Cosmic Ray Physics with ARGO-YBJ

Similar documents
Cosmic Ray Physics with ARGO-YBJ

Highlights from the ARGO-YBJ Experiment

Hadronic Interaction Studies with ARGO-YBJ

Cosmic Ray Physics with the ARGO-YBJ experiment

Very High Energy Gamma Ray Astronomy and Cosmic Ray Physics with ARGO-YBJ

Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ

PoS(RPC2012)011. Results from the ARGO-YBJ experiment. Roberto Iuppa for the ARGO-YBJ collaboration

Measurement of the cosmic ray all-particle and light-component energy spectra with the ARGO- YBJ experiment

Highlights from ARGO-YBJ

EAS lateral distribution measured by analog readout and digital readout of ARGO-YBJ experiment

Status of ARGO-YBJ: an overview

Physics Results with the ARGO-YBJ Experiment. Tristano Di Girolamo Università di Napoli Federico II INFN Sezione di Napoli

Measurement of the angular resolution of the ARGO-YBJ detector

Latest results and perspectives of the KASCADE-Grande EAS facility

UC Irvine UC Irvine Previously Published Works

HAWC and the cosmic ray quest

Gamma-Ray Astronomy with a Wide Field of View detector operated at Extreme Altitude in the Southern Hemisphere.

Measurement of the Solar Magnetic Field effect on cosmic rays using the Sun shadow observed by the ARGO-YBJ experiment

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon

Lessons 19 and 20. Detection of C.R. with energy > TeV Study of the C.R. isotropy/anisotropy Ground based detectors:

Accurate Measurement of the Cosmic Ray Proton Spectrum from 100TeV to 10PeV with LHAASO

The KASCADE-Grande Experiment

PoS(ICRC2015)424. YAC sensitivity for measuring the light-component spectrum of primary cosmic rays at the knee energies

The air-shower experiment KASCADE-Grande

Measurement of the CR e+/e- ratio with ground-based instruments

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

Mass Composition Study at the Pierre Auger Observatory

Recent Results from the KASCADE-Grande Data Analysis

Observations of the Crab Nebula with Early HAWC Data

Primary cosmic ray mass composition above 1 PeV as measured by the PRISMA-YBJ array

Recent Observations of Supernova Remnants

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

Diffuse TeV emission from the Cygnus region

Air Shower Measurements from PeV to EeV

Primary Cosmic Rays : what are we learning from AMS

Experimental results on the atmospheric muon charge ratio

Timing calibration of the LHAASO-KM2A electromagnetic particle detectors

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

EAS-TOP: THE COSMIC RAY ANISOTROPY IN

PoS(ICRC2015)432. Simulation Study On High Energy Electron and Gamma-ray Detection With the Newly Upgraded Tibet ASgamma Experiment

PoS(ICRC2015)430. Shower reconstruction performance of the new Tibet hybrid experiment consisting of YAC-II, Tibet-III and MD arrays

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

Status and results from the Pierre Auger Observatory

Detection of TeV Gamma-Rays from Extended Sources with Milagro

Publications of Francesco Arneodo: journal articles

OVERVIEW OF THE RESULTS

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

Calibration of large water-cherenkov Detector at the Sierra Negra site of LAGO

Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW) From TAIGA Collaboration

Observation of UHECRs in horizontal flux

Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

Ultra- high energy cosmic rays

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

Hadronic interactions of ultra-high energy cosmic rays

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Recent Results of the Telescope Array Experiment. Gordon Thomson University of Utah

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

The TAIGA experiment - a hybrid detector for very high energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

Study of muon bundles from extensive air showers with the ALICE detector at CERN LHC

Measurement of CR anisotropies with the AMS detector on the ISS

The H.E.S.S. Standard Analysis Technique

7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, September 2009 THE AMIGA PROJECT

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída.

