Bessel Functions. y 2

Similar documents
Sturm-Liouville Theory

Chapter Five - Eigenvalues, Eigenfunctions, and All That

Math 211A Homework. Edward Burkard. = tan (2x + z)

f a L Most reasonable functions are continuous, as seen in the following theorem:

Math 142: Final Exam Formulas to Know

Introduction to Complex Variables Class Notes Instructor: Louis Block

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for

Fundamental Theorem of Calculus

Homework Problem Set 1 Solutions

Notes on the Eigenfunction Method for solving differential equations

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

Summary: Method of Separation of Variables

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x

MATH 174A: PROBLEM SET 5. Suggested Solution

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

Problem Set 2 Solutions

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

TIME VARYING MAGNETIC FIELDS AND MAXWELL S EQUATIONS

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

Practice Problems Solution

The usual algebraic operations +,, (or ), on real numbers can then be extended to operations on complex numbers in a natural way: ( 2) i = 1

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

(1) (Pre-Calc Review Set Problems # 44 and # 59) Show your work. (a) Given sec =5,andsin <0, find the exact values of the following functions.

ODE: Existence and Uniqueness of a Solution

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

Partial Differential Equations

Problem Set 4: Solutions Math 201A: Fall 2016

Pressure Wave Analysis of a Cylindrical Drum

5.7 Improper Integrals

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

Chapter 8: Methods of Integration

Homework Assignment 5 Solution Set

Chapter 6 Techniques of Integration

September 13 Homework Solutions

M 106 Integral Calculus and Applications

Mathematics. Area under Curve.

1 1D heat and wave equations on a finite interval

1 E3102: a study guide and review, Version 1.0

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

Conservation Law. Chapter Goal. 6.2 Theory

Math 426: Probability Final Exam Practice

Green function and Eigenfunctions

Phil Wertheimer UMD Math Qualifying Exam Solutions Analysis - January, 2015

Best Approximation in the 2-norm

VII. The Integral. 50. Area under a Graph. y = f(x)

lim P(t a,b) = Differentiate (1) and use the definition of the probability current, j = i (

21.6 Green Functions for First Order Equations

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

Integration Techniques

3.4 Conic sections. In polar coordinates (r, θ) conics are parameterized as. Next we consider the objects resulting from

Example Sheet 2 Solutions

STUDY GUIDE FOR BASIC EXAM

1 Solutions in cylindrical coordinates: Bessel functions

Mapping the delta function and other Radon measures

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

5.3 The Fundamental Theorem of Calculus

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real

The Regulated and Riemann Integrals

Chapter 28. Fourier Series An Eigenvalue Problem.

sec x over the interval (, ). x ) dx dx x 14. Use a graphing utility to generate some representative integral curves of the function Curve on 5

The Dirac distribution

Polytechnic Institute of NYU MA 2122 Worksheet 4

Method of stationary phase

Elliptic Equations. Laplace equation on bounded domains Circular Domains

Lecture 1. Functional series. Pointwise and uniform convergence.

SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

Math Fall 2006 Sample problems for the final exam: Solutions

Aike ikx Bike ikx. = 2k. solving for. A = k iκ

Bernoulli Numbers Jeff Morton

p-adic Egyptian Fractions

Math 100 Review Sheet

The Fundamental Theorem of Calculus Part 2, The Evaluation Part

PHYSICS 116C Homework 4 Solutions

Calculus II: Integrations and Series

x dx does exist, what does the answer look like? What does the answer to

Now, given the derivative, can we find the function back? Can we antidifferenitate it?

The Wave Equation I. MA 436 Kurt Bryan

Homework 11. Andrew Ma November 30, sin x (1+x) (1+x)

Math 113 Exam 2 Practice

Differential Equations 2 Homework 5 Solutions to the Assigned Exercises

Functional Analysis I Solutions to Exercises. James C. Robinson

DETERMINANTS. All Mathematical truths are relative and conditional. C.P. STEINMETZ

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

1. On some properties of definite integrals. We prove

Keys to Success. 1. MC Calculator Usually only 5 out of 17 questions actually require calculators.

