Enforcement of Opacity Security Properties Using Insertion Functions

Similar documents
Last time: introduced our first computational model the DFA.

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

Minimum Spanning Trees

Walk Like a Mathematician Learning Task:

Generalized Robust Diagnosability of Discrete Event Systems

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Non-Deterministic Finite Automata

The Course covers: Lexical Analysis Syntax Analysis Semantic Analysis Runtime environments Code Generation Code Optimization. CS 540 Spring 2013 GMU 2

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Formal Concept Analysis

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Problem solving by search

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

DFA (Deterministic Finite Automata) q a

Basic Polyhedral theory

On the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery

We will see what is meant by standard form very shortly

Chapter 2 Finite Automata

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

Deterministic Finite Automata

QUESTIONS BEGIN HERE!

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Finite Automata. d: Q S Q. Finite automaton is M=(Q, S, d, q 0, F) Ex: an FA that accepts all odd-length strings of zeros: q 0 q 1. q i. q k.

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

Fingerprint idea. Assume:

Verification of Initial-State Opacity in Petri Nets

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Sybil Attacks and Defenses

On Decentralized Observability of Discrete Event Systems

Novel Logical Method for Security Analysis of Electronic Payment Protocols. Technology, No.47, Yanwachi street, Changsha, Hunan, China

The Z transform techniques

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

On the Maximally-Permissive Range Control Problem in Partially-Observed Discrete Event Systems

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

A Symbolic Approach to Control via Approximate Bisimulations

Convert the NFA into DFA

Reinforcement learning II

Hybrid Control and Switched Systems. Lecture #2 How to describe a hybrid system? Formal models for hybrid system

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Constructive Geometric Constraint Solving

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

CONTINUITY AND DIFFERENTIABILITY

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

COMP108 Algorithmic Foundations

Centrum voor Wiskunde en Informatica REPORTRAPPORT. Supervisory control for nondeterministic systems

Let's start with an example:

CS September 2018

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Learning Regular Languages over Large Alphabets

Elliptical motion, gravity, etc

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

Section 3: Antiderivatives of Formulas

TuLiP: A Software Toolbox for Receding Horizon Temporal Logic Planning & Computer Lab 2

Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem 2/16/15

Seven-Segment Display Driver

CS375: Logic and Theory of Computing

State Minimization for DFAs

CS 461, Lecture 17. Today s Outline. Example Run

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CISC 4090 Theory of Computation

Recursively Enumerable and Recursive. Languages

Petri Nets. Rebecca Albrecht. Seminar: Automata Theory Chair of Software Engeneering

In the previous two chapters, we clarified what it means for a problem to be decidable or undecidable.

The size of subsequence automaton

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS 275 Automata and Formal Language Theory

Designing finite automata II

Regular languages refresher

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Finite Automata-cont d

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Worked out examples Finite Automata

Deciding the value 1 problem for probabilistic leaktight automata

Transcription:

Enforcmnt of Opcity Scurity Proprtis Using Insrtion Functions Yi-Chin Wu nd Stéphn Lfortun EECS Dprtmnt, Univrsity of Michign CDC 12 Dc. 13 th, 2012

Motivtion Scurity nd privcy concrns in onlin srvics Opcity : whthr th scrt informtion of th systm cn infrrd y outsid osrvrs Exmpl: Loction-sd srvics Smrt phon Nvigtion rqusts Srvr Intrudr 2

Rltd Work Notions of opcity [Mzré t l 04 ], [Bryns t l. 05], [Soori t l. 07], [Bryns t l. 08] Vrifiction of opcity [Soori t l. 08, 09], [Cssz t l. 09], [Lin 11] Enforcmnt of opcity [Duril t l. 08], [Soori t l. 08], [Cssz t l. 09] 3

Contriution Enforc opcity using insrtion functions Systm G Proj. P Systm s Output Bhvior dditionl osrvl vnts Insrtion Function Modifid Bhvior Intrudr i-nforcing proprty All Insrtion Structur (AIS) Synthsis of i-nforcing insrtion functions 4

Automton Modl 0 uo 1 2 3 4 E O ={,} X 0 L(G,X 0 ) := {s E : ( i X 0 ) [f(i,s) is dfind]} E = E o E uo P()= if E o ; P()=ε if E uo {ε} 5

Wht Is Th Opcity Prolm? Th systm is prtilly osrvl Th systm hs scrt initil stt, currnt stt, sulngug, initil-nd-finl stt Th intrudr knows th systm structur 6