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

Numerical study of the electron lateral distribution in atmospheric showers of high energy cosmic rays

The High Energy cosmic-radiation Detection (HERD) Facility onboard China s Future Space Station

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Astroparticle Physics with IceCube

Aldo Morselli, INFN & Università di Roma Tor Vergata, 1. Scineghe07. Aldo Morselli

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg

Searches for cosmic ray anisotropies at ultra-high energies

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector

Seeing the moon shadow in CRs

On the measurement of the proton-air cross section using air shower data

Gamma-Ray Astronomy With Ground Based Arrays: Results and Future Perspectives

IceCube: Ultra-high Energy Neutrinos

EVIDENCE OF INTERMEDIATE-SCALE ENERGY SPECTRUM ANISOTROPY IN THE NORTHERN HEMISPHERE FROM TELESCOPE ARRAY

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

From the Knee to the toes: The challenge of cosmic-ray composition

First Results from the Pierre Auger Project

The AMIGA infill detector of the Pierre Auger Observatory: performance and first data

Cosmic Rays in the Galaxy

PoS(ICRC2017)1076. Studies of Cosmic-Ray Proton Flux with the DAMPE Experiment

A Search for Cosmic-ray Proton Anisotropy with the Fermi Large Area Telescope

The early days of ground-based gamma-ray astronomy in France. Gerard Fontaine - Hillas symposium Heidelberg December

Simulations for H.E.S.S.

High Energy cosmic-radiation Detection (HERD) Facility onboard China s Space Station

A Large High Altitude Air Shower Observatory : the LHAASO Project

Exploring the Lifetime Frontier and Cosmic Ray Physics

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

A SEARCH FOR ASTROPHYSICAL POINT SOURCES OF 100 TEV GAMMA RAYS BY THE UMC COLLABORATION

arxiv: v1 [astro-ph.he] 28 Jan 2013

Transcription:

Cosmic Ray Physics with ARGO-YBJ Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration 4th Workshop on Air Shower Detection at High Altitude January 31 February 1, 2013, Naples

The ARGO-YBJ experiment ARGO-YBJ High Altitude Cosmic Ray Observatory @ YangBaJing,Tibet, China Site Altitude: 4,300 m a.s.l., ~ 600 g/cm 2 Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 2

ARGO-YBJ physics goals VHE γ-ray Astronomy: (see S. Vernetto s talk) (search for)/(study of) point-like (and diffuse) galactic and extra-galactic sources with few hundreds GeV energy threshold Cosmic ray physics: energy spectrum and composition (E th few TeV), study of the shower space-time structure, flux anisotropies at different angular scales p-air cross section measurement and hadronic interaction studies anti-p / p ratio at TeV energies, geomagnetic effects.. Search for GRB s (full GeV / TeV energy range) through the Observation of Extensive Air Showers produced in the atmosphere by primary γ s and nuclei Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 3 / 30

74 m 99 m The ARGO-YBJ detector 1 CLUSTER = 12 RPC ( 43 m2) 78 m 8 Strips 10 Pads 2 (56 x 62 cm2) (6.5 x 62 cm ) for each Pad for each RPC 111 m RPC Strip counting Pad = space-time pixel Time resolution ~1.7 ns Air Shower Detection at High Altitude - 2013 + Analog charge read-out on Big Pads I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 4

RPC performance ARGO-YBJ coll., NIM A (2009) 246 HV T Gain HV ρ P C 2 H 2 F 4 / Ar / i-c 4 H 10 75 / 15 /10 % 7.2kV applied to 2mm gas gap Streamer mode Continuous RPC monitoring. Small efficiency and time resolution drifts with temperature: 0.03% / C 0.04 ns / C Angular resolution substantially unaffected Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 5 / 30

EAS reconstruction 86% duty cycle Event Rate ~ 3.5 khz for N hit >20 - Duty cycle ~ 86% - 10 11 evts/yr 100TB/yr High space/time granularity + Full coverage + High altitude detailed study on the EAS space/time structure with unique capabilities 3-D view of a detected shower Top view of the same shower Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 6 / 30

Shower front time structure Curvature: time residuals Δt(R) with respect to a planar fit Thickness: the RMS of time residuals σ(r) with respect to a conical fit Conicity parameter α: Give useful information on shower age and/or primary mass Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 7 / 30

