Encoders. Understanding. November design for industry: Help clean up the ocean. Horizon failure forensics

Similar documents
TEMPERATURE EFFECTS ON MOTOR PERFORMANCE

FORMULAS FOR MOTORIZED LINEAR MOTION SYSTEMS

International Journal of Advance Research in Computer Science and Management Studies

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

LO-COG DC Gearmotors. Series GM8000. Series GM9000. Series GM BULLETIN LCG Series GM8000, GM9000, GM Power Your Ideas

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Mutual Inductance. The field lines flow from a + charge to a - change

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR

Motor Info on the WWW Motorola Motors DC motor» /MOTORDCTUT.

Electrical to mechanical - such as motors, loudspeakers, charged particle deflection.

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics

Revision Guide for Chapter 15

Induction Motors. The single-phase induction motor is the most frequently used motor in the world

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1

Electromagnetism Review Sheet

Jerad P. 10/1/2015. Motor Thermal Limits on Torque Production (Frameless Motor Level)

Equal Pitch and Unequal Pitch:

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

ADMISSION TEST INDUSTRIAL AUTOMATION ENGINEERING

DcMotor_ Model Help File

6 Chapter 6 Testing and Evaluation

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

MAGNETISM. Magnetism. Magnetism is a result of electrons spinning on their own axis around the nucleus (Figure 18). Basic Electrical Theory

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

Measurement And Testing. Handling And Storage. Quick Reference Specification Checklist

Electric Machines I DC Machines - DC Generators. Dr. Firas Obeidat

Chapter 5 Three phase induction machine (1) Shengnan Li

6) Motors and Encoders

INDUCTION MOTOR MODEL AND PARAMETERS

Stepping Motors. Chapter 11 L E L F L D

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

ELECTRIC MACHINE TORQUE PRODUCTION 101

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Applied Electronics and Electrical Machines

Step Motor Modeling. Step Motor Modeling K. Craig 1

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

APPLICATION OF ND 2 FE 14 B MAGNET IN THE LINEAR GENERATOR DESIGN ABSTRACT INTRODUCTION

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Magnetic field and magnetic poles

AC Synchronous Motors

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK

Revision Guide for Chapter 15

Induction and Inductance

A NEW APPROACH FOR THE CHOICE OF MOTOR AND TRANSMISSION IN MECHATRONIC APPLICATIONS

Elementary Theory of DC Permanent Magnet Motors

Model of a DC Generator Driving a DC Motor (which propels a car)

DC motors. 1. Parallel (shunt) excited DC motor

MAY/JUNE 2006 Question & Model Answer IN BASIC ELECTRICITY 194

STAR-CCM+ and SPEED for electric machine cooling analysis

-magnetic dipoles are largely analogous to electric dipole moments -both types of dipoles

How an Induction Motor Works by Equations (and Physics)

Exercise 5 - Hydraulic Turbines and Electromagnetic Systems

Circuit Analysis and Ohm s Law

ELECTROMAGNETIC INDUCTION

Overview of motors and motion control

UJET VOL. 2, NO. 2, DEC Page 8

Current and Resistance

Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges.

Rotational Systems, Gears, and DC Servo Motors

THERMAL FIELD ANALYSIS IN DESIGN AND MANUFACTURING OF A PERMANENT MAGNET LINEAR SYNCHRONOUS MOTOR

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

The synchronous machine (detailed model)

Magnetism. (Unit Review)

Manufacturing Equipment Control

Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco

DYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL

General Physics (PHYC 252) Exam 4

Magnetic Quantities. Magnetic fields are described by drawing flux lines that represent the magnetic field.

UNIT I INTRODUCTION Part A- Two marks questions

Selection of precision micro drives

Chapter 13 Principles of Electromechanics

Regular paper. Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Selection of precision micro drives

Synchronous Machines

Scanned by CamScanner

Get Discount Coupons for your Coaching institute and FREE Study Material at ELECTROMAGNETIC INDUCTION

Introduction to Electrical Theory and DC Circuits

MAGNETIC DIPOLES, HYSTERESIS AND CORE LOSES

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

ECE 5670/6670 Lab 8. Torque Curves of Induction Motors. Objectives

EE 410/510: Electromechanical Systems Chapter 4

Chapter 15 Magnetic Circuits and Transformers

Chapter 4. Synchronous Generators. Basic Topology

Electron Theory. Elements of an Atom

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

NZQA unit standard version 2 Page 1 of 8

Dr. N. Senthilnathan (HOD) G. Sabaresh (PG Scholar) Kongu Engineering College-Perundurai Dept. of EEE

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

JRE SCHOOL OF Engineering

CHAPTER 8 DC MACHINERY FUNDAMENTALS

Transcription:

November 2013 www.designworldonline.com INSIDE: design for industry: Help clean up the ocean Page 18 3D CAD: FEA aids Deepwater Horizon failure forensics Page 37 Understanding NETWORKING: Enhancing enterprise connectivity Page 60 Encoders Page 74

