CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem

Similar documents
Classical Electrodynamics

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Frequency-domain Characteristics of Discrete-time LTI Systems

DIGITAL SIGNAL PROCESSING LECTURE 5

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

1 Tangent Line Problem

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Vectors. Vectors in Plane ( 2

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

Discrete Mathematics I Tutorial 12

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Linear Programming. Preliminaries

Unit 1. Extending the Number System. 2 Jordan School District

National Quali cations SPECIMEN ONLY

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

is completely general whenever you have waves from two sources interfering. 2

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

Schrödinger Equation Via Laplace-Beltrami Operator

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Review of Sections

Graphing Review Part 3: Polynomials

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

82A Engineering Mathematics

PhysicsAndMathsTutor.com

y udv uv y v du 7.1 INTEGRATION BY PARTS

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Lecture 2: Matrix Algebra

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

BC Calculus Review Sheet

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

Chapter 7 Infinite Series

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Name: Period: Date: 2.1 Rules of Exponents

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

Indices and Logarithms

Notes 17 Sturm-Liouville Theory

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

( ) dx ; f ( x ) is height and Δx is

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Topic 4 Fourier Series. Today

Crushed Notes on MATH132: Calculus

11/16/2010 The Inner Product.doc 1/9. The Inner Product. So we now know that a continuous, analog signal v t can be expressed as:

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

Northwest High School s Algebra 2

Math 104: Final exam solutions

Orthogonality, orthogonalization, least squares

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

Approximate Integration

lecture 16: Introduction to Least Squares Approximation

Chapter Real Numbers

Linear Algebra. Lecture 1 September 19, 2011

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

Using Quantum Mechanics in Simple Systems Chapter 15

Supplemental Handout #1. Orthogonal Functions & Expansions

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Review of the Riemann Integral

National Quali cations AHEXEMPLAR PAPER ONLY

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

The Definite Integral

Add Maths Formulae List: Form 4 (Update 18/9/08)

Lesson 4 Linear Algebra

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

Surds, Indices, and Logarithms Radical

PROGRESSIONS AND SERIES

Pre-Calculus - Chapter 3 Sections Notes

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

EXERCISE a a a 5. + a 15 NEETIIT.COM

POWER SERIES R. E. SHOWALTER

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Section 6.3: Geometric Sequences

( a n ) converges or diverges.

Fourier Series and Applications

3.1 Laplace s Equation 3.2 The Method of Images 3.3 Separation of Variables

Inner Product Spaces (Chapter 5)

MTH 146 Class 16 Notes

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

9.5. Alternating series. Absolute convergence and conditional convergence

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

Name of the Student:

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Transcription:

CHAPTER : Boudr-Vlue Problems i Electrosttics: I Applictios of Gree s theorem

.6 Gree Fuctio for the Sphere; Geerl Solutio for the Potetil The geerl electrosttic problem (upper figure): ( ) ( ) with b.c. s s hs the forml solutio: (see Sec..) 3 ( ) ( ) G (, ) d v 4 D S ( ) ( 4 s G D, ) d, (.44) where the Gree fuctio G (, ) is the solutio of (lower figure) D s ( ) ( ) G (, ) 4 ( ) with b.c. G (, ) for o S D G D (, ) c be regrded s the potetil due to uit poit source ( q 4, p. 64) t rbitrr positio iside the sme surfce S, but with the homogeeous b.c. GD (, ) = for o S. D uit poit source GD (, ) GD (, ) S (sme S s i upper figure)

.6 Gree Fuctio for the Sphere (cotiued) Empl e : Use (.44) to fid due to poit chrge q t b i ifiite spce. q ( ) ( b ) with b.c. ( ) I order to use (.44), we first obti the Gree fuctio from GD(, ) 4 ( ) with GD(, ) for o S () The solutio of () is GD (, ) Sub. q ( b ) for ( ) d / for G D (, ) i to (.44) q ( b) 3 G (, ) ( ) ( ) (, ) ( ) D GD d d 4 v 4 s q 4 b 3

.6 Gree Fuctio for the Sphere (cotiued) Emple : ( ) with b.c. ( r ) (,, ) Fid ( ) i the regio r (see left figure). First, fid G (, ) from D the equtio (see right figure) G (, ) 4 ( ) D ) with G (, ) o S. G D D S S (,, ) Note : poits outwrd from the volume of iterest. GD (, ) This equtio hs the solutio (see Sec.. ): (, ) G D (, ) 4 ( ) i regio of iterest ( r ) cos cos Note: G (, ) G (, ) gle betwee d D D (3) 4

