Review Revisiting the Baldwin s Rules Guidelines for Ring Closure Li Yuanhe Anion- 3/4 4/5 5/6 6/7 endo- -dig exo- endo- -trig exo- endo- -tet exo-

Similar documents
3. The ring being formed has six members; the breaking C C bond is inside the new ring (endo); the C being attacked is a digonal (sp) atom (dig)

Cyclizations of Alkynes: Revisiting Baldwin s Rules for Ring Closure

A Simple Introduction of the Mizoroki-Heck Reaction

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Synthesis, Mechanism, and Properties of Cyclopenta-fused Polycyclic Aromatic Hydrocarbons. Chaolumen. Introduction

Loudon Chapter 15 Review: Dienes and Aromaticity Jacquie Richardson, CU Boulder Last updated 1/28/2019

ELECTRON FLOW IN ORGANIC CHEMISTR Y. Paul H. Scudder

Synthetically useful extrusion reactions in organic chemistry

Grob Fr agmentations. Dan Tao Overman Group Meeting 9/24/12

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

Selectivity and Natural Product Synthesis. Reporter: Liang Xin-ting Supervisors: Prof. Yang Prof. Chen Prof. Tang

STEREOCHEMISTRY AND STEREOELECTRONICS NOTES

Chemistry III (Organic): An Introduction to Reaction Stereoelectronics. LECTURE 1 Recap of Key Stereoelectronic Principles

Review. Recent Developments in Pd-catalyzed Carbonylation Reaction. Li Yuanhe. Supervisors: Prof. Yang Prof. Chen Prof. Tang

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY

Ring constructions by the use of fluorine substituent as activator and controller*

Chemistry 610: Organic Reactions Fall 2017

Problem Set 2: Reactions of Carbocations - KEY

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

Pericyclic reactions

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Amphoteric Molecules < Chemistry of Andrei K. Yudin > Hyung Min Chi 17 JUNE 2014

C H Activated Trifluoromethylation

Ethers. Chapter 14: Ethers, Epoxides, & Sulfides. General Formula: Types: a) Symmetrical: Examples: b) Unsymmetrical: Examples: Physical Properties:

N-Heterocyclic Carbenes

Chiral Supramolecular Catalyst for Asymmetric Reaction

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386)

Real life example 1 Let s look at this series of chloroalcohols, and how fast the chloride gets displaced by an external nucleophile.

Igor Alabugin, Florida State University. Зимняя конференция молодых ученых по органической химии, January 20, 2015, Krasnovidovo

Advanced Organic Chemistry

CHEMISTRY 332 FALL 08 EXAM II October 22-23, 2008

4.MeOTf,DCM,76% 5.1-B,MeCN,50 C,89% 6.Oxone,MeCN/H 2 O,0 C,67% 7.PIFA,DCM,rt; TFA/H 2 O(3/1),55 C,26%

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

17.1 Classes of Dienes

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine

Advanced Organic Chemistry

σ Bonded ligands: Transition Metal Alkyls and Hydrides

17.1 Classes of Dienes

Organic Chemistry: CHEM2322

S N 1 Displacement Reactions

Suggested solutions for Chapter 31

EASTERN ARIZONA COLLEGE General Organic Chemistry I

RESEARCH REPOSITORY.

Protecing-Group-Free Synthesis. Reporter: Zhu Zhiyang Advisor: Prof Yang Prof Chen Prof Tang Date:

Chem 634. Pericyclic Reactions. Reading: CS-B Chapter 6 Grossman Chapter 4

Cambrian Explosion, Complex Eukaryotic Organism, Ozonosphere 3

Total Synthesis of (+)-Gelsemine. Xuan Dong group seminar 12/19/2012

Chemistry 12B Organic Chemistry. Spring 2016

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

Hirsutene and Δ 9(12) Capnellene. D. P. Curran (1986) Presenter: Mehdi Moemeni

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Reaction mechanisms offer us insights into how reactions work / how molecules react with one another.