MAT137 Calculus! Lecture 20

B Veitch. Calculus I Study Guide

Instantaneous Rate of Change of at a :

Transcription:

Bessel Functions Vibrtions of Membrne The governing eqution for the isplcement w, y, t)from the equilibrium position the plne z ) is w c w t ) [ The ssumptions re:- + y i) Tht the ction cross the element DeltS is force T S perpeniculr to S, where T T s S ii) the isplcement w of ny point of the membrne is purely trnsverse. ) iii) tht w + w y ) is smll. ] It cn be shown tht the tension is isotropic t point t point i.e. inepenent of the orienttion of S), inepenently of ii) n iii), n for equilibrium or motion from ii) it cn be shown tht T is uniform over the membrne n c T / mss/unit re. We ssume c constnt. The usul bounry conition for finite membrne) is tht w on the bounry. Simple Hrmonic Vibrtions Then w, y, t) W, y) coswt + ɛ) ) W + k W k w 3) c For circulr membrne complete or nnulr) we use plne polr coorintes r, θ Therefore r r r r r + r θ r r W r + W r θ + k W

This is seprble. i.e. we cn fin solutions of the form W rθ) F r)gθ) by substitution we hve r F ) + k + G F r r r r G θ Therefore Therefore G G θ constnt n 4) Gθ) A cos nθ + B sin nθ r r F ) + k r n )F 5) r r [Note tht F r ) + r r k r n )F is the self joint for?????????] r In 5) write kr not the co-orinte) F ) + n )F 6) This is Bessel s Eqution of orer n. The solution of the originl eqution W + k W must be perioic in θ of perio π, for otherwise W woul not be one vlue function of position. Therefore n is n integer. Series solution for F We ssume F m m+c where c is to be foun. ) n m+c) [m + c) n ] m+c ) n F m [m + c) n ] m+c F m n+c+ m m+c m Hence we require m [m + c) n ] m+c + m m+c m this is true if c n ) Inicil eqution c + n )

m m + c n ) + m m, 3,... Since, c ±n In the secon, putting c n n + ) In the thir, putting c n, m 3, 5,... 3 3n + 3) + We suppose n, 3,... Then 3... For m, 4, 6,... in the thir reltion + n) + 4 44 + n) + 4 n + ) 4 n + )n + ) ) m m m m!n + )... n + m) Hence we hve one solution tking c n) n ) m ) m m!n + )... n + m) The Bessel function J n ) is efine by tking n Γn + ) J n ) m ) n Γn + ) ) m m!γm + n + ) ) m m!n + )... n + m) ) m ) m The series converges for ll, by the rtio test. So J n ) is n integrl function of. If L n is the opertion in Bessels eqution L n y) L n y) since n ppers s n L n [J n )] for ll n Therefore L n [j n )] i.e. L n J n )] Hence J n ) is solution. J n ) ) m ) n+m m!γm n + When n is non-negtive integer Γm + n + ) is infinite from 3

m,,,..., n since Γz) hs poles t z,,,... Therefore Write m n + k J n ) mn ) m ) n+m m!γm n + J n ) ko ) k ) k+n i) n J n ) n + k)!k! Wronskin of J n n J n W J n J n we hve ) ) j ±n + n Therefore { [J n J n J n J n] } i.e. [J nj n J n J n] C constnt). C lim [J nj n J n J n] J n J n ) n rn + ) ) n r n + ) J n n ) n rn + ) J n n r n + ) Therefore J n J n J nj n Therefore C ) n J n J n J ±n [ + ] )!n + ) + [ + ] n Γ + n)γ m) )! n + ) + n Γ + n)γ m) [ + ] Γ n)γn) sin nπ π Therefore J n J n J nj n sin nπ π Thus J n n J n re linerly inepenent when n is not n integer. 4

