +g t ij a ϕ a h j Global SU(2) quark flavor symmetry Acts as right-transformation on the quark field only A μ a A μ a h i h i +a ij h j +b ij h j

QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] f(classical Higgs mass) g(classical gauge coupling)

QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] f(classical Higgs mass) Confinement phase g(classical gauge coupling)

QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] f(classical Higgs mass) Higgs phase Confinement phase g(classical gauge coupling)

QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous f(classical Higgs mass) Crossover Higgs phase 1 st order Confinement phase g(classical gauge coupling)

QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous Separation only in fixed gauges f(classical Higgs mass) Crossover Landau gauge Higgs phase 1 st order Confinement phase g(classical gauge coupling)

QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous Separation only in fixed gauges f(classical Higgs mass) Crossover Coulomb gauge Landau gauge Higgs phase 1 st order Confinement phase g(classical gauge coupling)

QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous Separation only in fixed gauges f(classical Higgs mass) Crossover Higgs phase 1 st order Confinement phase Same physical state space in confinement g(classical gauge coupling) and Higgs pseudo-phases, irrespective of couplings

QCD-like vs. Higgs-like [Fradkin & Shenker PRD'79 Caudy & Greensite PRD'07] (Lattice-regularized) phase diagram continuous Separation only in fixed gauges f(classical Higgs mass) Crossover Higgs phase Confinement phase Same physical state space in confinement g(classical gauge coupling) and Higgs pseudo-phases, irrespective of couplings Asymptotic states depend on whether ground states for given J PC are stable F 1 st order

Non-aligned gauges [Maas, MPLA'12] Explicit charge direction inconvenient beyond perturbation theory

Non-aligned gauges [Maas, MPLA'12] Explicit charge direction inconvenient beyond perturbation theory Define a gauge without preferred direction

Non-aligned gauges [Maas, MPLA'12] Explicit charge direction inconvenient beyond perturbation theory Define a gauge without preferred direction Local part fixed to Landau gauge by Gribov-Singer ambiguity fixed by minimal prescription Introduces usual Faddeev-Popov ghosts μ A μ a =0

Non-aligned gauges [Maas, MPLA'12] Explicit charge direction inconvenient beyond perturbation theory Define a gauge without preferred direction Local part fixed to Landau gauge by Gribov-Singer ambiguity fixed by minimal prescription Introduces usual Faddeev-Popov ghosts Global part fixed by h =0 Aligned Landau gauges also possible μ A μ a =0

Differentiating phases [Maas, MPLA'12, Caudy & Greensite'07]

Differentiating phases [Maas, MPLA'12, Caudy & Greensite'07] How to distinguish phases?

Differentiating phases [Maas, MPLA'12, Caudy & Greensite'07] How to distinguish phases? Relative orientation hdx hdx hdy is the magnetization

Differentiating phases [Maas, MPLA'12, Caudy & Greensite'07] How to distinguish phases? Relative orientation hdx hdy hdx is the magnetization But not so important anyway...

Typical spectra [Maas, Mufti PoS'12, unpublished] Higgs

Typical spectra [Maas, Mufti PoS'12, unpublished, Maas MPLA'13] Higgs Higgs W

Typical spectra [Maas, Mufti PoS'12, unpublished] Higgs QCD

Typical spectra [Maas, Mufti PoS'12, unpublished] Higgs QCD Rather different low-lying spectra 0++ lighter in (Landau gauge) QCD-like region 1-- lighter in (Landau gauge) Higgs-like region

Typical spectra [Maas, Mufti PoS'12, unpublished] Higgs QCD Rather different low-lying spectra 0++ lighter in (Landau gauge) QCD-like region 1-- lighter in (Landau gauge) Higgs-like region Use as operational definition of phase

Phase diagram [Maas, Mufti, unpublished]

Phase diagram [Maas, Mufti, unpublished] Higgs QCD Complicated real phase diagram

Phase diagram [Maas, Mufti, unpublished] Higgs QCD Complicated real phase diagram QCD-like behavior even for negative bare mass

Phase diagram [Maas, Mufti, unpublished] Higgs QCD Complicated real phase diagram QCD-like behavior even for negative bare mass Similar bare couplings for both physic types

Phase diagram [Maas, Mufti, unpublished] Higgs QCD Complicated real phase diagram QCD-like behavior even for negative bare mass Similar bare couplings for both physic types

Propagators 3 propagators

Propagators 3 propagators Gluon D ab x y = A a x A b y

Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p)

Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost D G ab x y = c a x c b y D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p)

Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost D G ab x y = c a x c b y D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p) Negative semi-definite D G ( p)

Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost D G ab x y = c a x c b y Negative semi-definite Both renormalize multiplicatively D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p) D G ( p)

Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost Negative semi-definite Both renormalize multiplicatively Scalar D G ab x y = c a x c b y D H ij (x y)= <h i (x)h j+ D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p) D G ( p) ( y)>