1. Theoretical Investigation of Mechanisms and Stereoselectivities of Synthetic Organic Reactions

Andrew Zahrt Denmark Group Meeting

The Career of Tristan H. Lambert

Lecture Notes Chem 51C S. King Chapter 24 Carbonyl Condensation Reactions

Self-stable Electrophilic Reagents for Trifluoromethylthiolation. Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date:

Chapter 27 Pericyclic Reactions

Reactivity in Organic Chemistry. Mid term test October 31 st 2011, 9:30-12:30. Problem 1 (25p)

ORGANIC - BROWN 8E CH DIENES, CONJUGATED SYSTEMS, AND PERICYCLIC REACTIONS

and Ultraviolet Spectroscopy

*Assignments could be reversed. *

Asymmetric Catalysis by Lewis Acids and Amines

Halogen Bond Applications in Organic Synthesis. Literature Seminar 2018/7/14 M1 Katsuya Maruyama

AN INTRODUCTION TO MOLECULAR ORBITALS

This syllabus is printed on both sides of each page in the hard-copy version.

Synthesis of Polymers Prof. Paula Hammond Lecture 19: Metallocene Chemistry, Intro to New Developments from Brookhart, Others H H

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

CHEM 344 Molecular Modeling

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Some questions and answers that we will get out of this example synthesis:

Molecular body vs. molecular skeleton Ideal surface 1, 29

DEPARTMENT: Chemistry

Review. Frank Glorius & His Rh(III) C-H Activation. Li Yuanhe. Supervisors: Prof. Yang Prof. Chen Prof. Tang Prof. Luo 1 /21

Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

SECTION 3. Antiperiplanar Hypothesis. and Reactions at Unsaturated Systems

Recent Developments in Alkynylation

CHEM 330. Topics Discussed on Oct 5. Irreversible nature of the reaction of carbonyl enolates with the electrophiles discussed on Oct 2

Total Synthesis of Verruculogen and Fumitremorgin A Enabled by Ligand-Controlled C H Borylation

Some Arrow-Pushing Guidelines (Section 1.14) 1. Arrows follow electron movement.

Pericyclic Reactions - Continued

Stereoselective Organic Synthesis

Iron Catalysed Coupling Reactions

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7

David W.C. MacMillan: Career-in-Review. Yan Xu Dong Group Meeting Jan. 2, 2014

Aza-Wacker-Type Cyclization. Group Meeting Tuesday, April 19, 2011 William Kuester

Lecture Notes Chem 51B S. King I. Conjugation

Keynotes in Organic Chemistry

Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction

CHEM ORGANIC CHEMISTRY

Some questions and answers that we will get out of this example synthesis:

Lecture 4: Band theory

Chem 232. Representation of Reaction Mechanisms. A Simple Guide to "Arrow Pushing"

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

Few Selected Total Synthesis in Group Meeting June 1, Anil Kumar Gupta

Asymmetric Catalysis by Chiral Hydrogen-Bond Donors

REARRANGEMENTS NOTES Mechanistic Aspects of Rearrangements

Transcription:

Review Revisiting the Baldwin s Rules Guidelines for Ring Closure Li Yuanhe Anion - 3/4 4/5 5/6 6/7 -trig Supervisors: Prof. Yang Prof. Chen -tet Prof. Tang

Introduction (Sir) Jack Baldwin 1938, Born, London 1960, B. Sc. Imperial College 1964, Ph. D. Imperial College, Prof. Barton 1965, Assistant Lecturer, Imperial College 1967, Assistant Prof., U. Penn. 1970, Assistant Prof., MIT 1972, Full Professor, King's College 1972, Full Professor, MIT 1978, Waynflete Professor, U. Oxford 1997, awarded a knighthood 2005, retirement Rules for ring closure 1976, definitions, basic rules. J. Chem. Soc., Chem. Commun., 1976, 734. (Cited 2393 times, second most cited paper* ) J. Chem. Soc., Chem. Commun., 1976, 736. (5-endo-trig) 1977, rule of enolates J. Chem. Soc., Chem. Commun., 1977, 233. 1982, application to aldol reaction Tetrahedron, 1982, 38, 2939. * Chem. Commun. the most cited paper: Chem. Commun., 1994, 801.; cited 4939 times. Method of gold nanoparticle synthesis. 2/39