.6 Gree Fuctio for the Sphere (cotiued) GD (, ) GD(, ) ( ) ' ( cos ) 3 Sub. (3) ito (.44) 3 G (, ) D ( ) ( ) GD (, ) d ( ) d 4 v 4 s ( ) (,, ) (.9) 4 s d 3 ( cos ) Questios:. I (3), we hve G D (, ) s solutio of / G D GD (, ) 4 ( ). But (, ) ppretl lso stisfies the sme equtio. Does this violte the uiqueess thm.?. C the solu tio of GD (, ) 4 ( ) be writte i the form G (, ) G ( )? wh? 5 D D

. Method of Imges The method of imges is ot geerl method. It works for some problems with simple geometr. Cosider poit chrge q locted i frot of ifiite d grouded ple coductor (see figure). The regio of iterest is d is govered b the Poisso equtio: imge q s s ( ) chrge ( s s ) q q q subject to the boudr coditio regio of regio of ( ). iterest iterest I order to miti zero potetil o the coductor, surfce chrge will illbe iduced d (b q) o the coductor. We m simulte the effects of the surfce chrge with hpotheticl "imge chrge", q, locted smmetricll behid the coductor. T he, 6

. Method of Imges (cotiued) q ( ) 4 imge s s s s chrge d, b smmetr, ( ) stisfies q q q the boudr coditio ( ). regio of regio of Operte ( ) with iterest iterest q ( ) [ ( ) ( )] () I the regio of iterest ( ), we hve ( ). Thus, ( ) obes the origil Poisso equtio q ( ) ( ) This shows tht we must put the imge chrge outside the regio of iterest Sice ( ) stisfies both the Poisso equtio d the boudr coditio i the regio of iterest, it is solutio. B the uiqueess theorem, it is the ol solutio. Note tht the Poisso equtio () d the solutio ( ) re irrelevt outside the regio of iterest. 7

. Poit Chrge i the Presece of Grouded Coductig Sphere Refer to the coductig sphere of rdius show i the figure. Assume poit chrge q B is t r ( ). To fid for r, we put q q imge chrge q t r ( ). The, q 4 q 4 ( ) First, set, or '=, q 4 q 4 ' so tht = Boud coditio requires Note: ' ; hece, q' lies outside q 4 q 4 ( ) the regio of iterest. q q' Net, set so tht RHS. q 4 q 4 ' ( ) ' This gives ' q q q. 8

. Poit Chrge i the Presece of Grouded Coductig Sphere (cotiued) q 4 q 4 This is equivlet to (.) Rewrite ( ) d (.4) of Jckso. q I the regio of iterest ( r ), we hve ( ) ( ). Thus, s i the cse of the ple coductor, stisfies the Poisso equtio d the b.c. It is hece the ol solutio. The E-field lies re show i the figure below. q B q 9

. Poit Chrge i the Presece of Grouded Coductig Sphere (cotiued) Surfce chrge desit o the sphere : The solutio for ( ) c be epressed i terms of sclrs s q ( ) 4 / 4 ( cos ) / ( cos ) where is the gle betwee d. B Guss's lw, the surfce chrge B q q desit t poit B is Er ( ) ( q cos cos ) [ 8 3/ 4 3 ] ( cos ) 3/ ( cos ) q ( ) (.5) 4 3/ ( cos ) ( ) [ ]

. Poit Chrge i the Presece of Grouded Coductig Sphere (cotiued) Totl chrge o the sphere: : The totl surfce chrge c be obtied b itegrtig over the sphericl surfce. B However, it c be deduced from simple q q rgumet: I the regio r, the electric field due to the surfce chrge is ectl the sme s tht due to the imge chrge q. Hece, b Guss's lw, the totl surfce chrge must be q ( q). Force o q: Sice, t the positio of chrge q, the field produced b the imge chrge q is the sme s tht produced b the surfce chrge, the force o q is the Coulomb force betwe q d q. q( q) 3 qq q F = 4 ( ) 4 ( (.6) 4 ) ( )

.3 Poit Chrge i the Presece of Chrged, Isulted, Coductig Sphere (with Totl Chrge Q) If the sphere is isulted with totl chrge Q o its surfce, we m obti i two steps. Step : Groud the sphere sme problem s i Sec.. q 4 q ( ) 4 / with totl surfce chrge q q. Q Step : Discoect the groud wire. Add Q q/ to the sphere so tht the totl chrge o the sphere is Q. The, Q q will be distributed uiforml o the surfce becuse the chrges were lred i sttic equilibrium. Q q due to Qq is ( ) 4 q s

.3 Poit Chrge i the Presece of Chrged, Isulted, Coductig Sphere (cotiued) Hece, the totl is q q Qq ( ) [ ] (.8) 4 / qq ( q/ ) force due to The force o q is the force i (.6) plus 4 3 dded chrge q 3 q ( ) Q F Q q (.9) 4 4 ( ) qq As, F (Coulomb force betwee poit chrges) 4 As, F is lws ttrctive eve if q d Q hve the sme sig. Questio: If there is ecess of electros o the surfce, wh do't the leve the surfce due to mutul repulsio? (See p. 6 for discussio o the work fuctio of metl.) 3

