Lewis-Acid Catalysed One Pot Synthesis of Substituted Xanthenes. Supporting Information

Similar documents
Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Supplementary information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Supporting Information

A Sumanene-based Aryne, Sumanyne

Supporting Information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

Derivatives. Republic. Supporting Information. Index. General Considerations. Experimental Procedures and Spectroscopic Data

Zn-Catalyzed Diastereo- and Enantioselective Cascade. Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles:

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Supporting Information:

Supporting Information

Supporting Information

SYNTHESIS OF A 3-THIOMANNOSIDE

SUPPORTING INFORMATION

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Supporting Information

Supporting information. Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric C(sp 3 )-H activation/cyclisation.

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Supporting Information

Supporting Information

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov

Supporting Information

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

New Efficient Delayed-Action Catalysts Based on Guanidine Templates for Polyurethane Synthesis

hydroxyanthraquinones related to proisocrinins

Supplementary Table S1: Response evaluation of FDA- approved drugs

An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters

Supporting Information for

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Supporting Information

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supporting Information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Halogen halogen interactions in diiodo-xylenes

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

A Closer Look at the Bromine-Lithium Exchange with

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

A new route for the synthesis of highly substituted 4- aminoquinoline drug like molecules via aza hetero-diels-alder reaction

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Supporting Information

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes

Supporting Information. Efficient N-arylation and N-alkenylation of the five. DNA/RNA nucleobases

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Supporting Information

N-Hydroxyphthalimide: a new photoredox catalyst for [4+1] radical cyclization of N-methylanilines with isocyanides

Supporting Information

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang*

SUPPLEMENTARY INFORMATION

Supplementary Material

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Supporting Information

Supporting Information

Supplemental data. Supplemental Figure 1: Alignment of potential ERRE1 and 2 in human, mouse and rat. PEPCK promoter.

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1

SUPPORTING INFORMATION

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Supporting Information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

An insulin-sensing sugar-based fluorescent hydrogel

Diastereoselectivity in the Staudinger reaction of. pentafluorosulfanylaldimines and ketimines

Synthesis and Use of QCy7-derived Modular Probes for Detection and. Imaging of Biologically Relevant Analytes. Supplementary Methods

Efficient Mono- and Bis-Functionalization of 3,6-Dichloropyridazine using (tmp) 2 Zn 2MgCl 2 2LiCl ** Stefan H. Wunderlich and Paul Knochel*

Supporting Information for: Using a Lipase as a High Throughput Screening Method for Measuring the Enantiomeric. Excess of Allylic Acetates

Rational design of a ratiometric fluorescent probe with a large emission shift for the facile detection of Hg 2+

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

Supporting Information

Electronic Supplementary Information

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3

Supporting Information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Biobased solvents for the Baylis-Hillman reaction of HMF

Supporting Information

Structural Elucidation of Sumanene and Generation of its Benzylic Anions

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Transcription:

Lewis-Acid Catalysed ne Pot Synthesis of Substituted Xanthenes Esther Böß, Tim Hillringhaus, Jacqueline Nitsch and Martin Klussmann Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany. Email:klusi@mpi-muelheim.mpg.de Supporting Information Experimental details p. 2 Characterisation of products p. 3 NMR spectra of products p. 7 IR spectra of products p. 26 HPLC analysis p. 33 X-ray analysis p. 46 ptimisation studies p. 47 1