Introduction (Sir) Jack Baldwin 1938, Born, London 1960, B. Sc. Imperial College 1964, Ph. D. Imperial College, Prof. Barton 1965, Assistant Lecturer, Imperial College 1967, Assistant Prof., U. Penn. 1970, Assistant Prof., MIT 1972, Full Professor, King's College 1972, Full Professor, MIT 1978, Waynflete Professor, U. Oxford 1997, awarded a knighthood 2005, retirement Rules for ring closure 1976, definitions, basic rules. J. Chem. Soc., Chem. Commun., 1976, 734. (Cited 2393 times, second most cited paper* ) J. Chem. Soc., Chem. Commun., 1976, 736. (5-endo-trig) 1977, rule of enolates J. Chem. Soc., Chem. Commun., 1977, 233. 1982, application to aldol reaction Tetrahedron, 1982, 38, 2939. * Chem. Commun. the most cited paper: Chem. Commun., 1994, 801.; cited 4939 times. Method of gold nanoparticle synthesis. 3/39

The Baldwin s Rules Nomenclature n - endo/exo - tet/trig/dig 3 4 5 6 7 tetrahedron exo- trigonal digonal 3-exo 4-exo tet- 3-endo-tet 4-endo-tet 5-endo-tet 6-endo-tet 7-endo-tet endo- trig- 3-endo-trig 4-endo-trig 5-endo-trig dig- J. Baldwin* Chem. Commun, 1976, 734. R. Moriarty*, J. Org. Chem. 1985, 50, 3710. 4/39

The Baldwin s Rules Nomenclature enolate 3 4 5 6 7 X-endo-trig 3-endo-trig 4-endo-trig 5-endo-trig exo-trig 3~5-enolendo-exo-tet 3~5-enolendo-exo-trig enolendoexo-tet X-exo-trig exo-tet enolexo- exo-trig J. Baldwin* et.al., Chem. Commun., 1977, 233. 5/39

The Baldwin s Rules Baldwin s Explanation To be skipped Limitations (mentioned by Baldwin) Limits to kinetically controlled reaction 3/4 4/5 5/6 6/7 -trig Note: however thermodynamic factor can affect kinetic outcome. Excluded pericyclic reactions Excluded transition metal involvement In ring atoms limited to first row element (C, H, O, N ) Si, P, S : Bond Length; Orbital size; Polarizability; d-orbital H: Bond Length; s orbital; tunneling effect Calculated at B3LYP/ma-def2-SV(P) level All the same in this report if not mentioned 6/39

Anion -, Radical, Cation + Incoming species 7/39

Outline Dig- The major discrepancy Anion, Rad, Cation 3/4 4/5 5/6 6/7 Trig- The 5-endo-trig problem 3/4 4/5 5/6 6/7 -trig Tet endo/exo selectivity 3/4 4/5 5/6 6/7 -tet Enolendo / enolexo- 8/39

The problem Anion, Rad, Cation 3/4 4/5 5/6 6/7 Proposed by Baldwin Orbital and the acute attack angle Free attack transition state: 134 o (Propyne, myself) 132 o (Ethyne, Houk) 9/39

Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 endo- 4-endo exo- 3-exo By Baldwin 3/4 endo- 4-endo exo- 3-exo 3-exo - vs 4-endo - (3-exo: rare, 4-endo: unprecedented) 3-exo - 4-endo - (by Reaxys general reaction search, rearrangement after 4-endo not included) J. Johnson, et. al., J. Am. Chem. Soc., 2008, 130, 9180. 10/39

4-endo - Some theoretical background Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 endo- 4-endo exo- 3-exo By Baldwin 3/4 endo- 4-endo exo- 3-exo Marcus theory Remove ΔG factor from ΔG difference NICS (Nuclear independent chemical shift) A measurement of (anti)aromaticity ( 核独立化学位移, in ppm) B 0-4.9 ppm -10.2 ppm > normal H -8.0 ppm 1 2 Obtain Intrinsic (activation) energy ΔE o @ ΔG=0 Thermodynamic induced kinetic preference J. Am. Chem. Soc., 1996, 118, 6317; Chem. Rev., 2005, 105, 3842. 11/39

Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 endo- 4-endo exo- 3-exo 4-endo - σ-(anti)aromaticity transition state By Baldwin 3/4 endo- 4-endo exo- 3-exo 3-exo σ-2e σ-aromatic 4-endo σ-4e σ-antiaromatic The energy aspect E a : activation energy E r : reaction energy E o : intrinsic energy Alabugin*, Chem. Rev. 2011, 111, 6513 6556 12/39

Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 endo- 4-endo 5-endo exo- 3-exo 4-exo By Baldwin 4/5 endo- 5-endo exo- 4-exo 4-exo - vs 5-endo - (both rare, endo rarer) Bare cases 4-exo J. Am. Chem. Soc. 1993, 115, 3080. J. Org. Chem. 1993, 58, 6833. Tune by: Aromaticity (thermodynamic induced kinetic preference) J. Org. Chem. 1986, 51, 5040. Chem. Eur. J. 2009, 15, 838.

Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 endo- 4-endo 5-endo exo- 3-exo 4-exo By Baldwin 4/5 endo- 5-endo exo- 4-exo 4-exo - vs 5-endo - (both rare, endo rarer) Tune by: Bond Polarity MO of difference substrate HOMO α-c 26% β-c 52% LUMO α-c 9.5% β-c 5.1% (mixed with O-H) HOMO α-c 7.1% β-c 0.8% (mixed with O-LP) LOMO α-c 5.6% β-c 27% 14/39

Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 endo- 4-endo 5-endo exo- 3-exo 4-exo By Baldwin 4/5 endo- 5-endo exo- 4-exo 4-exo - vs 5-endo - (both rare, endo rarer) Tune by: Bond Polarity Chem.Eur. J. 2009, 15, 838. Substrate constrain J. Am. Chem. Soc. 1993, 115, 7023. Tetrahedron Lett. 1986, 27, 5455. 15/39

Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 endo- 4-endo 5-endo 6-endo exo- 3-exo 4-exo 5-exo By Baldwin 5/6 endo- 6-endo exo- 5-exo 5-exo - vs 6-endo - (both common, exo easier) Energy aspect Default exo Tetrahedron Lett. 1998, 39, 1745. Tetrahedron Lett. 1990, 31, 493. 张力 ensure Myers, et. al., J. Am. Chem. Soc. 2007, 129, 5381. 16/39

Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 endo- 4-endo 5-endo 6-endo exo- 3-exo 4-exo 5-exo By Baldwin 5/6 endo- 6-endo exo- 5-exo 5-exo - vs 6-endo - (both common, exo easier) Generation of stabilized anion Bond polarity Linker dependent Elimination directed Tetrahedron Lett. 2002, 43, 9187; Heterocycles 2002, 57, 2255. 7-endo & 6-exo not observed in this system 17/39

Anion - dig cyclization Anion - 3/4 4/5 5/6 6/7 By Baldwin 6/7 endo- 7-endo exo- 6-exo 6-exo - vs 7-endo - (6-exo common, (pure) 7-endo rare, Assisted 7-endo common) R. Dillard, N. Easton, J. Org. Chem., 1966, 31, 122.; B. Taylor*, Tetrahedron Lett., 1997, 38, 6467. B. Kundu*, J. Org. Chem. 2011, 76, 6798. 18/39

Anion - dig cyclization Baldwin: Anion, Cation, Rad. 3/4 4/5 5/6 6/7 Search result: Anion - 3/4 4/5 5/6 6/7 19/39

Cation + dig cyclization Cation + 3/4 4/5 5/6 endo- 4-endo 5-endo 6-endo exo- 3-exo 4-exo 5-exo The instability of in-ring vinyl cation HOMO (π) LUMO (LP*) LUMO+1 (π*) HOMO (π) LUMO (LP*) LUMO+1 (π*) 20/39

