Influence of the electrospinning parameters on the morphology of composite nanofibers

Similar documents
Influence of inorganic additives on morphology of electrospun fibres

Electrospinning of PVB Solved in Methanol and Isopropanol

The Effect of PVAc Solution Viscosity on Diameter of PVAc Nanofibres Prepared by Technology of Electrospinning

Structure, geometrical characteristics and properties of biodegradable microand polycaprolactone nanofibers

Contents. Foreword by Darrell H. Reneker

Dielectric properties of composite LaMnO 3 nanofiber by electrospinning technique

Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design

THE STUDY OF POROUS NANOFIBRES MORFOLOGY MADE FROM PCL IN DEPENDENCE ON THE ELECTROSPINNING PARAMETRES AND SOLUTION COMPOSITION

NUMERICAL SIMULATION STUDY OF A STABLE JET SHAPE VARIATION IN ELECTROSPINNING. Donghua University, Shanghai , P. R. China

Insights into the power law relationships that describe mass deposition rates during electrospinning

A Visualization Technique for Mapping the Velocity of Raising Fibers Production in an Electrostatic Field

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS

Obtaining and description of the MWCNTs-Pd nanocomposite

Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

Printing Silver Nanogrids on Glass: A Hands-on Investigation of Transparent Conductive Electrodes

NWRI Graduate Research Fellowship Progress Report

INITIAL STUDY OF STRUCTURE OF NANOFIBER TEXTILES AND THE CREATIN OF ITS MODEL

Effect of Inorganic/Organic Hybrid on the Wettability of Polymer Nanofibrous Membranes

Synthesis of Titanium Dioxide Shell-Core Ceramic Nano Fibers by Electrospin Method

Electrospinning of high-molecule PEO solution

Polímeros: Ciência e Tecnologia ISSN: Associação Brasileira de Polímeros Brasil

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

EFFECT OF CONCENTRATION AND SALT ADDITIVE ON TAYLOR CONE STRUCTURE. Baturalp YALCINKAYA, Fatma YENER, Funda Cengiz-Çallıoğlu, Oldrich JIRSAK

Production of particle powder for inhalation process and controlled release of drugs

Preparation of poly(methyl methacrylate) fibers via electrospinning in different solvent and its morphology comparison

Training Undergraduate Engineering Students on Biodegradable PCL Nanofibers through Electrospinning Process

Formation of Electrospun PVA Mats on Different Types of Support Materials Using Various Kinds of Grounded Electrodes

Electronic Supplementary Information. Enhanced Photocatalytic/photoelectrocatalytic Activities

Electronic Supplementary Information (ESI)

Electrospinning of 100% Carboxymethyl Chitosan Nanofibers

Research Article Electrospun Polyvinylpyrrolidone-Based Nanocomposite Fibers Containing (Ni 0.6 Zn 0.4 )Fe 2 O 4

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Deposition of Multilayer Fibers and Beads by Near-Field Electrospinning for Texturing and 3D Printing Applications

Qualitative and numerical analysis of chemical composition of selected iron alloys technique wave dispersive spectrometry (WDS) by calibration curves

Supporting Information

Supporting Information for

MECHANISM OF NANOFIBER CRIMP

M98-D01 1. A Fundamental Investigation of the Formation and Properties of Electrospun Fibers

Nanofibrous materials from polymeric solutions to their applications

Electrolessly deposited electrospun metal nanowire transparent

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Electrospray Patterns of Oil-based Ferrofluids

Effect of Ethanol/water Solvent Ratios on the Morphology of Zein Nanofiber Mats and their Wettability

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

Melt-electrospinning part I: processing parameters and geometric properties

THE STUDY OF ELECTROSPUN NANOFIBERS AND THE APPLICATION OF ELECTROSPINNING IN ENGINEERING EDUCATION. A Thesis CHRISTOPHER CALVIN CALL

Supplementary Figure 1 a-c, The viscosity fitting curves of high-molecular-weight poly(vinyl alcohol) (HMW-PVA) (a), middle-molecular-weight

Hybrid Nanomanufacturing Process for High-Rate Polymer Nanofiber Production

ON THE ELECTROSPINNING OF PVB SOLUTIONS

Influence of the Shape of the Bottom Rotating Electrode on the Structure of Electrospun Mats

on Self-Assembly of Fullerene Molecules

Electrospun TiO 2 nanofibers for gas sensing applications

Nanotechnology Fabrication Methods.

