Collider Rings and IR Design for MEIC

Similar documents
LHeC Recirculator with Energy Recovery Beam Optics Choices

Muon RLA Design Status and Simulations

TeV Scale Muon RLA Complex Large Emittance MC Scenario

EIC at JLab - design considerations and detector overview

Full-Acceptance Detector Integration at MEIC

Preliminary Detector Design for the EIC at JLab

Lattice Design and Performance for PEP-X Light Source

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

ILC Damping Ring Alternative Lattice Design **

Synchrotron Based Proton Drivers

Practical Lattice Design

Beam Optics design for CEPC collider ring

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

NEXT GENERATION B-FACTORIES

ILC Damping Ring Alternative Lattice Design (Modified FODO)

Choosing the Baseline Lattice for the Engineering Design Phase

Accelerator Physics Final Exam pts.

Pretzel scheme of CEPC

Operational Experience with HERA

Lattice design and dynamic aperture optimization for CEPC main ring

6 Bunch Compressor and Transfer to Main Linac

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

COMBINER RING LATTICE

The TESLA Dogbone Damping Ring

HE-LHC Optics Development

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Linear Collider Collaboration Tech Notes

Introduction to EIC/detector concept

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Compressor Lattice Design for SPL Beam

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

Status of Optics Design

Bernhard Holzer, CERN-LHC

New LSS optics for the LHC (status)

S. Guiducci. Table 1 PADME beam from Linac. Energy (MeV) 550. Number of positrons per pulse Pulse length (ns)

MEIC Status. Andrew Hutton For the MEIC Collaboration

FODO Cell Introduction to OptiM

MEIC Electron-Ion Collider - Space-Charge Issues

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25

Longitudinal Top-up Injection for Small Aperture Storage Rings

JLEIC forward detector design and performance

Overview of Acceleration

Luminosity Considerations for erhic

Conceptual design of an accumulator ring for the Diamond II upgrade

Status of SuperKEKB Design: Lattice and IR

LOW EMITTANCE MODEL FOR THE ANKA SYNCHROTRON RADIATION SOURCE

Presented at the 5th International Linear Collider Workshop (LCWS 2000), Oct 24-28, 2000, Batavia, IL

Abstract. 1. Introduction

Accelerator Physics Issues of ERL Prototype

arxiv: v1 [physics.acc-ph] 21 Oct 2014

e + e Factories M. Sullivan Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico e+e- Factories

Emittance preserving staging optics for PWFA and LWFA

Study of Alternative Optics for the NLC Prelinac Collimation section

The Electron-Ion Collider

Lattice Design of 2-loop Compact ERL. High Energy Accelerator Research Organization, KEK Miho Shimada and Yukinori Kobayashi

Introduction to particle accelerators

Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

E. Gianfelice-Wendt, for the Luminosity Upgrade Group, DESY, Hamburg, Germany

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

FCC-ee Machine Layout and Beam Optics + Matching with synchrotron motion

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

Polarization Preservation and Control in a Figure-8 Ring

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

Physics Opportunities at the MEIC at JLab

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

IP switch and big bend

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Progress on the Large Hadron electron Collider. O. Brüning, E. Nissen, D. Pellegrini, D. Schulte, A. Valloni, F. Zimmermann 1

Accelerator Physics. Accelerator Development

A Very Large Lepton Collider in a VLHC tunnel

SuperB: Ring Issues. U. Wienands SLAC PEP-II. U. Wienands, SLAC-PEP-II SuperB Workshop Frascati, 16-Mar-06

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

4.3 Novel Lattice Solutions for the LheC

Interstage Optics Design

Director s Accelerator R&D Review CASA Summary/ELIC

Nonlinear Perturbations for High Luminosity e+e Collider Interaction Region

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

The Detector Design of the Jefferson Lab EIC

Proposta per l'uso di DAFNE come allungatore d'impulso per il fascio di positroni del Linac

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

CEPC partial double ring magnet error effects

Spin Dynamics at the NLC

Minimum emittance superbend lattices?