Cation + dig cyclization Cation + 3/4 4/5 5/6 endo- 4-endo 5-endo 6-endo exo- 3-exo 4-exo 5-exo 4-endo + vs 3-exo + (4-endo very rare (if any), 3-exo unprecedented) Fake 4-endo + : NPEC (Nucleophile-Promoted Electrophilic Cyclization) 5-endo + vs 4-exo + (Both unprecedented) Hanack, M. et. al., Tetrahedron Lett. 1968, 44, 4613. Hanack, M. et. al., Angew. Chem., Int. Ed. 1978, 17, 333. 21/39

Cation + dig cyclization Cation + 3/4 4/5 5/6 endo- 4-endo 5-endo 6-endo exo- 3-exo 4-exo 5-exo 6-endo + vs 5-exo + (Both very common, subtle control) J. Org. Chem. 1992, 57, 883. J. Am. Chem. Soc. 1969, 90, 4521. Chem. Commun. 1990, 310. 22/39

Outline Dig- The major discrepancy Anion - 3/4 4/5 5/6 6/7 Trig- The 5-endo-trig problem 3/4 4/5 5/6 6/7 -trig Tet endo/exo selectivity 3/4 4/5 5/6 6/7 -tet Enolendo / enolexo- 23/39

Anion - Trig= cyclization 3/4 4/5 5/6 6/7 -trig Anion-trig attack The endo difficulty Planer: No orbital overlap Stereoelectronic required distortsion HOMO-LUMO orbital recombination ( overlap ): 24/39

Anion - Trig= cyclization 3/4 4/5 5/6 6/7 -trig By Baldwin 3/4 endo- 4-endo -trig exo- 3-exo 3-exo-trig - vs 4-endo-trig - (Both unprecedented) Only indirect 4-endo-trig reported 4-exo ~ 7-exo common G. Rousseau*, J. Org. Chem. 1999, 64, 81-85 25/39

Anion - Trig= cyclization 3/4 4/5 5/6 6/7 -trig 5-endo-trig Anion stabilization at attacked endo position Oxonium / iminium J. Am. Chem. Soc, 1995, 117, 6394 Tetrahedron Lett.,1985, 26, 4455. J. Am. Chem. Soc,, 2005, 127, 11505. J. Org. Chem., 1990, 55, 4801. 26/39

Outline Dig- The major discrepancy Anion - 3/4 4/5 5/6 6/7 Trig- The 5-endo-trig problem 3/4 4/5 5/6 6/7 -trig Tet endo/exo selectivity 3/4 4/5 5/6 6/7 -tet Enolendo / enolexo- 27/39

Anion - tet cyclization 3/4 4/5 5/6 6/7 -tet By Baldwin 3/4 6/7 endo- 4-endo 7-endo -tet exo- 3-exo 6-exo endo-tet vs exo-tet (-exo always win) Misuse of nomenclature X-endo-tet for epoxide endo-tet is not a cyclization process only for completeness Baldwin 28/39

Anion - tet cyclization Misuse of nomenclature X-endo-tet for epoxide Countless (important) papers misuse the endo-tet (said Chem. Commun., 2013, 49, 11246) Kinya Hotta*, Xi Chen*, et. al., Nature, 2012, 483, 355. 29/39

Anion - tet cyclization Misuse of nomenclature X-endo-tet for epoxide Countless (important) papers misuse the endo-tet Nature doesn t work against stereoelectronic principles; Nature chooses by giving an additional advantage to one of the two favorable processes. Chem. Commun., 2013, 49, 11246. Kinya Hotta*, Xi Chen*, et. al., Nature, 2012, 483, 355. 30/39

Anion - tet cyclization 3/4 4/5 5/6 6/7 -tet Small-ring endo-tet almost always impossible Eschenmoser, et. al., Helvetica Chimica Acta, 1970, 53, 2059 31/39

Anion - tet cyclization 3/4 4/5 5/6 6/7 -tet Small-ring endo-tet almost always impossible By Baldwin 3/4 6/7 -tet endo- 4-endo 7-endo exo- 3-exo 6-exo orbital of 6-exo-tet TS Is the mechanism of S N 2 reaction really that simple? Direct S N 2 mechanisms By crossed molecular beam exp. & quantum dynamic calculation Jing Xie, William L. Hase, Science, 2016, 352, 32. 32/39