Wht Is Th Opcity Prolm? Th systm is prtilly osrvl Th systm hs scrt initil stt, currnt stt, sulngug, initil-nd-finl stt Th intrudr knows th systm structur Th scrt is opqu if for vry scrt hvior, thr is nonscrt hvior tht is osrvtionlly-quivlnt 6

Currnt Stt Opcity Dfinition (Currnt-Stt Opcity) Givn G = (X,E,f,X 0 ), st of scrt stts X S, nd st of non-scrt stts X NS, th utomton is currnt-stt opqu if i X 0, t L(G,i) such tht f(i,t) X S, j X 0, t L(G,j) such tht (i) f(j,t ) X NS, (ii) P(t)=P(t ). Th systm is opqu Th systm is not opqu 1 0 c 2 E O ={} 3 4 1 0 c 2 E O ={,} 3 4 Scrt stts Nonscrt stts 7

Systm G: 0 uo 1 2 3 4 Vrify Currnt-Stt Opcity opqu E O ={,} Not opqu 8

Systm G: 0 uo 1 2 3 4 Vrify Currnt-Stt Opcity E O ={,} Not opqu Currnt-Stt Estimtor: 1 3 0,2 4 8

Systm G: 0 uo 1 2 3 4 Vrify Currnt-Stt Opcity E O ={,} Not opqu Currnt-Stt Estimtor: 1 3 0,2 4 Enforc Opcity Opcity Enforcmnt Prolm How cn w nforc th scrt to opqu? 8

Existing Opcity Enforcmnt Mchnisms Suprvisory control Only prtil systm hvior is llowd [Duril t l. 10][Soori t l. 12] Dynmic osrvr Crt nw osrvl hvior [Cssz t l. 09] 9

Existing Opcity Enforcmnt Mchnisms Suprvisory control Only prtil systm hvior is llowd [Duril t l. 10][Soori t l. 12] Dynmic osrvr Crt nw osrvl hvior [Cssz t l. 09] W nforc opcity such tht All systm hvior is llowd to occur No nw osrvl hvior is crtd 9

Our Approch: Insrtion Functions Systm G Proj. P Systm s Output Bhvior dditionl osrvl vnts Insrtion Function Modifid Bhvior Intrudr A monitoring intrfc Insrt xtr osrvl vnts Intrudr cnnot distinguish twn insrtd vnts nd systm s osrvl vnts 10

I-Enforcing Proprty for Insrtion Functions dmissil Systm G Proj. P Systm s Output Bhvior dditionl osrvl vnts Insrtion Function Modifid Bhvior Intrudr Admissil: llows ll systm s output hvior 11

I-Enforcing Proprty for Insrtion Functions dmissil sf Systm G Proj. P Systm s Output Bhvior dditionl osrvl vnts Insrtion Function Modifid Bhvior Intrudr Admissil: llows ll systm s output hvior Sf: hvior ftr insrtion must look lik xisting non-scrt strings 11

I-Enforcing Proprty for Insrtion Functions dmissil sf Systm G Proj. P Systm s Output Bhvior dditionl osrvl vnts Insrtion Function Modifid Bhvior Intrudr Admissil: llows ll systm s output hvior Sf: hvior ftr insrtion must look lik xisting non-scrt strings i-nforcing = dmissil + sf i-nforcl opcity proprty 11

Is Opcity Alwys i-nforcl? 0 1 2 E O ={,} 12

Is Opcity Alwys i-nforcl? 0 1 2 nonscrt E O ={,} 12

Is Opcity Alwys i-nforcl? 0 1 2 E O ={,} nonscrt scrt 12

Is Opcity Alwys i-nforcl? 0 1 2 E O ={,} nonscrt scrt I-nforcility Vrifiction Prolm Is opcity i-nforcl? 12

Is Opcity Alwys i-nforcl? 0 1 2 E O ={,} nonscrt scrt I-nforcility Vrifiction Prolm Is opcity i-nforcl? Insrtion Function Synthsis Prolm How to synthsiz n i-nforcing insrtion function?