Motion Control Part One Understanding DC Motor Curves and Temperature w hen applying DC motors to any type of application, temperature effects need to be considered in order to properly apply the motor. Performance will change as the motor temperature increases. When reviewing DC motor curves, the user needs to ask the question Do these curves represent performance of the motor at room temperature, or do these curves illustrate performance at the maximum rated temperature? Depending on the temperature and Motor performance changes with temperature. Understanding the effects of heat and temperature changes will help in selecting the right motor for an application. Dan Montone PITTMAN Motors/ AMETEK Precision Motion Control Harleysville, PA the required operating point on the motor curve, the performance difference between cold and hot conditions can be significant. Once a motor design is finalized including motor dimensions, magnetic circuit, and motor winding configuration, several characteristics that determine motor performance become theoretically fixed; the torque constant ( ), voltage constant (K E ), and motor terminal resistance (R mt ). These three values will determine the output torque, motor speed, and the resulting output power at any point on the motor curve at a given terminal voltage, as well as the overall slope of the motor curve. Motor Constants Aren t Really Constant The torque constant and voltage constant are determined during the design phase and are a function of the overall magnetic circuit design. They are always equal when using SI units. For example, if the motor = 0.1 Nm/A, then motor K E = 0.1 V/(rad/s) assuming Nm and V/(rad/s) are the units used. Motor terminal resistance is also determined in the design phase by the number of coils, number of coil turns, and magnet wire diameter. These principles apply to both brush and brushless DC motors.

The phrase motor constants, however, is somewhat of a misnomer. Winding resistance and permanent magnet flux density will change as temperature changes. As the motor temperature increases, winding resistance will increase based on the temperature coefficient of copper. The flux density of the permanent magnets will also decrease as a function of temperature. Changes in these two key components of the motor will result in an increase in motor no-load speed and a decrease in motor locked rotor torque altering the overall slope of the motor curve. Once the user understands this concept, it becomes clear that motor performance determined using a rapid dynamometer test with a room temperature motor is significantly different than the motor performance when operated at its maximum temperature under load. The DC Motor Curve DC motor performance curves can be generated under various conditions. For example, the motor curve illustrated in Figure 1 was created using a rapid test on a motor dynamometer. The test was done by quickly loading the motor from no-load to locked rotor (stall) using a fixed terminal voltage from a power supply with low output impedance. A test like this is done to get a baseline measure of motor performance while the motor is at room temperature. Motor shaft speed and current are plotted as a function of motor torque. From this test and a few resistance readings, the torque constant, voltage constant, and terminal resistance values can be determined. This information is very useful to ballpark basic motor performance and can be sufficient for an application that requires intermittent operation with a long rest period between each duty cycle. In applications such as repeated point-to-point moves, applications requiring frequent starting and stopping of a high inertia load, or applications that require the motor to be moving for long periods of time (such as a fan application) the motor data illustrating performance at room temperature is not adequate and can result in misapplication of the motor or exceed the motor s maximum temperature rating. As the motor temperature increases, the resistance will increase and the torque constant and voltage constant will decrease. This results in an increase in no-load speed and a decrease in locked-rotor torque. Figure 2 illustrates an example of both cold and hot running conditions of the same DC motor. The hot motor curve demonstrates how much the performance can change when operating the motor at an elevated temperature. Temperature Effects of Motor Winding Resistance Motor winding resistance (R mt ) is the main cause of heat generation within the motor. In order for any electric motor to generate torque, current needs to be forced through the motor windings. Copper is an excellent conductor, however, it s not perfect; material physics and impurities will cause the atoms to vibrate at a faster rate as more current flows. The result is a steady temperature increase in the motor windings. All metal conductors have a positive temperature coefficient of resistance. This means as temperature increases, the resistance of the material also increases as a function of the type of conductor used. Electric motors typically use copper conductor material, except in special cases. Many induction motor squirrel cages use cast aluminum for ease of manufacturing, but the vast majority of motors use copper magnet wire. Table 2 lists examples of common metals used in electrical and electronic devices and their respective temperature coefficients (α). A typical motor performance curve created using a rapid test on a motor dynamometer. Such tests give a baseline measure of motor performance at room temperature. The graph illustrates changes in motor performance from room temperature to an elevated temperature, showing how much performance can change with an increase in temperature. The graph shows the range of consistent motor performance between room temperature and an elevated temperature.