Experimental details Unless otherwise indicated, all reagents and solvents were purchased from commercial distributors and used as received. Solvents (toluene, hexanes, ethyl acetate, dichloromethane, methanol) used for column chromatography were of technical grade and used after distillation in a rotary evaporator. TLC was used to check the reactions for full conversion and was performed on Macherey-Nagel Polygram Sil G/UV 254 thin layer plates. TLC spots were visualized by UV-light irradiation. Flash column chromatography was carried out using Merck Silica Gel 60 (40-63 μm). Yields refer to pure isolated compounds. 1 H and 13 C NMR spectra were measured with Bruker AV 500 and AV 600 spectrometers. All chemical shifts are given in ppm downfield relative to TMS and were referenced to the solvent residual peaks. [7] 1 H NMR chemical shifts are designated using the following abbreviations as well as their combinations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal. High resolution mass spectra were recorded with a Bruker APEX III FTICR-MS or a Finnigan SSQ 7000 quadrupole MS or a Finnigan MAT 95 double focusing sector field MS instrument. Infrared spectra were measured with a PerkinElmer Spectrum 100 FT-IR spectrometer on a diamond ATR unit. High performance liquid chromatography (HPLC) was performed on a Shimadzu LC-20A HPLC-System. Microwave reactions were carried out in a CEM Discover Microwave with up to 300W. The reaction temperature (IR surface flask, air cooling upon heating), pressure (non-invasive pressure transducer) and microwave power were remotely controlled. General Procedure A oil bath heating Representative procedure: 5-Methoxysalicylaldehyde 1 (138.32µL, 1.1 mmol) and 2-cyclohexene-1-one 2 (96.81µL, 1.0 mmol) was quickly added to a suspension of scandium(iii) triflate (24.61 mg, 0.05 mmol) in chlorobenzene (4.0 ml). The reaction mixture was refluxed for 24 hours and allowed to cool to room temperature. DCM (20 ml) and saturated aqueous NaHC 3 (20 ml) were added to the reaction mixture and the two layers separated. The aqueous phase was extracted with DCM (3 20 ml) and the combined organic layers were dried over MgS 4, filtered and solvent was removed by rotary evaporator. The crude product 3a was purified with flash chromatography using mixtures of pentane and ethyl acetate. General Procedure B microwave heating Representative procedure: 5-Methoxysalicylaldehyde 1 (138.32µL, 1.1 mmol) and 2- cyclohexene-1-one 2 (96.81µL, 1.0 mmol) was quickly added to a suspension of scandium(iii) triflate (24.61 mg, 0.05 mmol) in chlorobenzene (4.0 ml). The reaction mixture was heated in a microwave tube at 180 C for 30 minutes. After compressed air cooling to room temperature, DCM (20 ml) and saturated aqueous NaHC 3 (20 ml) were added to the reaction mixture and the two layers separated. The aqueous phase was extracted with DCM (3 20 ml) and the combined organic layers were dried over MgS 4, filtered and solvent was removed by rotary evaporator. The crude product 3a was purified with flash chromatography using mixtures of pentane and ethyl acetate. 2

Characterisation of products 2-methoxy-9H-xanthene 3a Synthesized according to general procedure A. Yield: 134 mg, 63%; Synthesized according to general procedure B. Yield: 174 mg, 82%; Yellowish solid, 1 H NMR (500 MHz, DMS): δ 7.25-7.18 (m, 2H), 7.06-6.98 (m, 3H), 6.83-6.77 (m, 2H), 4.01 (s, 2H), 3.73 (s, 3H); 13 C NMR (125 MHz, DMS): δ 155.0, 151.6, 145.2, 129.1, 127.7, 122.9, 121.4, 120.1, 116.8, 116.0, 113.5, 113.3, 55.4, 27.3; HRMS-(EI) (m/z): M + calcd for C 14 H 12 2, 212.083728; found 212.083561. 9H-xanthene 3b Synthesized according to general procedure A. Yield: 91 mg, 50%; Synthesized according to general procedure B. Yield: 102 mg, 56%; White solid, 1 H NMR (500 MHz, DMS): δ 7.27-7.20 (m, 4H), 7.09-7.04 (m, 4H), 4.04 (s, 2H); 13 C NMR (125 MHz, DMS):151.31, 129.17, 127.75, 123.23, 120.61, 116.04, 26.90; HRMS-(EI) (m/z): M + calcd for C 13 H 10 1, 182.073166; found 182.072975. 4-methoxy-9H-xanthene 3c Synthesized according to general procedure A. Yield: 115 mg, 54%; Synthesized according to general procedure B. Yield: 132 mg, 62%;Yellowish oil, 1 H NMR (500 MHz, DMS): δ 7.26-7.19 (m, 2H), 7.10-7.04 (m, 2H), 7.02-6.97 (m, 1H), 6.94-6.90 (m, 1H), 6.83-6.79 (m, 1H), 4.02 (s, 2H), 3.83 (s, 3H); 13 C NMR (125 MHz, DMS): 151.2, 147.6, 140.6, 129.1, 127.7, 123.3, 122.9, 121.3, 120.5, 120.4, 116.2, 110.5, 55.6, 27.0; HRMS-(EI) (m/z): M + calcd for C 14 H 12 2, 212.083730; found 212.083684. 9H-xanthen-2-ol 3d H Synthesized according to general procedure A. Yield: 59 mg, 30%; Synthesized according to general procedure B. Yield: 109 mg, 55%;White solid, 1 H NMR (500 MHz, DMS): δ 9.18 (s, 1H), 7.25-7.17 (m, 2H), 7.06-6.99 (m, 2H), 6.90-6.89 (m, 1H), 6.64-6.59 (m, 2H), 3.96 (s, 2H); 13 C NMR (125 MHz, DMS): 153.03, 151.74, 144.08, 129.10, 127.61, 122.74, 121.22, 120.24, 116.68, 115.94, 114.64, 114.48, 27.30; HRMS-(EI) (m/z): M + calcd for C 13 H 10 2, 198.068079; found 198.067949 3