NANO SCIENCE AND TECHNOLOGY THE INDIAN SCENE

DEVELOPMENT AND STUDY OF GSH CAPPED CdTe QUANTUM DOTS EMBEDDED POLYMER ELECTROSPUN NANOFIBERS

Supporting Information

Effect of Charge Density on the Taylor Cone in Electrospinning

Accuracy Improvement of Nano-fiber Deposition by Near-Field Electrospinning

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces

THERMAL PROTECTION OF ELECTRONIC DEVICES WITH THE NYLON6/66-PEG NANOFIBER MEMBRANES

Curriculum Vitae DR. J I GNESH K. VALAND

Supporting Information s for

Effect of Electrolyte Concentration during Solution Plasma on Copper Nanoparticle Size

Novel fluorescent matrix embedded carbon quantum dots enrouting stable gold and silver hydrosols

SPUR a.s., trida Tomase Bati 299, Louky, Zlin, Czech Republic 2

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

SUPPORTING INFORMATION

Polydopamine as a promoter layer of MOF deposition on inert polymer surfaces to fabricate hierarchically structured porous films

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Manipulated Electrospun PVA Nanofibers with Inexpensive Salts

M. Sadat-Shojai, Bone regenerative medicine: State of the art and future trends, under preparation.

ENHANCED HYDROPHOBICITY OF ELECTROSPUN POLYVINYLIDENE FLUORIDE-CO-HEXAFLUOROPROPYLENE MEMBRANES BY INTRODUCING MODIFIED NANOSILICA

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Control of Spatial Deposition of Electrospun Fiber Using Electric Field Manipulation

Research Team name: Technology Research Center Laboratory, Selcuk University Presenter name: Prof. Dr. Mustafa Ersoz

The design and construction of 3D rose petal-shape MoS 2. hierarchical nanostructures with structure-sensitive. properties

Preparation of Nanofibrous Metal-Organic Framework Filters for. Efficient Air Pollution Control. Supporting Information

School of Fashion, Zhongyuan University of Technology, Zhengzhou , China

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

PT/NI COUNTER-ELECTRODES WITH IMPROVED STABILITY FOR DYE SENSITIZED SOLAR CELLS

Organization of silica spherical particles into different shapes on silicon substrates

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network

POST-ELECTROSPINNING CROSSLINKING OF GUAR/POLYVINYL ALCOHOL MEMBRANE

Introduction to Nanotechnology

FORMATION OF FIBERS AND SPHERES BY ELECTROSPINNING OF POLYETHYLENE OXIDE SOLUTION ATUL NARASIMHAN. Oklahoma State University. Stillwater, Oklahoma

SELF-ASSEMBLY AND NANOTECHNOLOGY A Force Balance Approach

EFFECT OF CALCIUM CHLORIDE ON ELECTROSPINNING OF SILK FIBROIN NANOFIBRES

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

SORPTION PROCESS USING POLYAMIDE NANOFIBRES TO REMOVE DYE FROM SIMULATED WASTEWATER. Jakub WIENER, Sihle NTAKA, P. S. NGCOBO, Roman KNÍŽEK

In Situ Cross-Linking of Electrospun Poly(vinyl alcohol) Nanofibers

Cellulose Nanocrystals

Polystyrene. Erica Wilkes

Electrospun nanofibers: challenges and opportunities. Saša Baumgartner University of Ljubljana Faculty of Pharmacy Slovenia.

PREPARATION AND STRUCTURE OF NANOCOMPOSITES BASED ON ZINC SULFIDE IN POLYVINYLCHLORIDE

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

Overview of Nanotechnology Applications and Relevant Intellectual Property NANO POWER PATENTS

International Journal of Pure and Applied Sciences and Technology

Transcription:

Volume 69 Issue 1 September 14 Pages 32-37 International Scientific Journal published monthly by the World Academy of Materials and Manufacturing Engineering Influence of the electrospinning parameters on the morphology of composite nanofibers L.A. Dobrzański a,b, *, B. Nieradka a, M. Macek a, W. Matysiak a a Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland b Institute of Advanced Materials Technology, ul. Wrocławska 37a, 30-011 Kraków, Poland * Corresponding e-mail address: leszek.dobrzanski@polsl.pl Received.06.14; published in revised form 01.09.14 ABSTRACT Purpose: In the paper the fabrication of composite nanofibers using electrospinning technique was reported. That processing technique was used to synthesis composite nanofibers with various morphologies using a precursor composed of poly(vinyl) alcohol (PVA), copper acetate (CuAC) and acetic acid (C 2 H 3 OH). The morphology of formed nanofibers depends not only on the spinning parameters, but also on the composition of the polymer solution. The purpose of the study was to obtain results that allowed to determine the influence of parameters of the electrospinning process on morphology of the composite nanofibers. Design/methodology/approach: The obtained nanofibers were characterized through high resolution scanning electron microscopy (SEM). It was noticed that the morphology of composite nanofibers depends on the applied voltage and nozzle-collector distance. The research was carried on a scanning electron microscope. Findings: The influence of parameters of the electrospinning process on morphology of the composite nanofibers was determined. Research limitations/implications: The research was carried out on samples, not on final elements. Originality/value: The paper presents the influence of the electrospinning parameters on the morphology of composite nanofibers. Keywords: Electrospinning technique; Nanofibers; Nanocomposites; Cu nanoparticles Reference to this paper should be given in the following way: L.A. Dobrzański, B. Nieradka, M. Macek, W. Matysiak, Influence of the electrospinning parameters on the morphology of composite nanofibers, Archives of Materials Science and Engineering 69/1 (14) 32-37. MATERIALS MANUFACTURING AND PROCESSING 32 32 Copyright by International OCSCO World Press. All rights reserved. 14

1. Introduction 2. Materials and methodology 1. Introduction 2. Materials and methodology The creation of nanomaterials aims to show completely new or improved physical, chemical and biological properties of already known materials. In fact, newer and better products are produced. Moreover, nanotechnology is a field which is rapidly growing and has enormous potential to affect many areas of science. It is very important to get to know the properties and the structure of newer and newer developing nanostructures which are used in materials production addressed directly to the consumers [1-3]. The most important methods to allow the production of polymeric nanofibers are: electrospinning, synthesis by template, pulling, phase separation, molecular self- organization [4]. Electrospinning is the most effective method for producing nanofibers from the polymer solution flowing from the nozzle-collector by the polymer drawing under the strong electric field. During electrospinning the polymer solution is pumped to the nozzle and is subjected to an electrostatic field forces that should create the fiber. It is important to know that minimum concentration for a given polymer, terming the critical entanglement concentration, below which a stable jet cannot be achieved and nanofibers cannot be formed exist. Shaped fiber moves in the direction of the collector with spiral motion along the electrostatic field lines reducing its diameter. Initially the polymer solution liquid spurt is evaporated under controlled conditions (temperature and humidity) what gives almost dry fiber with a diameter above 100 nm. The nanofiber is deposited on a grounded collector forming the nonwoven fabric [4-8]. The drawing speed of polymer nanofibers increased from 2 m/s to 0 m/s and depends on the physical properties of the solution and production conditions. By the observation the length, thickness, consistency and movement of the stream useful to predict the morphology of the nanofibers are formed. Inconsistent, oscillating stream is indicative of a variety of problems, for example: irregular nanofibers, clearly blurred shape, defects in the form of beads. The stream can be optimized by adjusting the composition of the solution and the configuration of the electrospinning device. The morphology of formed nanofibers depends not only on the spinning parameters, but also on the composition of the polymer solution [9,10]. The materials with composite nanofibers with Cu can be used to produce components such us filters, ventilation and air condition in case of their properties. In order to produce polymer nanofibers the mixture of PVA solution in CuAC and C 2 H 3 OH mixture, in a weight ratio of 0.75 g : 1 g : 2 g respectively, was prepared. The solution was obtained using a magnetic stirrer. To obtain the nanofibers the electrospinning process was applied using Yflow S.500 device. The device for electrospinning consists of three major components: a high-voltage power supply, a metallic needle and a collector. A schematic illustration of the basic setup for electrospinning is show in Figure 1. Electrospinning is a process in which a charged liquid jet is collected on a grounded collector. The polymer jet is formed when an applied electrostatic charge overcomes the surface tension of the solution There is a minimum concentration for a given polymer, terming the critical entanglement concentration, below which a stable jet cannot be achieved and nanofibers cannot be formed. By the observation the length, thickness, consistency and movement of the stream useful to predict the morphology of the nanofibers is formed. Inconsistent, oscillating stream is indicative of a variety of problems, for example: irregular nanofibers, clearly blurred shape, Fig. 1. Schematic illustration of the basic setup for electrospinning. The small photograph shows the SEM image composite nanofibers composed of poly(vinyl) alcohol (PVA), copper acetate (CuAC) and acetic acid (C 2 H 3 OH) [11] READING DIRECT: www.archivesmse.org 33