.7 Coductig Spheres with Hemisphere (to be discussed i Sec. 3.3).8 Orthogol Fuctios d Epsios Defiitio of Orthogol Fuctios : Cosider set of rel or comple fuctios U ( ) (,, ) which re squre itegrble o the itervl b. ier product b orthogol, if U, m ( ) U m( ) d U ( )'s re, m b, m orthoorml, if U ( ) U m( ) d m, m Geometricl logue: e, e,d e z re orthoorml set of uit vectors, i.e. e m e = m. B compriso, the dot product e m e is similr to the ier product. But the lgebric set U () c be ifiite i umber. 4

.8 Orthogol Fuctios d Epsios (cotiued) Lierl Idepedet Fuctios : The set of ( )'s re sid to be lierl idepedet if the U ol solutio of U ( ) (for ever i the rge of b) is for. If set of ffuctios re orthogol, the re lso lierll idepedet. Proof : U ( ), uless m b b U ( ) U ( ) d U ( ) U ( ) d m m b ( ) U d for 5

.8 Orthogol Fuctios d Epsios (cotiued) Grm-Schmidt Orthogoliztio Procedure: Orthogolit is sufficiet, but ot ecessr, coditio for lier idepedece, i.e. lierl idepedet fuctios do ot hve to be orthogol. However, the c be recostructed ito orthogol set b the Grm-Schmidt orthogoliztio procedure. Cosider two vectors, e d ( e e), s simple emple. These two vectors re ot orthogol, becuse e( e e), but re lierl idepedet becuse e b( e e ) b. We m form two ew vectors s lier combitios of the old vectors, e e d e e + e + e, d demd e e. e e + e e The ew set, e( e) d e( e), re thus orthogol (s well s lierl idepedet). The sme procedure c be pplied to lgebric fuctios. 6

.8 Orthogol Fuctios d Epsios (cotiued) Completeess of Set of Fuctios : Epd rbitrr, squre itegrble fuctio f ( ) i terms of fiite umber ( N) of fuctios i the orthoorml set U ( ), N f( ) U ( ) (.3) d ddefie the me squre error ( M ) s b N M N f( ) U ( ) d. If there eists fiite umber N such tht for N > N the me squre error M N c be mde smller th rbitrril il smll positive qutit b proper choice of s, the the set U ( )is sid to be complete d the series represettio N U ( ) f ( ) (.33) is sid to coverge i the me to f ( ). 7

.8 Orthogol Fuctios d Epsios (cotiued) Rewrite (.33): f ( ) U ( ) (.33) Usig the orthoorml propert of U ( )'s, we get b U * ( ) f ( ) d (.3) Chge i (.3) to d substitute t (.3) ito (.33) b * f ( ) U U d ( ) ( ) ( ) (.34) f * f ( ) is rbitrr U ( ) U ( ) ( ) (.35) (completeess or closure reltio) Jckso, p. 68: "All orthoorml sets of fuctios ormll occurrig i mthemticl phsics hve bee proved to be complete." "(This sttemet will be illustrted di Sec..9.) 9) 8

.8 Orthogol Fuctios d Epsios (cotiued) Fourier Series : emple of complete set of orthogol fuctios Epoetil represettio of f ( ) o the itervl : ik f( ) f( ) e (4) ik k ; ( ) f e d I (4), f ( ) is i geerl comple fuctio d, eve whe f ( ) is rel, is i geerl comple costt. I the cse f( ) is rel, we hve the relt coditio: * * Proof : f ( ) rel f ( ) f ( ) ik * ik * ik e e e ik e * (sice is lierl idepedet) Questios:. Wh " to " isted of " to "?. Wh k isted of k? 9

.8 Orthogol Fuctios d Epsios (cotiued) Siusoidl represettio of f ( ) o the itervl : ik ik ik f( ) e e e cos cos si si k ki k k cos si k i k A f( ) A cos k B si k, k (5) where Sme s (.36) d (.37) ik ( ) ik A f e e d f( )coskd ( ) cosk i ik ik B i e e d f ( ) ( )si k d ( ) f si i k

.8 Orthogol Fuctios d Epsios (cotiued) Discussio: i : It is ofte more coveiet to epress epress phsicl qutit ( rel umber) i the epoetil represettio th i the siusoidl id represettio, tti becuse the comple coefficiet i ( ) of epoetil term crries twice the iformtio of the rel coefficiet i (A or B ) of siusoidl id lterm. For emple, if (t)=re[e iωt ] is the displcemet of simple hrmoic oscilltor, the comple cotis both the mgitude d phse of the displcemet. I the siusoidl represettio, the sme qutit will be writte (t)=acos(ωt)+bsi(ωt). Epoetil terms re lso esier to mipulte (such s multiplictio d differetitio). This poit will be further discussed i Ch. 7.

