ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Similar documents
ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

THE INVERTER. Inverter

DC and Transient Responses (i.e. delay) (some comments on power too!)

Lecture 12 Circuits numériques (II)

CMOS Inverter (static view)

VLSI Design and Simulation

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

EEE 421 VLSI Circuits

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Lecture 5: DC & Transient Response

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

MOSFET and CMOS Gate. Copy Right by Wentai Liu

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

Lecture 6: DC & Transient Response

ECE 546 Lecture 10 MOS Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE115C Digital Electronic Circuits Homework #3

CMOS Technology for Computer Architects

EE5780 Advanced VLSI CAD

Integrated Circuits & Systems

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

Lecture 5: DC & Transient Response

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture 4: DC & Transient Response

MOS Transistor Theory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

MOS Transistor Theory

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

EE5311- Digital IC Design

The CMOS Inverter: A First Glance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Digital Integrated Circuits

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

ECE 342 Solid State Devices & Circuits 4. CMOS

COMP 103. Lecture 16. Dynamic Logic

Topic 4. The CMOS Inverter

Digital Integrated Circuits A Design Perspective

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

9/18/2008 GMU, ECE 680 Physical VLSI Design

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

DC & Transient Responses

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE141Microelettronica. CMOS Logic

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

EECS 141 F01 Lecture 17

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

The CMOS Inverter: A First Glance

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

L2: Combinational Logic Design (Construction and Boolean Algebra)

! Energy Optimization. ! Design Space Exploration. " Example. ! P tot P static + P dyn + P sc. ! Steady-State: V in =V dd. " PMOS: subthreshold

Integrated Circuits & Systems

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

L2: Combinational Logic Design (Construction and Boolean Algebra)

SRAM Cell, Noise Margin, and Noise

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

EE5311- Digital IC Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

The Physical Structure (NMOS)

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

ECE 342 Electronic Circuits. 3. MOS Transistors

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

Transcription:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 8: February 9, 016 MOS Inverter: Static Characteristics

Lecture Outline! Voltage Transfer Characteristic (VTC) " Static Discipline Noise Margins! Resistive Load Inverter Analysis! Design Perspective

Voltage Transfer Characteristic (VTC)

Ideal Voltage Transfer Characteristic (VTC) V in V out Logic 0 = 0 V Logic 1 = 0 4

Actual Voltage Transfer Characteristic (VTC) V OH o.c. C out V OL 0 For DC steady-state C out is open circuit. 0 V OL V T0n 5

Noise Immunity and Noise Margins V OH max output voltage when the logic output is 1 V OL 0 min output voltage when the logic output is 0 V IL max input voltage that can be interpreted as a logic 0 V IH min input voltage that can be interpreted as a logic 1 NOTE: V IL V OL and V IH V OH 6

Noise Immunity and Noise Margins Slope of VTC or inverter gain 7

Resistive Load Inverter Analysis

Resistive Load Inverter V SB 9

Resistive Load Inverter Resistor: I L = V out V SB 10

Resistive Load Inverter Resistor: I L = V out Subthreshold: V in = V GS < V T 0,n! W I D = I S " L! " &e % V in V T 0,n nkt /q & %!! " 1 e " V out & kt /q % & % V SB 11

Resistive Load Inverter Resistor: I L = V out Subthreshold: V in = V GS < V T 0,n! W I D = I S " L Linear:! " &e % V in V T 0,n nkt /q & %!! " 1 e " V out & kt /q % V in = V GS V T 0,n,V out = V DS V in V T 0,n & % V SB I D = µ n C ox W L ( V in V T 0,n )V out V out ( ) 1

Resistive Load Inverter Resistor: I L = V out Subthreshold: V in = V GS < V T 0,n! W I D = I S " L Linear:! " &e % V in V T 0,n nkt /q & %!! " 1 e " V out & kt /q % V in = V GS V T 0,n,V out = V DS V in V T 0,n & % V SB I D = µ n C ox Saturation: W L ( V in V T 0,n )V out V out ( ) V in = V GS V T 0,n,V out = V DS > V in V T 0,n I D = µ n C ox W ( L V in V T 0,n ) 13