Tools of Particle Physics I Accelerators

Beam loss background and collimator design in CEPC double ring scheme

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

The optimization for the conceptual design of a 300 MeV proton synchrotron *

Bernhard Holzer, CERN-LHC

USPAS Accelerator Physics 2017 University of California, Davis

Lattices for Light Sources

Transcription:

Collider Rings and IR Design for MEIC Alex Bogacz for MEIC Collaboration Center for Advanced Studies of Accelerators EIC Collaboration Meeting The Catholic University of America Washington, DC, July 29-31, 21

Figure-8 Collider Rings x [cm] Figure-8 Collider Ring - Footprint 1 8 6 4 2-2 -15-1 -5-2 5 1 15 2-4 -6-8 -1 z [cm] total ring circumference ~1 m 6 deg. crossing Collider Ring size is a compromise between synchrotron radiation and space charge 3-11 GeV electrons 2-6 GeV ions (with 6 Tesla dipoles) 1 GeV ions (with 8 Tesla dipoles)

Collider Rings with Relaxed IR Optics Larger Figure-8 Rings (~1 m circumference) 6 Tesla bends for ions at 6 GeV Additional straights to accommodate spin rotators and RF Horizontal IR crossing, dispersion free straights Relaxed IR Design: Chromaticity Compensating Optics max 3 2.51 m Uncompensated dispersion in the straights Anti-symmetric dispersion pattern across the IR Dedicated Symmetric Inserts around the IR x y 1cm 2cm Electron Collider Ring based on emittance preserving Optics

PHASE_X&Y 2.25 2 Ion Ring - 9 FODO Cell E = 6 GeV phase adv/cell: Df x,y = 9 8.66667 Q_X Q_Y 8.66667 Arc dipoles: $Lb=3 cm $B=58.2 kgauss $ang=5 deg. $rho = 34.4 meter Arc quadrupoles $Lq=65 cm $G= 1.5 kg/cm 9 offers intrinsic cell-to-cell cancellation of beta chromaticity off momentum beta wave propagates with twice the betatron frequency (18 after two cells - cancellation)

2 2 Quarter Arc Achromat 12 deg. Arc B/2 B/2 B/2 B/2 12 2 dis. sup. cells 1 FODO cells 2 dis. sup. cells 28 3 meter dipoles

2 2 Ion Ring - Arc Optics 24 deg. Arc 26 quarter Arc 12 meter Straight 2 meter quarter Arc 12 meter

PHASE_X&Y 15.15.5 Electron Ring - 135 FODO Cell E = 11 GeV phase adv/cell: Df x,y = 135 4.351 Q_X Q_Y 4.351 Arc dipoles: $Lb=11 cm $B=12.5 kgauss $ang=2.14 deg. $rho = 29.4 meter Arc quadrupoles $Lq=4 cm $G= 9 kg/cm 135 FODO offers emittance preserving optics H minimum Synchrotron radiation power per meter less than 2 kw/m

15.15 Quarter Arc Achromat 12 deg. Arc 12 2 dis. sup. cells 26 FODO cells 2 dis. sup. cells 2B/3 B/3 2B/3 B/3 6 1.1 meter dipoles

15.15 Electron Ring - Arc Optics 24 deg. Arc 26 quarter Arc 12 meter Straight 2 meter quarter Arc 12 meter

-.15 -.3 15.3 15.3 Flexible Momentum Compaction Cell E = 11 GeV 135 FODO Theoretical Emittance Minimum FMC Cell H minimum 8.612 1 e x e x 2

EM Calorimeter HTCC RICH EM Calorimeter Hadron Calorimeter Muon Detector Detector and IR layout low-q 2 electron detection dipole large aperture electron quads central detector with endcaps small angle hadron detection dipole ion quads ultra forward hadron detection dipole small diameter electron quads ~5 mrad crossing Solenoid yoke + Muon Detector Solenoid yoke + Hadronic Calorimeter RICH Tracking 5 m solenoid Pawel Nadel-Turonski