.8 Orthogol Fuctios d Epsios (cotiued) Fourier Trsform : If the itervl becomes ifiite ( ), we obti the Fourier trsform (see Jckso p.68). ik f( ) ( ) (.44 A k e dk ) ik Ak ( ) f( e ) d (.45) Chge to i (.45) d sub. (.45) ito (.44) ( ) ik f( ) df( ) e dk ( ) ik( ) e dk ( ) [completeess reltio] (.47) Questio : Does Ak ( ) coti more or less iformtio th f ( )?

.8 Orthogol Fuctios d Epsios (cotiued) ik Questio : Does i f ( ) e hve the sme dimesio s Ak ( ) i f( ) Ake ( ) dk? [ssumig is dimesiol qutit.] ik ( ) Rewri te (.47): ( ) e dk Iterchge d k ik ( k) e d ( kk), [orthogolit coditio] (.46) Let k k d sub. it ito (.46) i ( ) e d Sice ( ) ( ), we m write more geerll, i e d ( ) (6) ik 3

.8 Orthogol Fuctios d Epsios (cotiued) There re two useful theorems cocerig the Fourier itegrl: () Prsevl's theorem : The Prsevl's Prsevls theorem sttes f ( ) d A ( k ) dk (7) Proof : ik f ( ) A ( k ) e dk (.44) (44) Rewrite the Fourier trsform: ik Ak ( ) ( ) (.45) f e d * f ( ) d f ( ) f ( d ) ik * ( ) ( ik d ) A k e dk A k e dk * ( ) dk ( ) ( ik k A k dka k ) de ( ) A k dk ( ) kk 4

.8 Orthogol Fuctios d Epsios (cotiued) () Covolutio theorem : The covolutio theorem sttes ik [ ( ) ( ) ] ( ) ( ) (8) f f d e d A k A k This is clled the covolutio of f ( ) d f ( ) where the fctor follows the covetio i (.44) d (.45). ik Proof : LHS of (8) f( ) d ( ) f e d Let ( dd ) ( ) f d f ik( ) ( ) e d ( ) ( ) ik ik f d f e d A( k) A( k) 5

.9 Seprtio of Vribles, Lplce Equtio i Rectgulr Coordites Lplce equtio i (.48) z Crtesi coordites Let ( z,, )= XYZz ( ) ( ) ( ) (.49) d X d Y d Z X Y d d Z dz (.5) Sice this equtio holds for rbitrr vlues of,, d z, ech of the three terms must be seprtel costt. d X d Y d Z X ; Y; Z subject to d d dz ei ei e z X( ) ; Y( ) ; Z( z) with i z e e i e 6

.9 Seprtio of Vribles, Lplce Equtio i Rectgulr Coordites (cotiued) Emple : Fid iside chrge-free rectgulr bo (see figure) with the b.c. (,, z c) = V(, ) d o other sides. i i X ( ) Ae Be i i X() BA X A( e e ) A'si X ( ),,, z X( ) A si Similrl, Y ( ) Ae Be. Y () d Y( b) give Y( ) A si, m m m i m i m b z z Solutio for Z: Z( z) Ae Be z z Z() BAZ( z) A( e e ) A''sih z m, A si si sih z, (.56) m m m m m 7

.9 Seprtio of Vribles, Lplce Equtio i Rectgulr Coordites (cotiued) To fid A, we ppl the b.c. o the z c ple: m ( z,, c) V (, ) m, V(, ) A si si sih c (.57) 4 bsih Am c m m m m b d dv (, )si si m (.58) Questios:. The method of imges is ot geerl method, but the method of epsio iorthogol fuctios is. Wh?. I electrosttics, ol chrges c produce Φ. I this problem, =, how c there be Φ? 3. C we fid the surfce chrge distributio ( ) o the wlls from the kowledge of Φ isidetheid bo??if so, uder wht coditio? i 8

.9 Seprtio of Vribles, Lplce Equtio i Rectgulr Coordites (cotiued) Discussio: : m, m b Rewrite (.57): V(, ) A si si sih c, m m m z where d m. This is good emple to substtite the followig sttemet o phsics groud: "All orthoorml sets of fuctios ormll occurrig i mthemticl phsics hve bee proved to be complete." (p. 68) I (.57), si( ) d si ( m) re orthogol fuctios geerted i phsics problem. Phsicll, we epect the problem to hve solutio for boudr coditioothesurfcez the z c, i.e. for fuctio V(, ) specified i (.57). Thus, si( ) d d si ( m ) must ech form complete set i order to represet rbitrr V(, ). 9

Homework of Chp. Problems:,, 3, 4, 5, 9, 3, 6 3