2-methyl-9H-xanthene 3e Synthesized according to general procedure A. Yield: 134 mg, 63%; Synthesized according to general procedure B. Yield: 187 mg, 88%;White solid, 1 H NMR (500 MHz, DMS): δ 7.26-7.19 (m, 2H), 7.07-6.99 (m, 4H), 6.97-6.93 (m, 1H), 4,00 (s, 2H), 2.26 (s, 3H); 13 C NMR (125 MHz, DMS): δ 151.4, 149.2, 132.1, 129.4, 129.2, 128.2, 127.7, 123.1, 120.5, 120.2, 116.0, 115.8, 26.9, 20.2 ; HRMS-(EI) (m/z): M + calcd for C 14 H 12 1, 196.088811; found 196.088659. 2-chloro-9H-xanthene 3f Cl Synthesized according to general procedure A. Yield: 39 mg, 18%; Synthesized according to general procedure B. Yield: 65 mg, 30%; White solid, 1 H NMR (500 MHz, DMS): δ 7.34-7.32 (m, 1H), 7.27-7.21 (m, 3H), 7.09-7.04 (m, 3H), 4.04 (s, 2H); 13 C NMR (125 MHz, DMS): δ 150.9, 150.1, 129.1, 128.7, 127.9, 127.6, 126.7, 123.5, 122.8, 119.9, 117.8, 116.1, 26.7; HRMS-(EI) (m/z): M + calcd for C 13 H 9 1 Cl 1, 216.034193; found 216.034201. 1,3-dimethyl-9H-xanthene 3g Synthesized according to general procedure A. Yield: 126 mg, 60%; Synthesized according to general procedure B. (at 200 C) Yield: 118 mg, 56%;White solid, 1 H NMR (500 MHz, DMS): δ 7.26-7.17 (m, 2H), 7.05-6.98 (m, 2H), 6.73 (s, 1H), 6.68 (s, 1H), 3.88 (s, 2H), 2.22 (s, 6H); 13 C NMR (125 MHz, DMS): 150.95, 150.80, 136.88, 136.45, 129.49, 127.71, 125.04, 122.93, 120.06, 115.83, 115.81, 113.94, 24.53, 20.56, 18.64; HRMS-(EI) (m/z): M + calcd for C 15 H 14 1, 210.104467; found 210.104383. 7-methoxy-1,3-dimethyl-9H-xanthene 3h Synthesized according to general procedure A. Yield: 149 mg, 62%; Synthesized according to general procedure B. (at 200 C) Yield: 166 mg, 69%;White solid, 1 H NMR (500 MHz, DMS): 6.96-6.92 (m, 1H), 6.84-6.81 (m, 1H), 6.79-6.75 (m, 1H), 6.72 (s, 1H), 6.66 (s, 1H), 3.88 (s, 2H), 3.72 (s, 3H), 2.22 (s, 6H); 13 C NMR (125 MHz, DMS): 154.78, 151.07, 144.87, 136.81, 136.39, 124.79, 120.80, 116.59, 115.36, 113.87, 113.59, 55.36, 24.99, 20.58, 18.70; HRMS-(EI) (m/z): M + calcd for C 16 H 16 2, 240.115026; found 240.115225. 4