The Moon Shadow and the antip/p ratio ARGO-YBJ coll., PRD 84 (2011) 022003 Number of standard deviations ARGO-YBJ coll., PRD 85 (2012) 022003 Size of the deficit angular resolution Position pointing accuracy West displacement Energy calibration (Geomagnetic bending 1.57 / E (TeV) ) Antiprotons should give a shadow on the opposite side Upper limit Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 8 / 30

The Sun Shadow and the Inetplanetary Magnetic Field ARGO-YBJ coll., APJ 729 (2011) 113 Sun shadow data are useful for an indirect measurement of the IMF caried by the solar wind near the Earth. In agreement with the OMNI spacecraft data repository (NASA). Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 9 / 30

Large scale anisotropy (LSA) 0.9 TeV 1.5 TeV 2.4 TeV 3.6 TeV 7.2 TeV 12.5 TeV First measurement with an EAS array in an energy region so far investigated only by underground muon detectors 23.6 TeV Structures appear to dissolve to smaller angular scale at high energy. Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 10 / 30

LSA First harmonic amplitude and phase Measurement covering either the rise and the fall of the signal Uniform phase decrease Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 11 / 30

The Compton-Getting effect (in solar time) Expected CR anisotropy due to Earth s orbital motion around the Sun 2008 2009 Nhit 500 8 TeV to avoid solar effects on low energy CRs Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 12 / 30

Medium Scale Anisotropy (MSA) Map smoothed with the detector PSF for CRs Proton median energy 1 TeV Cosmic rays excess 0.06% Cygnus region 3 4 2 Crab 0.1% Galactic Plane Δt = 3 hr = 45 New-structures 1 Sub-structures Harder spectra than isotropic CR Equatorial coordinates: projection of the earth longitude and latitude No evidence for time dependence Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 13 / 30

Light-component spectrum of CRs Measurement of the light-component (p+he) spectrum of primary CRs in the energy region (5 250) TeV via a Bayesian unfolding procedure. ARGO-YBJ coll., Phys. Rev D 85 (2012) 092005 The contribution of heavier nuclei to the trigger is a few % ARGO data agree with CREAM results For the first time direct and ground-based measurements overlap for a wide energy range thus making possible the cross-calibration of the experiments. Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 14 / 30

Light-component spectrum of CRs Extract the primary energy spectrum starting from the measured particle multiplicity spectrum at ground P( M ) = N( M ) N tot Choose an initial value for P(E) P 0 (E) Use the Bayes theorem P(E M) = P(M E)P(E) P(M) P(M E) eval. from Monte Carlo events P(E) = N(E) N tot N(E) = N(M)P(E M) Iterate this procedure until variations on P(E) are neglegible Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 15 / 30

Light-component spectrum of CRs ARGO-YBJ coll., Phys. Rev D 85 (2012) 092005 ARGO-YBJ: γ (p+he) = 2.61 ± 0.04 Two new approaches in order to extend the energy region up to few PeV, by using: - The RPC analog readout -Hybrid approach using the atmospheric Cerenkov detectors installed at YangBaJing Both analysis are now in progress. Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 16 / 30

Measurement of p-air cross section Use the shower frequency vs (secθ -1) I( θ ) = I(0) e h o Λ ( secθ 1) h 0 for fixed energy and shower age. The lenght Λ is connected to the p interaction lenght by the ralation Λ = k λ int where k is determined by simulations and depends on: θ ARGO-YBJ Coll., Phys. Rev D 80, 092004 (2009) hadronic interactions detector features and location (atm. depth) actual set of experimental observables analysis cuts energy,... Then: σ p-air (mb) = 2.4 10 4 / λ int (g/cm 2 ) Constrain X DM = X det X max Select deep showers (large X max, i.e. small X DM ) to access exponential tail and reduce shower fluctuations cut on Rs 70 (strip concentration parameter) Exploit detector features (spacetime pattern) and location (depth). Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 17 / 30

The total p-p cross section ARGO-YBJ Coll. AUGER 2012 Phys. Rev D 80, 092004 (2009) ARGO-YBJ 2009 φ LHC 2011 φ Extending the energy range above 100 TeV with the analog readout Energy interval scarcely explored by p-p (and pbar-p) accelerator experiments The log 2 (s) asymptotic behaviour is favoured Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 18 / 30