n J n n J n re linerly epenent when n is n integer. Definition of the secon solution [Weber] Y n ) cos nπj n J n sin nπ when n tens to n integer the numertor tens to n the enomintor tens to. Hence when m is n integer we efine Y m ) lim n m Y n ) Therefore Y m ) [cos nπj } n n J n ] sin nπ n nm π sin nπj n + cos nπ J } n n n π cos πn [ π n J n) ) m ] n J n) In prticulr Y ) [ ) π n J n ) ] n J n [ ] π n J n n n n The functions of the secon kin of orer n. They re unboune t, for fro the reltion between J n n n other solution of Bessel s equtions, sy Y n ), we hve [Y n J n Y nj n ] C Y n J N Y nj n c If c then Y n n Y n cn not eist t. Hence the generl solution of Bessels equtions is either A J n ) + B J n ) n not n integer) or A J n ) + B Y n ) ll cses) A solution boune t is necessrily AJ n ) Returning to the membrne problem nm nm. Complete membrne r ). Since W must be boune t r, we hve F r) AJ n kr) n W rθ) AJ n kr) cosnθ + ε) n integer ) Since W on r. AJ n k) A is trivil therefore J n k). This is n eqution for the eigenvlues k, k,.... Hence for given n the vlues of k re given by k j n, j n,... where j n, j n,... re the 5

positive zeros of J n ). The llowe frequencies frequencies of norml w moes) re, w kc Therefore pi w c j n, j n,...) n,,.... Annulr Membrne b r. In this cse r is not in the physicl spce. Therefore we must tke F r) AJ n kr) + BY n kr) F ) F b) give:- AJ n k) + BY n k) AJ n kb) + BY n kb) Hence for non-trivil A, B AJ n k) AJ n kb) BY n k) BY n kb) Sketch of J J J ) ) 4 J!) + 4!) + ) ) 3 ) 5 J!! +!3! Note lso J ) J ) PICTURE The symptotic formul for J n ) is J n ) ) cos π ) π 4 + nπ Orthogonl n norml Properties of J j m ) where j, j... re the zeros of j ). We show tht J j m )J j p ) p m 6 J j m ) p m

the functions re orthogonl to weight function over [, b]. J α) + α J α) J β) + β J β) [ J β) J α) J α) ] J β) α β )J α)j β) [ Therefore J β) J α) J α) ]} J β) Iα β ) J α)j β) i.e. α β ) J α) J β) J α)βj β) J β)αj α) ) J β)j α) J α)βj β) If α j m β j p m p J j m )J j p ) Therefore J αj β)j α) lim α) + βj α)j β β α α β Numertor β Denomintor β βα j β) αj α) βj β β) β βα αj α) αj [ ] α) α β βj β)) + βj β) J o α) J α) + J α) [J J ] ) Therefore then α j m J j m )J j p ) J j m )δ mp It lso follows tht if f, f,... re the zeros of J ) then J j m)j j p) J j m )δ mp 7

Specil Cses of J α n )f) In ) tke α αn zero) β α m m,,... Then J α n )J β) α n In this put β n J ) n so 4) cn lso be obtine s follows: J α n ) αnj α n ) Therefore α n α n β J α n )J β) 3) J α n ) [ ] J α n ) n J α n ) J α n ) J α n ) α n 4) α n J α n ) Net we consier We hve Therefore { I k J α) k J α) α J α) k k k k J α) J α) } k J α){α k + k k } i) ii) Therefore by integrtion over [,] α I k k I k αj α) kj α) Therefore I I,... cn be foun in terms of J α) n J α). I n I cn be foun in terms of the Sturve function J α)qj α)j α) 8