12H-benzo[a]xanthene 3i Synthesized according to general procedure A. Yield: 207 mg, 89%; Synthesized according to general procedure B. Yield: 221 mg, 95%;White solid, 1 H NMR (500 MHz, DMS): δ 7.97-7.93 (m, 2H), 7.88-7.85 (m, 1H), 7.66-7.61 (m, 1H), 7.52-7.48 (m, 1H),7.43-7.39 (m, 1H), 7.35-725 (m, 2H), 7.17-7.11 (m, 1H), 4.41 (s, 2H); 13 C NMR (125 MHz, DMS): 150.33, 147.95, 131.57, 129.81, 129.68, 128.35, 128.33, 127.87, 126.90, 124.34, 123.42, 122.49, 119.49, 117.51, 116.06, 111.68, 23.87; HRMS-(EI) (m/z): M + calcd for C 17 H 12 1, 232.088813; found 232.088790. 9-methy-7H-benzo[c]xanthene 3j Synthesized according to general procedure A. Yield: 207 mg, 84%; Synthesized according to general procedure B. (at 200 C) Yield: 190 mg, 77%;White solid, 1 H NMR (500 MHz, DMS) δ 8.30-8.26 (m, 1H), 7.92-7.88 (m, 1H), 7.62-7.51 (m, 3H), 7.36-7.30 (m, 1H), 7.17-7.12 (m, 1H), 7.10-7.04 (m, 2H), 4.13 (s, 2H), 2.27 (s, 3H); 13 C NMR (125 MHz, DMS): 149.00, 145.64, 132.90, 132.43, 129.43, 128.29, 127.67, 127.00, 126.11, 123.40, 122.29, 120.73, 119.91, 116.07, 114.47, 27.13, 20.27; HRMS-(EI) (m/z): M + calcd for C 18 H 14 1, 246.104468; found 246.104376. 14H-dibenzo[a,h]xanthene 3k Synthesized according to general procedure A. Yield: 234 mg, 83%; Synthesized according to general procedure B. Yield: 271 mg, 96%;White solid, 1 H NMR (500 MHz, CDCl 3 ): δ 8.46-8.42 (m, 1H), 7.94-7.78 (m, 4H), 7.64-7.56 (m, 3H), 7.54-7.43 (m, 3H), 7.40-7.37 (m, 1H), 4.51 (s, 2H); 13 C NMR (125 MHz, CDCl 3 ): 148.70, 145.73, 133.53, 132.23, 130.44, 128.57, 128.41, 127.69, 127.14, 126.85, 126.19, 126.08, 124.35, 124.28, 122.75, 122.53, 121.53, 118.14, 113.61, 111.79, 25.46; HRMS-(EI) (m/z): M + calcd for C 21 H 14 1, 282.104462; found 282.104546. 5