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 1] i-vrifir Currnt-Stt Estimtor: 1 3 0,2 4 1 3 0,2 4 13

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 1] i-vrifir Currnt-Stt Estimtor: 1 3 0,2 4 1 3 0,2 4 13

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 1] i-vrifir Currnt-Stt Estimtor: 1 3 0,2 4 {,}* 1 3 0,2 4 {,}* {,}* {,}* 13

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 1] i-vrifir Currnt-Stt Estimtor: 1 3 0,2 4 d {,}* 1 3 0,2 4 {,}* {,}* {,}* 13

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 1] i-vrifir Currnt-Stt Estimtor: 1 3 0,2 4 d {,}* 1 3 0,2 4 {,}* {,}* {,}* Nondtrministic, sf i-vrifir 13

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Tst 1] L( )) = P(L(G))? * No : No i-nforcing insrtion function xists. Stop. Ys : Go to Stp 2 nd complt th AIS *Should includd in th ppr 14

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Tst 1] L( )) = P(L(G))? * Ys : Go to Stp 2 nd complt th AIS *Should includd in th ppr 14

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 2] Unfoldd i-vrifir V u dtrminiztion nd unfolding i-vrifir i-vrifir 15

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 2] Unfoldd i-vrifir V u dtrminiztion nd unfolding systm output * insrtion choics i-vrifir i-vrifir * * ll dtrministic, sf insrtions 15

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 2] Unfoldd i-vrifir V u dtrminiztion nd unfolding systm output * insrtion choics i-vrifir i-vrifir * * ll dtrministic, sf insrtions 15

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 2] Unfoldd i-vrifir V u dtrminiztion nd unfolding systm output * insrtion choics i-vrifir i-vrifir * * ll dtrministic, sf insrtions 15

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 2] Unfoldd i-vrifir V u dtrminiztion nd unfolding systm output * insrtion choics i-vrifir i-vrifir * * ll dtrministic, sf insrtions 15

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 2] Unfoldd i-vrifir V u dtrminiztion nd unfolding systm output * insrtion choics i-vrifir i-vrifir * * ll dtrministic, sf insrtions 15

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 3] Th AIS * * * Unfoldd i-vrifir 16

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 3] Th AIS * * * Unfoldd i-vrifir 16

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 3] Th AIS * uncontrolll * * Unfoldd i-vrifir 16

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 3] Th AIS * uncontrolll * * Unfoldd i-vrifir 16

Th All-Insrtion Structur (AIS) Enumrt ll i-nforcing insrtion functions [Stp 3] Th AIS * Suprml controlll sulngug * * * * Unfoldd i-vrifir * ll dtrministic i-nforcing insrtions 16

Th AIS Construction Workflow G i-vrifir L1=?L2 N y Unfoldd i-vrifir AIS Not i-nforcl Th AIS numrts ll i-nforcing insrtion functions 17

Th AIS Construction Workflow G i-vrifir L1=?L2 N y Unfoldd i-vrifir AIS Φ? N y Not i-nforcl Not i-nforcl i-nforcl Th AIS numrts ll i-nforcing insrtion functions Thorm (I-Enforcility) An opcity proprty is i-nforcl iff th AIS is not th mpty utomton 17

Synthsis of I-Enforcing Insrtion Functions Givn th AIS c ((c*)*)* (c*)*c (c*)*c (c*)*c * (*(c)*)* * ((c*)*)* (c*)*c 18

Synthsis of I-Enforcing Insrtion Functions Givn th AIS Slct on insrtion t vry circl stt c ((c*)*)* (c*)*c (c*)*c (c*)*c * (*(c)*)* * ((c*)*)* - On insrtion choic (c*)*c 18

Synthsis of I-Enforcing Insrtion Functions Givn th AIS Slct on insrtion t vry circl stt c c c c (*(c)*)* - On insrtion choic - On insrtion string c 18

Synthsis of I-Enforcing Insrtion Functions Givn th AIS Slct on insrtion t vry circl stt Trnslt into th insrtion utomton insrtion + systm output systm output /c c/cc / /c / / / /c 18

Insrtion Enforcmnt Mchnism Systm G Proj. P Systm s Output Bhvior dditionl osrvl vnts Insrtion Function Modifid Bhvior Intrudr 19

Insrtion Enforcmnt Mchnism Systm G Proj. P Systm s Output Bhvior dditionl osrvl vnts Insrtion Function Modifid Bhvior Intrudr Insrtion utomtom / / / / / A finit ncoding of n insrtion function 19

Conclusion A nw opcity nforcmnt mchnism using insrtion functions Chrctriztion of th i-nforcility proprty An lgorithmic procdur to chck i-nforcility An lgorithmic procdur to synthsiz i-nforcing insrtion functions Futur work Improv th lgorithm for AIS construction Optiml insrtion function Loction-sd srvic pplictions 20