Forml Fourier - Bessel Eplntions Assume tht f), efine in [,], possesses n epnsion Then f) A n J α n ) n J α m )f) A m J α n )J α m ) n A m J α m ) J α m ) A m A m J J α m )f) α m ) Initil n Bounry Problem for the Vibrting Membrne We hve, for the isplcement wr, t) in rilly symmetric vibrtions r r r w r w, t) eists n w, t) Also wr, ) fr) ) r c w t r w r, ) t r Choose - unit of length n choose unit on time so tht c. Also replce r by, giving w w t w, t) eists n w, t) w Also w, ) f), ) t Assume w, t) J α n )φ n t) n This stisfies the bounry conitions J α n )φ n t) w, t)j α n ) 9

J α n ) φ n t) Therefore n [ J α n ) w t) t J α n ) w ) ] J α n ) w w [ + w ] J α n ) + + w, ) f) t w.) Therefore i w[ α nj α n )] α J α n )φ n t) φt) + α nφt) J α n ) φ n t) A n cosα n t) + B n sinα n t)) w J α n ) f) φ n, φ n ) J α n ) i.e. B n A n J α n )φ n ) J α n ) φ n ) 9 J α n )f) J J α n )f) α n ) Hence we hve the series solution for w, t) w, t) J α n ) cos α n t yj J α n y)fy) y α n )

Alterntive proceure Solutions of the ifferentil eqution boune t re J k)[a cos kt + sin kt] This stisfies the bounry conitions w, t) if J k) thus k α, α,... The solution lso stisfies w t ) if B n. Formlly the series A n J α n ) cos α n t stisfies both bounry conitions n n the initil conitions on w t. Therefore s w ) f) thus f) A n J α n ) Therefore Emple A n J α n ) J α n )f). f) J k) J k) k rel n J k) J α n )J k) J k)α n J α n ) J α n )kj k) αn k J k) α nj α n ) αn k k gives J α n ) J α n ) α n J α n )f) J α n ) { α n k J α n ) α n k α n) α } n αn k Hence in this cse: k w, t) J α n ) cos α n t n α n k αn) J α n ) Since α n On) for lrge N, n J α n ) O ) O α n n ) Then the coefficient of J α n ) cosα n t) is O n 5

Solution of liner ifferentil eqution by efinite integrl or contour integrl) Preliminry Remrks Consier the ifferentil eqution where Seek solution y φd)y + ψd)y φp) p n + p n +... + n ψp) b p m + b p m +... + b m b e p Kp)ph.inot y C e p Kp)p where Kp) is to be foun n, b or C) re lso to be foun n re inepenent of.) Then Hence φd)y ψd)y then φd)y b b b b b φd)y + ψd)y [e p φp)kp)] b + b φd)e p Kp)p φp)e p Kp)p ψp)e p Kp)p e p φp)kp)p p ep )φp)kp)p b [e p φp)kp)] b e p p φp)kp))p i) Choose Kp) so tht the integrn is zero. i.e. e p { ψp)kp) p φp)kp)p } p ψp) {φp)kp)} ψp)kp) p φp) φp)kp)

therefore φp)kp) C ep { } p ψq) φq) q Note: if ll the zeros of φ re simple ψ n φ p r ψ q q r φ logp p r) r Therefore K r n p p r ) r ii) when Kp) is known we choose n b or C) so tht [e p Kp)φp)] b Consier Bessel s eqution on orer n Substitute y n z ) + n y { } y + y + y n y y { n } + n ) { y n ] + n z n ) + n + n z { } n + n + ) + n ) { } + n y n + n + ) + z ) { n+ + n + ) } z 3

Hence y stisfies Bessel s eqution if z stisfies { + Consier solution for z of the form b e it Kt)t Then { ) + ) + n + ) } b e it Kt)t + n + ) } z b { t ) + n + )it}kt)e it t [ t e it Kt) i ] b + b [ e it { } ] t Kt) + itn + )Kt) t t i Hence choose Kt) so tht t t )Kt) n )tkt) Kt) c t ) n hence solution of Bessel s eqution is if n b re chosen so tht b y n e it t ) n t [ t ) n+ e it ] b Suppose n > n lso is rel n positive [There is no ifficulty if z is comple] Amissible Pirs of limits i), +) ii), + i ) iii) +, + + i ) PICTURE 4