The total p-p cross section ARGO-YBJ data in the Review of Particle Properties 2012 Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 19 / 30

The RPC analog readout Readout of the charge signal on 1.39 1.23 m 2 big pads (two / RPC) Different gain scales used to cover a wide range in particle density: max strip max analog 10 G. Di Sciascio Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 20 / 30 ρ ρ 20particles / m 4 2 particles / m Intrinsic limit at about one particle per cm 2, due to space charge effects of the streamer discharge: the so called dead zone. Calibration procedure Correction for Pressure and Temperature effects 2

The RPC analog readout Real event Strips (digital) 40000 BigPads (analog) 3500 3000 2500 2000 1500 1000 500 Extend the covered energy range Access the LDF down to the shower core Sensitivity to primary mass Info/checks on Hadronic Interactions Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 21 / 30

The truncated size as energy estimator Np 8 (number of particles within 8m from the core): well correlated with primary energy not biased by finite detector size effects weakly affected by shower fluctuations QGSJET-II based MC samples Vertical error bars: RMS(Energy) Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 22 / 30

Lateral Distribution Function With the analog data we can study the LDF without saturation near the core Tests are in progress in order to have: Better resolution on X dm and then lower systematics on the cross section measurement Better energy determination / shower reconstruction Sensitivity to the hadronic interaction model Sensitivity to shower age (primary mass) Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 23 / 30

Lateral Distribution Function Several function used to fit the LDF shape in the range 0.5 m < R < 15.5 m from the core. A NKG-like function found to reasonably reproduce the LDF shape in the above distance interval ρ NKG = A r r M s' 2 1 + r r M s' 4.5 r M = r M (YBJ) /4 = 30.3m: fixed Normalization factor A and s : free parameters Remarks: s : lateral shower age, describing the slope of the radial distribution of charged particles In principle, s differs from the longitudinal age s (reflecting the longitudinal shower development) In practice s and s are highly correlated... Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 24 / 30

Shower age vs truncated size The s parameter is correlated to the X max position, whatever the primary is. Possibility to get hints on (a) shower age and (b) primary mass Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 25 / 30

Shower age vs truncated size The ARGO-YBJ data lie between the expectations from extreme pure compositions (p and Fe) A trend towards a heavier composition for increasing energy can be envisaged. Cross checks are in progress. Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 26 / 30

Multicore events with analog data Preliminary results show the feasibility of these studies. Hadronic physics, p t distributions,.. Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 27

Horizontal Air Showers - High energy muon induced events - Energy spectra -. Theta Rec 82.65 Theta Rec 85.34 θ>70 1248 g/cm 2 θ>80 2458 g/cm 2 Theta Rec 88.42 Theta Rec 83.6 Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 28 / 30

Horizontal Air Showers 30 km The HAS flux is anticorreelated with nearby mountain profile The spectral index of the multiplicity distribution shows a sharp transition at large zenith angle (muon signature). Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 29 / 30

20 years Summary and Outlook (not including gammas) First R&D in the 90s. Proposal in 1996. Test carpet at YBJ in 1998. Full detector in stable data taking since Nov. 2007 (first data in 2006) Trigger Rate ~3.5 khz - Dead time 4% 220 GB/day transferred to IHEP (China) / CNAF (Italy) data centers End of data taking: February 2013 Detailed analysis of the Moon shadowing effect (pointing, energy scale) Measurement of CR light component energy spectrum below 100TeV Study of the CR anisotropy at different angular scales Measurement of the CR antip/p flux ratio in TeV energy range Monitoring of the IMF by the Sun shadow displacement Measurement of the p-air and p-p cross sections up to 100TeV Geomagnetic effects on particle distributions at ground Extending the energy range to the PeV region by the RPC charge readout LDF near the shower core and shower age estimation Time structure of the shower front Hadronic interactions and primary mass sensitivity...several new analysis in progress: final results within the next two years Air Shower Detection at High Altitude - 2013 I. De Mitri: Cosmic Ray Physics with ARGO-YBJ 30 / 30