Resistive Load Inverter Resistor: I L = V out Subthreshold: V in = V GS < V T 0,n! W I D = I S " L Linear:! " &e % V in V T 0,n nkt /q & %!! " 1 e " V out & kt /q % & % I D = 0 V in = V GS V T 0,n,V out = V DS V in V T 0,n V SB I D = µ n C ox Saturation: W L ( V in V T 0,n )V out V out ( ) V in = V GS V T 0,n,V out = V DS > V in V T 0,n I D = µ n C ox W ( L V in V T 0,n ) 14

Resistive Load Inverter V SB 15

Resistive Load Inverter: V OH V SB Resistor/Load: Transistor: Subthreshold 16

Resistive Load Inverter: V OH V SB Resistor/Load: Transistor: Subthreshold I L = V out I D = 0 0 = V out V out = = V OH 17

Resistive Load Inverter: V OL V SB Resistor/Load: Transistor: Linear 18

Resistive Load Inverter: V OL V SB Resistor/Load: I L = V out Transistor: Linear I D = µ n C ox W L ( V in V T 0,n )V out V out ( ) V in =,V out = V OL V OL = µ C n ox W L ( V T 0,n)V OL V OL ( ) 19

Resistive Load Inverter: V OL (con t) Resistor/Load: I L = V out Transistor: Linear I D = µ n C ox W L ( V in V T 0,n )V out V out ( ) V in =,V out = V OL V OL % = µ n C ox W L ( V T 0,n )V OL V OL ( ) W = µ n C ox L V OL = ( ( V T 0,n )V OL V OL ) 1 & (( V OL ) = ( V T 0,n )V OL V OL ' V OL V T 0,n + 1 & % (V OL + = 0 ' 0

Resistive Load Inverter: V OL (con t) Resistor/Load: I L = V out Transistor: Linear I D = µ n C ox W L ( V in V T 0,n )V out V out ( ) V in =,V out = V OL = µ n C ox W L V " V V + 1 % OL DD T 0,n 'V OL + = 0 & V OL = " V T 0,n + 1 % " " '± V T 0,n + 1 %% '' & && " V OL = V T 0,n + 1 % " '± V T 0,n + 1 % ' & & 4 1

Resistive Load Inverter: V OL (con t) Resistor/Load: I L = V out Transistor: Linear I D = µ n C ox W L ( V in V T 0,n )V out V out ( ) V in =,V out = V OL = µ n C ox W L V " V V + 1 % OL DD T 0,n 'V OL + = 0 & V OL = " V T 0,n + 1 % " " '± V T 0,n + 1 %% '' & && " V OL = V T 0,n + 1 % " '± V T 0,n + 1 % ' & & 4 0 < V OL < V T 0,n

Resistive Load Inverter: V IL V SB Resistor/Load: Transistor: Saturation 3

Resistive Load Inverter: V IL V SB Resistor/Load: I L = V out Transistor: Saturation I D = µ n C ox W ( L V in V T 0,n ) V out = µ C n ox W ( L V V in T 0,n) 4

Resistive Load Inverter: V IL (con t) V out = µ n C ox W ( L V V in T 0,n) Differentiate W.R.T. V in : 1 dv out dv in W = µ n C ox ( L V in V T 0,n ) 1 W = µ n C ox ( L V IL V T 0,n ) V out Vin =V IL V out Vin =V IL V IL = 1 +V T 0,n V out @ V in =V IL : = V out Vin =V IL = ( V V IL T 0,n) ( V IL V T 0,n ) 1 = 5

Resistive Load Inverter: V IH V SB Resistor/Load: Transistor: Linear 6

Resistive Load Inverter: V IH V SB Resistor/Load: I L = V out I D = µ n C ox Transistor: Linear W L ( V in V T 0,n )V out V out ( ) V out = µ n C ox W L ( V V in T 0,n)V out V out ( ) 7