These integrls must be linerly epenent since tht re solutions of secon orer eqution. With proper specifiction of t ) n the reltion is ii) - iii) Consier e it t ) n t roun the contour shown. PICTURE We choose tht brnch of t) n which is rel n positive on AA. i.e. rg t), rg + t) on AA. AS t psses from to b roun AB rg t) ecreses by π ; s t psses from A to B roun A B rg + t) increses by π. Since the integrn eit t ) n is now one-vlue n regulr on n insie the countour, by Cuchy s Theorem we hve We show ) lim h b) lim ɛ {A A} {C C} {A B } We shll then hve i.e. {A A} + + + + + {B C } {CB} {C C} {A B } {BA} lim ɛ {BA} e it t ) n i +i t e it t ) n e it t ) n i) ii) iii) since the limits if the three integrls eist s ɛ if n > n s h. on CC, t P X P X C X CX h + 4 e it e iu+ih) e +h Therefore CC e h + 4) n s h on AB we hve t ɛe tθ Therefore t n ɛ n e it t ) n is boune in the neighbourhoo of t with boun M sy. Therefore e it t n Mɛ n Thus Mɛ n π AB ɛmπ en s ɛ Similrly s ɛ n > ) B A 5

Hence we hve the following solutions of Bessel s eqution i) n e it t ) n t +i ii) n e it t ) n t ++i iii) n e it t ) n t + Series Epnsions of i) i) n i t ) n the series for ll, t bsolutely n uniformly. i) n i) m m! t m t ) n t if m is o it) m t m! t m t ) n t t m t ) n t t m t ) n t u m u) n u u u m u) n u Γn + )Γm + ) Γm + n + ) i) n i) m γn + )Γm + ) m)! Γm + n + ) Γm + ) m)! Γ ) 3 m 3 m )m Γ ) m m! i) Γn + )Γ ) n ) ) m m m!γm + n + ) 6

n Γn + ) )Γ J n ) J n ) n Γn + )Γ ) i) Hnbel Functions of orer n Bessel functions of the thir kin) Definition Then we lso efine H ) n ) H ) n ) ) n Γ )Γn + ) iii) ) n Γ )Γn + ) ii) J n ) H) n ) + H n ) )) Y n ) i H) n ) H n ) )) Alterntive integrl representtion of H ) n ) n H ) n ) In the integrl representtion for H n ) ), rg t) π Therefore we write t) ηe πi iη. Where η goes from to through rel vlues s t goes from to + i. Thus Also t) n e πi n ) + t) t) ηe πi + iη ) + t) n n + in )n t) n n η n e πi n ) + iη ) n e it e i+iη) e i e η t e πi η e it t ) n t n e i nπ + pi 4 ) e η η n H n ) ) n nπ i e π 4 ) Γ )Γn + ) 7 e η η n + iη ) n η + iη ) n η I)

In the integrl for H n ) ) rgt + ) π πi Therefore t + ) ηe iη where η goes from to s t goes from - to + + i we get similrly n ) n nπ i e π 4 ) Γ )Γn + ) H ) e η η n iη ) n η I) [Note: when is rel n positive, H n ) ), H n ) ) re comple conjugtes. Therefore [H) n ) + H n ) )] is rel, so is i [H) n ) H n ) )].] Finlly substitute η u in both integrls. For rel n positive u goes from to s η goes from to H n ) ) ) H n ) ) ) Asymptotic Epnsions of e i nπ π 4 ) Γ ) Γn + ) e u u n nπ π 4 ) e i Γ ) Γn + ) We consier the cse n i.e. e u u We pply Tylor s formul ft) n r to the function t) n t) r the lst term is writing t 3 3 f r) )t r r! + this gives r t r + r! e u u n e u u n ± iu ) u + iu ) n u iu ) n u ± iu ) n u t t s) n f n) s)s n!) 3 n t t s) n s) n s n )! n t n v) n tv) n v n )! u i u ) i n r 3 n r! 8 u n ) u i) + r n n