8 5 IR Optics (electrons) () 2 ff 2 2 3.5 61-2 21 2 m IR f 2 1 f f x y 1cm 2cm max g FF f Natural Chromaticity: x = -47 y = -66 19 FF doublets l = 3.5m

Size_X[cm] Size_Y[cm] 8.15.15 5 IR Optics (electrons at 5 GeV) e e x N y N 221 4.41-6 -6 m m x y 1cm 2cm e g () N 19 Ax_bet Ay_bet Ax_disp Ay_disp 19 Q4 Q3 Q2 Q1 Q1 G[kG/cm] = -2.8 Q2 G[kG/cm] = 3.1 Q3 G[kG/cm] = -2. Q4 G[kG/cm] = 2. 151-6 x 31-6 y m m

Synchrotron Radiation Background 38 8.5x1 5 2.5W 5 mm P + 4.6x1 4 2 4 mm 5 mrad Photons incident on various surfaces from the last 4 quads FF1 24 FF2 3 mm e - -1 1 2 3 4 5 38 Rate per bunch incident on the surface > 1 kev Beam current = 2.32 A 2.9x1 1 particles/bunch Rate per bunch incident on the detector beam pipe assuming 1% reflection coefficient and solid angle acceptance of 4.4 % M. Sullivan July 2, 21 F$JLAB_E_3_5M_1A Michael Sullivan, SLAC

3 5 IR Optics (ions) () 2 ff 2 2 7 3 2. 51 m -2 21 IR f 2 1 f f x y 1cm 2cm max g FF f Natural Chromaticity: x = -88 y = -141 5 FF triplet : Q3 Q2 Q1 l = 7m

Size_X[cm] Size_Y[cm] 3.25.25 5 IR Optics (ions) at 6 GeV e e x N y N.151.31-6 -6 m m x y 1cm 2cm e g () N 5 Ax_bet Ay_bet Ax_disp Ay_disp 5 FF triplet : Q3 Q2 Q1 Q1 G[kG/cm] = -9.7 Q2 G[kG/cm] = 6.9 Q3 G[kG/cm] = -6.8 151-6 x 31-6 y m m

-5 3 5 IR Chromaticity Compensation ions Df x 2 Df y 229 348.93 Arc end Df x p Df x,y p Df x,y p Chromaticity Compensation with four families of sextupoles

-.7 7.7 Chromaticity Compensation electrons Df x 2 Df y 266 326 Df x,y p Df x,y p Df x p Chromaticity Compensation with four families of sextupoles

31 32 Collider Ring Tune Diagram Working point above half integer a la KEKB: Q x =36.56 Q y =31.531 36 1 2 3 4 5 37

Tune Chromaticity Correction Large momentum acceptance and dynamic aperture Dp 1.5 1 p -3 Hisham Sayed, Old Dominion Univ.

-1-1 65 65 1 1 Arc - Spin Rotator - IR electrons 65.923 269 326 Arc 8 m drift space for low Q 2 tagging IR Chromaticity Compensation Block Spin Rotator

-1-1 65 65 1 1-5 26 5 Electron and Ion IRs - Overlay ions electrons 239 348.93 Chromaticity Compensation Block electrons 65.923 269 326 Spin rotator

Summary Complete design of Figure-8 Collider Rings (~ 1 m circumference) Emittance preserving Arcs based on 135 FODO lattice (11 GeV electrons) Periodic dispersion Arcs based on 9 FODO lattice (6 GeV ions) Relaxed IR Design: max 3 2.51 m xy, 1 / 2cm Chromatic compensation with sextupoles IR chromaticity Dispersive Straights - disp. leakage from the Arcs (by design) Anti-symmetric dispersion pattern across the IR Dedicated Optics Symmetric inserts Beta Chromaticity compensation (immediate vicinity of the ) Dp Large Momentum Acceptance open, DA tracking 1.5 1 p -3