2-methoxy-7H-benzo[c]xanthene 3l Synthesized according to general procedure A. Yield: 210 mg, 80%; Synthesized according to general procedure B. Yield: 252 mg, 96%;White solid, 1 H NMR (500 MHz, DMS): δ 7.84-7.80 (m, 1H), 7.62-7.52 (m, 2H), 7.32-7.26 (m, 3H), 7.21-7.15 (m, 2H), 7.13-7.08 (m, 1H), 4.16 (s, 2H), 3.94 (s, 3H); 13 C NMR (125 MHz, DMS): 157.64, 151.18, 144.83, 129.41, 129.22, 128.32, 127.75, 124.47, 124.30, 123.47, 122.32, 120.43, 118.34, 116.41, 115.21, 99.45, 55.23, 27.24; HRMS-(EI) (m/z): M + calcd for C 18 H 14 2, 262.099378; found 262.099142. 13,14-dihydrochromeno[3,2a]xanthene 5 Synthesized according to general procedure A. Yield: 20 mg, 7%; Synthesized according to general procedure B. Yield: 14 mg, 5%;White solid, 1 H NMR (500 MHz, CDCl 3 ): δ 7.22-7.15 (m, 4H), 7.05-6.98 (m, 4H), 6.88 (s, 2H), 3.96 (s, 4H); 13 C NMR (125 MHz, CDCl 3 ): 151.61, 147.12, 129.21, 127.98, 122.92, 118.84, 118.69, 116.40, 115.50, 25.6; HRMS-(EI) (m/z): M + calcd for C 20 H 14 2, 286.099377, found 286.099179. The structure was assigned based on an INEPT-INADEQUATE spectrum which was recorded as described in Weigelt and tting 1 on a Bruker AV600 spectrometer equipped with a 5-mm H/C/N triple-resonance cryogenically-cooled probehead, with 16 scans per increment, TD(F2) = 1k, TD(F1) = 2k, and 2 s of relaxation delay for acquisition. (Sample amount was 12mg of 5 in CDCl3). 1 J. Weigelt and G. tting, J. Magn. Reson. A, 1995, 113, 128. 6

NMR spectra of products 2-methoxy-9H-xanthene 3a 7.24 7.23 7.21 7.05 7.04 7.02 7.01 6.99 6.82 6.82 6.80 6.79 4.01 3.73 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 2.06 3.00 2.03 Figure 1: 1 H NMR in DMS 2.08 3.06 bsr-bc-087-01 154.97 151.52 145.18 129.08 127.66 122.91 121.34 120.08 116.75 115.93 113.47 113.31 55.35 40.08 39.99 39.91 39.82 39.74 39.65 39.48 39.32 39.15 38.98 27.31 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 2: 13 C NMR in DMS 7

129.08 127.67 122.91 116.75 115.93 113.47 113.31 55.36 40.07 39.91 39.74 39.57 39.41 27.31 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 3: dept135 NMR in DMS 9H-xanthene 3b 7.26 7.24 7.22 7.21 7.08 7.07 7.06 7.06 7.06 7.05 4.04 3.34 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 4.09 4.00 Figure 4: 1 H NMR in DMS 2.07 8

151.28 129.14 127.72 123.20 120.58 116.01 40.08 39.99 39.91 39.82 39.74 39.65 39.58 39.49 39.41 39.32 39.15 38.99 26.87 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 5: 13 C NMR in DMS 129.14 127.72 123.20 120.58 116.01 40.08 39.91 39.74 39.58 39.41 26.87 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 6: dept135 NMR in DMS 9

4-methoxy-9H-xanthene 3c 7.25 7.24 7.22 7.09 7.08 7.06 6.99 6.98 6.93 6.92 6.81 6.80 4.02 3.83 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 2.04 2.00 1.02 1.01 1.02 Figure 7: 1 H NMR in DMS 2.06 3.01 bsr-bc-102-01 151.19 147.60 140.61 129.05 127.69 123.24 122.87 121.26 120.50 120.36 116.16 110.44 55.58 40.07 39.98 39.91 39.82 39.74 39.65 39.57 39.48 39.31 39.15 38.98 26.93 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 8: 13 C NMR in DMS 10

bsr-bc-102-01 129.05 127.69 123.24 122.87 120.36 116.16 110.44 55.57 40.07 39.90 39.74 39.57 39.41 26.93 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 9: dept135 NMR in DMS 9H-xanthen-2-ol 3d 9.18 7.23 7.21 7.19 7.18 7.04 7.02 7.02 7.01 7.01 7.00 6.89 6.87 6.62 6.60 6.60 3.96 3.34 H 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 0.89 Figure 10: 1 H NMR in DMS 2.07 2.02 1.02 2.00 2.01 11

bsr-bc-109-01 152.98 151.69 144.03 129.05 127.56 122.69 121.16 120.18 116.63 115.89 114.59 114.43 40.06 39.97 39.89 39.80 39.72 39.63 39.56 39.47 39.30 39.13 38.97 27.24 H 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 11: 13 C NMR in DMS bsr-bc-109-01 129.06 127.57 122.70 116.62 115.88 114.57 114.41 40.07 39.90 39.73 39.57 39.40 27.23 H 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm Figure 12: dept135 NMR in DMS 12