) u 3 r n If is rel n positive n n )! u r v) n u ) n i) r i v v u i v + u v 4 ) Therefore Hence u r n ) 3 n n! 3 n n! u n v) n v ) n u n ) n Also e u u Therefore u ) n u i r R n ) 3 r r! e u u rn u e u y r i) r u + Rn ) ) u ) e u u r u Γr + Γ 3 r R n ) e u u n u r n u n! ) n e u u [ u ) n u Γ i ) r e u u n u [ 3 r ] r! i) r + R n Where R n [ 3 n ] n! ) lim n n There the series is the symptotic epnsion of the left hn sie. In fct Rn n )) 9

Divergence of the Infinite series The D Alernbert rtio is n + ) n i n + ) n which tens to infity for n. Asymptotic Epnsion of H ) ) H ) ) [ ) H ) 3 ) e i π 4 ) r π r r! [ ) H ) 3 ) e i π 4 ) r π r r! where the reminer fter the term in Write A) [ Γ ) e u u u i B) [ Γ ) e u u u i ) H ) ) e i π 4 ) [A) + ib)] π H ) ) π J ) ) e i π 4 ) [A) ib)] ] ] i) r i) r hs mouls term in n n ) u + ) u H ) ) + H ) ) ) e u u e u u + u i + u i ) [ A) cos π ) B) sin π )] π 4 4 ) u ] ) ] u Y ) i H ) ) H ) ) ] ) [ A) sin π ) B) cos π )] π 4 4 The generl Bessel function of zero orer is A J ) + B Y ) Ccos J ) + sin Y ))

From the efinitions of A) n B) [ 3 A) r ] ) r r)! ) r B) r r [ 3 r + ] ) r+ r + )! ) r+ Zeros of Bessel Function of zero orer The zeros re given by cot π 4 ) A) + O Therefore α) B) A) B) 8 + O 3 A) B) ) 8 + O 3 Therefore for lrge, the zeros re pproimtely given by cot π α) 4 i.e. π 4 α k + ) π k lrge integer. α + k + 3 ) π 4 ) Asymptotic Epnsions of H ) ) & H ) ) ) H ) ) e i nπ π 4 ) π H ) ) π where, n). ) e i nπ π 4 ) ) m m, n) i) m ) m m, n) i) m m, n) 4n )4n 3 ) 4n m ) ) m m! There epnsion re only useful when >> n Bessel Functions of orer k + ) k,, We hve ) ) n+m m J n ) m!γn + m + ) ) ) J ) sin J ) cos π π

J ) ) ) m m m m!γm + 3 ) m m!γm + 3 ) m m!γ 3 )3 5 m + Γ 3 ) 4 m3 5 m + ) m + )!Γ 3 ) m + )! Γ ) Similrly J ) ) π ) π Γ ) sin sin ) J ) cos π ) m m m + )! H ) H ) ie i π ) k+ ) H ) ) ie i π +i ) k+ Γ Γk + ) ) k+ Γ )k! + ) k+ Γ )k! + e {Polynimil in, egree k} e it t ) k t ) +i e it t ) e it The functions H ) ), H ) ) re clle sphericl Bessel functions. They k+ k+ rise in solution of the wve eqution in sphericl Polr coorintes.

Rilly Progressive Wves in two imensions We h for the membrne w c w t + y n foun solutions in the cse of ril symmetry) w [AJ kr) + BY kr)] coswt + ɛ) k w c ssuming the form w fr)e iwt rel prts to be tken eventully) we fin similr form w [A H ) kr) + A H ) kr)]e iwt since ) H ) kr) e ikr π 4 ) s r πkr ) H ) kr) e ikr π 4 ) s r πkr we get ) H ) kr)e iwt e iwt+ r c ) π 4 ) πkr ) H ) kr)e iwt e iwt r c ) π 4 ) πkr The first repents wve converging to the origin with velocity c, the secon wne iverging from the origin with velocity c. 3