Motion Control Equations 1 and 2 illustrate the relationship between winding temperature, winding resistance, and watts dissipated. Equation 1 - Change in Winding Resistance R mt (f) = R mt (i) x [1 + α (ϴ f - ϴ i )] Equation 2 - Watts Lost Due To Winding Resistance P loss = I 2 x R mt Temperature Effects On Magnetic Flux Density The motor torque constant ( ) and voltage constant (K E ) are directly related to the magnetic flux density (B r ) of the permanent magnets. Depending on the physics of the magnet material used, overall flux density will change at a given percentage with an increase in magnet temperature. As the material temperature increases, atomic vibrations cause once-aligned magnetic moments to randomize resulting in a Table 1 Symbols and Units SYMBOL DESCRIPTION UNITS α temperature coefficient / C I Current A I 0 No load current A I LR Locked rotor current A K E Voltage constant V/(rad/s) Torque constant Nm/A K (i) or K E (initial cold ) Nm/A or V/ (rad/s) K (f) or K E (final hot ) Nm/A or V/ (rad/s) n Speed RPM n 0 No load speed RPM P Power W P out Output power W P max Max power W P max(i) Max power (initial cold ) W P max(f) Max power (final hot ) W P loss Dissipated power W T Motor torque Nm T LR Locked rotor torque Nm R m Motor regulation RPM/Nm R mt Motor terminal resistance Ω R mt(i) Motor terminal resistance (initial Ω cold ) R mt(f) Motor terminal resistance (final Ω hot ) Ѳ i Motor temperature (initial cold ) C Ѳ f Motor temperature (final hot ) C Ѳ r Motor temperature rise C V T Motor terminal voltage V ω Angular velocity rad/s ω 0 No load angular velocity rad/s decrease in magnetic flux density. Assuming the motor is operating within its intended design window, the decrease in flux density is temporary and will begin to recover as the magnet cools. If the maximum temperature rating of the magnets is exceeded, however, partial demagnetization will occur and permanently alter the performance of the motor. The values in Table 3 represent average figures for material classes. Specific magnet grades within a class of materials will vary from the values given below. For example, some grades of Neodymium magnets can exceed the listed operating temperature of 150 C. The table illustrates relative differences between temperature characteristics of various materials. If exact values are needed, it s recommended to consult an application engineer at the motor manufacturer for specific information. Equation 3 - Change in and K E ( =K E when using SI units) K (f) = K (i) x [1 + α magnet (ϴ f - ϴ i )] A question often asked by users is the relationship between and K E under elevated temperature. In the case of using SI units, one will always equal the other; however, both will change equally with temperature. In the case of using English units, and K E are expressed in oz-in./a (lb-in./a, lb-ft/a, etc.) and V/krpm. One does not equal the other when using these units, but both quantities will decrease in the same proportion with elevated temperature. Table 2 Temperature Coefficients for Various Conductor Materials Conductor Material α conductor (/ C) Silver 0.0038 Gold 0.0037 Copper 0.0040 Aluminum 0.0043 How does this affect overall motor performance? At an elevated motor temperature, the slope of the DC motor curve increases as a result of an increase in no-load speed and a decrease in locked rotor torque (sometimes referred to as stall torque). Figure 3 illustrates the total area beneath a particular motor curve that can be considered the range of consistent performance between room temperature and maximum rated motor temperature. Another term referring to the slope of the DC motor curve is regulation. Motor regulation describes how much the shaft speed will change with a given change in shaft load when applying a fixed terminal voltage to the motor (operating as an open loop system). A flatter speed-torque curve will result in a smaller change in shaft speed with increased load. As the motor temperature increases and the curve becomes steeper, shaft speed will drop more for the same increase in load. Equation 4a - Theoretical Motor Regulation Using Constants R m = 9.5493 x [R mt / ( x K E )]

Motion Control Equation 4b - Motor Regulation Using A Performance Curve R m = n 0 / T LR Equations 4 and 5 can be used to illustrate the dramatic effect on motor performance resulting from a decrease in magnetic flux and increase in winding resistance. Although there will be an increase in motor noload speed as well as a decrease in locked rotor torque, the difference in cold versus hot locked rotor torque is greater compared with the difference in cold versus hot no-load speed. The locked rotor torque is heavily dependent on both the resistance (R mt ) and torque constant ( ). Although the no load speed will also be affected by the higher resistance at an elevated temperature, the resistance factor has a much smaller effect on no-load speed because it s multiplied by the no load current (I 0 ), a relatively small number (compare equation 5b and 5c). Equation 5a Motor Locked Rotor (Stall) Current I LR = V T / R mt Equation 5b Motor Locked Rotor (Stall) Torque T LR = I LR x = (V T / R mt ) x Equation 5c Motor No Load Speed n 0 = 9.5493 x [(V T I 0 x R mt ) / K E ] Table 3 Temperature Coefficients for Various Permanent Magnet Materials Magnetic Material α magnet (/ C) T max ( C) Ceramic -0.0020 / C 300 C Samarium Cobalt (SmCo) -0.0004 / C 300 C Aluminum Nickel Cobalt (AlNiCo) Neodymium Iron Boron (NdFeB) -0.0002 / C 540 C -0.0012 / C 150 C The user needs to be careful when designing the system to insure the shaft speed meets the minimum specification at a given load at an elevated motor temperature. In a more complex motion system using a closed-loop controller, shaft speed can be controlled within a given range to remain fixed as the load requirements change. The example that follows assumes the motor is operated open-loop with a regulated DC terminal voltage. DW >>> This feature is Part I of a two part series. Part II will appear in the December issue. Ametek Precision Motion Control www.ametek.com