Anion - tet cyclization 3/4 4/5 5/6 6/7 -tet By Baldwin 3/4 6/7 endo- 4-endo 7-endo -tet exo- 3-exo 6-exo Is the mechanism of S N 2 reaction really that simple? Other indirect S N 2 pathway Jing Xie, William L. Hase, Science, 2016, 352, 32. 33/39

Anion - tet cyclization 3/4 4/5 5/6 6/7 -tet Endo/exo selectivity of exo-tet reaction (default exo, endo tunable) Stabilized partial charge Nicolaou, et.al., Chem. Commun., 1985, 1359.; J. Am. Chem. Soc., 1989, 111, 5335. 34/39

Anion - tet cyclization Endo/exo selectivity of exo-tet reaction (default exo, endo tunable) Destabilized partial positive charge Reagent controlled Chem. Eur. J.; 1997, 3, 849. Derived from other species Angew. Chem. Int. Ed. 2006, 45, 810. J. Org. Chem., 2013, 78, 872. Tetrahedron Lett., 1994, 35, 2179 35/39

Outline Dig- The major discrepancy Anion - 3/4 4/5 5/6 6/7 Trig- The 5-endo-trig problem 3/4 4/5 5/6 6/7 -trig Tet endo/exo selectivity 3/4 4/5 5/6 6/7 -tet Enolendo / enolexo- 36/39

Enolendo- / enolexo- 3 4 5 6 exo- enolendo- 3-enolendo -exo-tet/trig 4-enolendo -exo-tet/trig 5-enolendo -exo-tet/trig 6-enolendo -exo-tet/trig exo- enolexo- 3-enolexo -exo-tet/trig 4-enolexo -exo-tet/trig 5-enolexo -exo-tet/trig 6-enolexo -exo-tet/trig 3-enolendo Mechanism of Favorskii Rearrangement 5/6-enolendo Not applicable on oxonium / iminium Loose molecular orbital (?!) J. Am. Chem. Soc,, 2005, 127, 11505. 37/39

Summary Anion - 3/4 4/5 5/6 6/7 Cation + 3/4 4/5 5/6 endo- 4-endo 5-endo 6-endo exo- 3-exo 4-exo 5-exo Anion - 3/4 4/5 5/6 6/7 -trig Cation + 3/4 4/5 5/6 endo- 4-endo 5-endo 6-endo -trig exo- 3-exo 4-exo 5-exo Anion - 3/4 4/5 5/6 6/7 -tet Cation + 3/4 4/5 5/6 endo- 4-endo 5-endo 6-endo -tet exo- 3-exo 4-exo 5-exo 3 4 5 6 exo- enolendo- 3-enolendo -exo-tet/trig 4-enolendo -exo-tet/trig 5-enolendo -exo-tet/trig 6-enolendo -exo-tet/trig exo- enolexo- 3-enolexo -exo-tet/trig 4-enolexo -exo-tet/trig 5-enolexo -exo-tet/trig 6-enolexo -exo-tet/trig Radical: 3,4-endo/exo-trig/dig: rare; 5,6-trig/dig: favor exo 38/39

Recommended Reviews (not in order) Alabugin*, et. al., Chem. Commun., 2013, 49, 11246. Zeni*, et. al., Chem. Rev. 2011, 111, 2937 2980 Alabugin*, Chem. Rev. 2011, 111, 6513 6556 Sarah Wengryniuk, Breaking the Rules: "Anti-Baldwin" Cyclizations, Baran Group Meeting Alabugin*, et. al., J. Am. Chem. Soc. 2011, 133, 12608 12623 X Jiang and H Liu, 4.07: Electrophilic Cyclization, Comprehensive Organic Synthesis II, Volume 4 Radical(not covered): The book, Chapter 11, Free Radical Reactions Hideo Togo, Advanced Free Radical Reactions for Organic Synthesis Dowd*, et. al., Chem. Rev. 1993, 93, 2091. Uta Wille*, Chem. Rev. 2013, 113, 813 853 39/39

Acknowledgements Prof. Yang, Prof. Chen, Prof. Tang Mr. Liu Dong-Dong B630 Everyone in Lab. and everyone here Ac 40/39