Resistive Load Inverter: V IH V out = µ n C ox W L ( V V in T 0,n)V out V out ( ) Differentiate W.R.T. V in : 1 dv out dv in = k " n V V in T 0,n ( ) dv out dv in 1 = V IH V T 0,n + V out V out dv out dv in ( ( ) + 4V out ) 1 = V T 0,n V IH + V out V IH = V T 0,n + V out 1 % ' & 8

Resistive Load Inverter: V IH V out = µ n C ox W L ( V V in T 0,n)V out V out ( ) V IH = V T 0,n + V out 1 Substitute: V out = k " n " V + V 1 % % T 0,n out V T 0,n 'V out V out R ' L & & V out = k " n 4V % out V out V out ' & = k " n 3V % out V out '+ V out & = 3 V out V out + V out = 3 V out V out Vin =V IH = 3 V IH = V T 0,n + 3 1 9

Inverter Threshold: V th V out V th = µ n C ox W ( L V V in T 0,n) = ( V V th T 0,n) V th = V th V th V T 0,n +V T 0,n 0 = V V 1 & th % T 0,n (V th +V T 0,n ' V T 0,n + 1 & % (± V T 0,n 1 && % % (( ' '' V th = V th = V T 0,n + 1 ± V T 0,n 1 & % ( ' 4 V V & DD % T 0,n ( ' V V & DD % T 0,n ( ' 30

Summary: Resistive Load Inverter 0 V T0n 31

Summary: Resistive Load Inverter Take Limit as -> -> V T0n -> V T0n -> -> V T0n -> 0 -> 0 V out -> VDD -> semi-ideal VTC 0 0 VV T0n T0n V in 3

Example V OL = 0.147 V or 8.503 V? 33

Example (con t) Preferred Design

Design Perspective

Noise Implications! What is the output when all inputs are all 1s? 36

Noise Implications! What is the output when all inputs are all 1.0 and NAND(A, B) = 1-A*B? 37

Noise Implications! What is the output when all inputs are all 0.95 and NAND(A, B) = 1-A*B? 38

Degradation! Cannot have signal degrade across cascaded gates! Want to be able to cascade arbitrary set of gates " No limit on number of gates to maintain signal integrity 39

Gate Creed! Gates should leave the signal better than they found it " better closer to the rails 40

Regeneration Discipline! Define legal inputs " Gate works if V in close enough to the rail! Regeneration " Gate produces V out closer to rail " This tolerates some drop between one gate and next (between out and in) " Call this our Noise Margin Regeneration/Restoration/Static Discipline 41

Noise Margin! V OH output high! V OL output low 1 V OH! V IH input high! V IL input low NM H V IH Undefined region V IL NM L V OL! NM H = V OH -V IH! NM L = V IL -V OL 0 Gate Output Stage M Gate Input Stage M + 1 4

Regeneration Discipline (getting precise)! Define legal inputs " Gate works if V in close enough to the rail 1 " V in > V IH or V in < V IL V OH NM H V IH! Regeneration Undefined region " Gate produces V out closer to rail V OL NM L V IL " V out < V OL or V out > V OH 0 Gate Output Stage M Gate Input Stage M + 1 43

Decomposing! An input closer to rail than V IL, V IH doesn t make much difference on V out " i.e transfer function is flat close to rails V OH V IH -1 NM H! Defining V IL lower (V IH higher) would reduce NMs and increase our undefined region V IL V OL V IL -1 V IH δv out δv in V IL = δv out δv in V IH = 1 NM L V OH = f (V IL ) V OL = f (V IH ) 44

Big Idea! Need robust logic " Can design into any (feed forward) graph with logic gates and tolerate loss and noise, while maintaining digital abstraction! Regeneration and noise margins " Every gate makes signal better " Design level of noise tolerance V OH -1 NM H V IH V IL V OL -1 NM L V IL V IH 45

Admin! HW handback! HW 4 due Thursday, /18 " If you submit online and in-class only the online one will be graded.! Journal Thursday " Gregory Fredeman, et. al., A 14 nm 1.1 Mb Embedded DRAM Macro With 1 ns Access, pp 30-39 46