L.A. Dobrzański, B. Nieradka, M. Macek, W. Matysiak defects in the form of beads. The stream can be optimized by adjusting the composition of the solution and the configuration of the electrospinning device. The nanofibers were collected on aluminium foil during minutes. The composite nanofibers were produced under different voltages (, 25 and 30 kv), on nozzle-collector distances (10, 25 and 30 cm) and constant flow rate of ml/h. Electrospinning parameters were presented in Table 1. Table 1. Electrospinning parameters for each sample: p solution flow rate, d distance between the electrodes, U differential voltage at the nozzle and the collector Sample p, ml/h d, cm U, kv Sample 1 10 Sample 2 10 25 Sample 3 10 30 Sample 4 15 Sample 5 Fig. 3. SEM image of PVA nanofibers prepared at nozzlecollector distance equalling to 10 cm and a voltage of 25 kv 3. Results 3. Results 3.1. Morphology 3.1. Morphology 34 The morphology of obtained nanofibers were characterized using high resolution scanning electron microscopy (SEM) SUPRA 35, Zeiss (Figs. 2-6). Fig. 4. SEM image of PVA nanofibers prepared at nozzlecollector distance equalling to 10 cm and a voltage of 30 kv Fig. 2. SEM image of PVA nanofibers prepared at nozzlecollector distance equalling to 10 cm and a voltage of kv Fig. 5. SEM image of PVA nanofibers prepared at nozzlecollector distance equalling to 15 cm and a voltage of kv 34 Archives of Materials Science and Engineering

Influence of the electrospinning parameters on the morphology of composite nanofibers 3.3. Determination of nanofibers diameter 3.3. Determination of nanofibers diameter Determination of nanofibers diameter was achieved using DigitalMicrograph programme. For each sample measurements of five random selected nanofibers were taken and then results were averaged. Obtained results were presented in Fig. 8. Fig. 6. SEM image of PVA nanofibers prepared at nozzlecollector distance equalling to cm and a voltage of kv 3.2. The chemical composition The composition of composite nanofibers obtained by electrospinning as determined by EDS analysis is given in Fig. 7. Fig. 7. EDS analysis of example sample nanofibers collected on aluminium substrate Al signals represents the substrate on which the samples were collected. Ag signals originate from the conductive layer that was deposited on the sample prior to a scanning electron microscope (SEM) investigation. Fig. 8. Comparison of measurements of the diameter of the composite nanofibers Volume 69 Issue 1 September 14 35

L.A. Dobrzański, B. Nieradka, M. Macek, W. Matysiak In the case of sample 5 measurements of the diameter of the fiber was not taken due to excessive blurring of their shape. Table 2 shows the average sizes of the diameters of the composite fibers. Table 2. The average of the diameters of the composite nanofibers Sample Sample 1 Sample 2 Sample 3 Sample 4 Diameter of nanofibers, nm 235 145 167 124 3.4. The influence of the of voltage the voltage on the on the nanofibers nanofibers morphology A graph (Fig. 9) shows the comparison of diameters of the nanofibers for samples taken at differential voltages between the nozzle and the collector, with a constant flow rate of the solution and for a constant distance between the nozzle and the collector. for the samples 1 and 3, when the voltage change from kv to 30 kv. However, in the case of increasing the voltage from 25 kv to 30 kv the diameter of the composite nanofiber increases. Nanofibers with a clearly blurred shape and a lot of defects in the form of beads are observed for both samples 1 and 2. The greatest tendency to merge the nanofibers and defects is in a sample 1, in the case of sample 2 the fibers are clearer with lower number of defects. The sample made at the voltage 30 kv (sample 3) has clear nanofibers without defects in the form of beads. 3.5. The influence of the of nozzle-collector the nozzle-collector distance on nanofibers diameter distance on nanofibers diameter A graph (Fig. 10) shows the comparison of the diameter of the nanofibers for samples taken at different distances between nozzle-collector distance, with a constant flow rate of the solution and for a constant voltage. Fig. 9. The influence between the diameters of the nanofibers and the voltage during the electrospinning process By the observation the length, thickness, consistency and movement of the stream useful to predict the morphology of the nanofibers is formed. Inconsistent, oscillating stream is indicative of a variety of problems, for example: irregular nanofibers, clearly blurred shape, defects in the form of beads. In the case of samples 1 and 2 with the increase of the voltage between electrodes from kv to 25 kv, flow rate ml/h and constant nozzle-collector distance (10 cm) diameter of the nanofibers decrease. The same is observed Fig. 10. The influence between the diameters of the nanofibers and the distance between the nozzle and the collector With the increase of distance between electrodes from 10 cm to 15 cm, a flow rate of ml/h, a constant voltage of kv, in the case of samples 1 and 4, the diameter of the composite nanofiber is clearly reduced. For sample 5 made at nozzle-collector distance equalling to cm, a constant flow rate of ml/h and a voltage of kv, measuring of the nanofibers diameter is impossible. For a distance of 10 cm (sample 1) obtained nanofibers are of a clearly blurred shape and possess a number of defects in the form of beads. In the case of sample 4 obtained at a distance between the electrodes of 15 cm fibers are much more clearer comparing to samples 36 36 Archives of Materials Science and Engineering