Propagators 3 propagators Gluon D ab x y = A a x A b y 1 scalar dressing function Ghost D G ab x y = c a x c b y D μ ν ( p)=(δ μ ν p μ p ν p 2 )D( p) Negative semi-definite D G ( p) Both renormalize multiplicatively Scalar D H ij (x y)= <h i (x)h j+ ( y)> Requires more complicated renormalization D H (μ)=d H tl (μ) D H (μ)'=d H tl (μ)' D H tl ( p)=1/( p 2 +m r 2 ) μ=m r

Gluon propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished]

Gluon propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Significantly volume-dependent Decoupling-type

Gluon propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Significantly volume-dependent Decoupling-type Positivity violating

Gluon propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Significantly volume-dependent Decoupling-type Positivity violating Little impact when changing scalar sector

Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished]

Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Infrared enhanced But likely not divergent

Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Infrared enhanced But likely not divergent Derive a running coupling from p 6 D G 2 D

Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Infrared enhanced But likely not divergent Derive a running coupling from p 6 D G 2 D

Ghost propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] Infrared enhanced But likely not divergent Derive a running coupling from p 6 D G 2 D Not strongest at lowest bound state masses

Scalar quark propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] m r =1 GeV

Scalar quark propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] m r =1 GeV Requires mass renormalization Tree-level mass zero: Mass generation

Scalar quark propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] m r =1 GeV Requires mass renormalization Tree-level mass zero: Mass generation No sign (yet) of positivity violation

Scalar quark propagator [Maas, EPJC'11 Maas, Mufti PoS'12, unpublished] m r =0.25 GeV Requires mass renormalization Tree-level mass zero: Mass generation No sign (yet) of positivity violation

Vertices

Vertices Three 3-point vertices 4-point vertices too expensive

Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex < A a μc b c c > =D ad μ ν D be G D cf d e f G Γ ν

Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex < A a μc b c c > =D ad μ ν D be G D cf d e f G Γ ν G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl )

Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ

Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ Scalar-gluon vertex < A a μ h i h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A hh + > /(Γ tl D D H D H Γ tl )

Vertices [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) t F makes vertex flavor-conserving Flavor-violating vertex vanishes Flavor conserved

Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished]

Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished]

Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) A p A p [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished]

Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) A A p=0 p [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished]

Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex Two momentum configurations < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) A p=0 A p [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] q k with q=-k

Vertices Three 3-point vertices 4-point vertices too expensive Ghost-gluon vertex G A c c =Γ tl < A c c> /(Γ tl D D G D G Γ tl ) 3-gluon vertex G A3 =Γ tl < AAA> /(Γ tl DDD Γ tl ) Scalar-gluon vertex < A a μ c b c c > =D ad μ ν D be G D cf d e f G Γ ν < A a μ A b ν A c ρ > = D ad μα D be cf d e f νβ D ρ γ Γ αβ γ [Cucchieri, Maas, Mendes, PRD'06,'08 Maas, Mufti PoS'12, unpublished] < A a μ h i t F h j + > =D ad μ ν D ik H D jm dkm G Γ ν G A hh + =Γ tl < A ht F h + > /(Γ tl D D H D H Γ tl ) Two momentum configurations A A p=0 p p 2 =q 2 =k 2 q k with q=-k q k

Ghost-gluon vertex [Maas, Mufti PoS'12, unpublished] Only small deviations from tree-level Like in Yang-Mills theory Strongest effect at bound state mass scale

3-gluon vertex [Maas, Mufti PoS'12, unpublished] Infrared suppressed Sets in at bound state mass scale Absence of (supposed) sign change of Yang-Mills theory at small momenta?

Scalar-gluon vertex [Maas, Mufti PoS'12, unpublished] Essentially tree-level No indications for infrared effects (yet?)

Scalar-gluon vertex [Maas, Mufti PoS'12, unpublished] Essentially tree-level No indications for infrared effects (yet?) Different than a (pseudo-)confining 1-gluon exchange As in the quenched case [Maas, PoS'11, unpublished]

Scalar-gluon vertex [Maas, Mufti PoS'12, unpublished] Essentially tree-level No indications for infrared effects (yet?) Different than a (pseudo-)confining 1-gluon exchange As in the quenched case [Maas, PoS'11, unpublished]

Summary Scalar QCD a role model for QCD Scalar theory simpler...

Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated

Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods

Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory

Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory Positivity violating gluon Scalar quark not obviously positivity violating

Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory Positivity violating gluon Scalar quark not obviously positivity violating Vertices Yang-Mills-like

Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory Positivity violating gluon Scalar quark not obviously positivity violating Vertices Yang-Mills-like No infrared effects in the scalar-gluon vertex

Summary Scalar QCD a role model for QCD Scalar theory simpler......but distinction to Higgs-like physics complicated Test case for functional methods Propagators in QCD-like region similar to Yang-Mills theory Positivity violating gluon Scalar quark not obviously positivity violating Vertices Yang-Mills-like No infrared effects in the scalar-gluon vertex So far...no obvious confinement