Influence of the electrospinning parameters on the morphology of composite nanofibers 1 and 5 and are significantly less defected. Sample 5 has the highest number of defects and the nanofibers have a blurry shape. 4. Conclusions 4. Conclusion The work presented the way to understand the morphological properties of composite nanofibers and how it is influenced by process parameters, for example: differential voltage at the nozzle and the collector, distance between the electrodes and solution flow rate. Other parameters which also can be varied while environmental parameters such as temperature and moisture and all those variables can influence the electrospun nanofibers. The reason of the nanofibers merging in the sample 1 is probably too small distance between the electrodes. The solution had evaporated on the road between the nozzle and the collector. Although the increase of distance during preparation of sample 5, and using the same voltage during electrospinning, as at the sample 1, the nanofibers are much more blurry, which may be caused by applying too low voltage. For samples 2 and 4 nanofibers are clear, but have defects in the form of beads. With the increase of distance between the nozzle and the collector of 10 cm, and while reducing the voltage of 5 kv diameter of the obtained nanofiber is reduced by approx. nm. PVA matrix composite nanofibers reinforced with the Cu nanoparticles without visible defects in the form of beads and blur was achieved only in the case of sample 3. During the electrospinning process, the liquid spurt was stable only in the case of sample 1. During the producing of sample 2 and 5 liquid spurt was unstable while in the case of samples 3 and 4 occurred multispurt. The obtained results have the influence of applied process parameters on the morphology of the nanofibers. Acknowledgements Acknowledgements The works have been implemented within the framework of the project entitled Determining the importance of the effect of the one-dimensional nanostructural materials on the structure and properties of newly developed functional nanocomposite and nanoporous materials, funded by the Polish National Science Centre in the framework of the OPUS competitions, headed by Prof. Leszek A. Dobrza ski. The project was awarded a subsidy under the decision DEC -12/07/B/ST8/04070. Ms Barbara Nieradka MSc Eng is a holder and Ms Magdalena Macek MSc Eng was a holder of the "DoktoRIS -Scholarship programme for innovative Silesia" co-financed by the European Union under the European Social Fund. References References [1] Applied Nanotechnology, The Conversion of Research Results to Products, A volume in Micro and Nano Technologies (14) 49-60. [2] A. Khalil, B. Singh Lalia, R. Hashaikeh, M. Khraisheh, Electrospun metallic nanowires: Synthesis, characterization, and Applications, Journal of Applied Physics 114 (13) 171301. [3] J. Doshi, D.H. Reneker, Electrospinning process and application of electrospun fibers., Journal of Electrostatics 35 (1995) 151-160. [4] S. Ramakrishna, K. Fujihara, W.E. Teo, T.Ch. Lim, Z. Ma, An introduction to electrospinning and nanofibers. Word Scientific Publ., Singapore, 05. [5] L.A. Hoover, J.D. Schiffman, M. Elimelech, Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis, Desalination 308 (13) 73-81. [6] K. Kurzyd owski, M. Lewandowska, Structural and functional engineering nanomaterials, Scientific Publishing PWN, Warsaw, 11 (in Polish). [7] G.S. Lotey, S. Kumar, N.K. Verma, Fabrication and electrical characterization of highly ordered copper nanowires, Applied Nanoscience 2/1 (12) 7-13. [8] X. Li, M.A. Kanjwal, L. Lin, I.S. Chronakis, Electrospun polyvinyl-alcohol nanofibers as oral fastdissolving delivery system of caffeine and riboflavin, Colloids and Surfaces B: Biointerfaces 103 (13) 182-188. [9] S. Sundarrajan, D. Pliszka, A. Jaworek, A. Krupa, M. Lackowski, S. Ramakrishna, A novel process for the fabrication of nanocomposites membranes, Journal of Nanoscience and Nanotechnology 9 (09) 4442-4447. [10] F. Pavanello, S. Giordano, How imperfect interfaces affect the nonlinear transport properties in composite nanomaterials, Journal of Applied Physics 113/15 (13) 154310. [11] D. Li, Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel?, Advanced Materials 16/14 (04) 1151-1170. Volume 69 Issue 1 September 14 37