2-methyl-9H-xanthene 3e 7.25 7.24 7.21 7.20 7.06 7.05 7.03 7.01 6.96 6.94 4.00 3.33 2.26 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 2.03 4.00 0.97 Figure 13: 1 H NMR in DMS 2.06 3.03 bsr-bc-101-01 151.39 149.13 132.03 129.32 129.17 128.18 127.67 123.02 120.50 120.15 115.97 115.75 40.08 39.98 39.91 39.82 39.74 39.65 39.58 39.48 39.32 39.15 38.98 26.86 20.20 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 14: 13 C NMR in DMS 13

bsr-bc-101-01 129.31 129.16 128.18 127.67 123.02 115.97 115.75 40.08 39.91 39.74 39.57 39.40 26.87 20.20 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 15: dept135 NMR in DMS 2-chloro-9H-xanthene 3f 7.33 7.33 7.26 7.26 7.24 7.23 7.21 7.09 7.09 7.07 7.06 7.05 4.04 3.35 Cl 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 1.00 3.09 3.09 Figure 16: 1 H NMR in DMS 2.02 14

bsr-bc-099-01 150.90 150.07 129.12 128.62 127.89 127.54 126.65 123.50 122.81 119.82 117.79 116.05 40.08 39.99 39.91 39.82 39.75 39.66 39.58 39.49 39.41 39.32 39.15 38.99 26.69 Cl 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 17: 13 C NMR in DMS 129.13 128.64 127.91 127.55 123.52 117.81 116.05 Cl 39.91 39.74 39.58 39.41 26.69 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 18: dept135 NMR in DMS 15

1, 3-dimethyl-9H-xanthene 3g 7.24 7.19 7.03 7.03 7.00 6.99 6.73 6.68 3.88 3.35 2.22 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 2.08 2.00 1.91 Figure 19: 1 H NMR in DMS 150.91 150.77 136.84 136.41 129.45 127.67 125.00 122.89 120.02 2.05 6.19 115.79 115.77 113.91 40.08 39.98 39.91 39.82 39.74 39.65 39.57 39.48 39.32 39.15 38.98 24.49 20.52 18.60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 20: 13 C NMR in DMS 16

129.46 127.67 125.00 122.89 115.80 113.91 39.91 39.74 39.57 24.49 20.52 18.60 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 21: dept135 NMR in DMS 7-methoxy-1, 3-dimethyl-9H-xanthene 3h 6.95 6.93 6.83 6.83 6.78 6.78 6.77 6.72 6.66 3.88 3.72 3.33 2.22 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 1.01 1.02 1.05 1.01 0.99 Figure 22: 1 H NMR in DMS 2.02 3.16 6.00 17

154.74 151.02 144.83 136.76 136.35 125.47 124.74 120.75 116.67 116.54 115.32 114.71 114.04 113.83 113.54 73.18 55.44 55.31 40.07 39.98 39.91 39.81 39.74 39.65 39.57 39.48 39.40 39.31 39.15 38.98 24.95 20.77 20.54 18.66 18.22 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 23: 13 C NMR in DMS 124.75 116.55 113.83 113.54 113.53 55.32 39.91 39.74 39.57 39.40 24.95 20.54 18.66 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 24: dept135 NMR in DMS 18

12H-benzo[a]xanthene 3i 7.63 7.62 7.62 7.51 7.51 7.50 7.48 7.42 7.42 7.40 7.33 7.31 7.28 7.27 7.15 7.15 7.15 7.14 7.13 7.13 7.12 4.41 3.33 3.30 2.52 2.52 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 2.04 1.02 1.00 1.01 1.02 2.06 2.00 Figure 25: 1 H NMR in DMS 2.03 bsr-bc-104-01-1 150.30 147.93 131.54 129.78 129.65 129.01 128.32 128.30 128.05 127.83 127.50 127.07 126.88 126.73 126.00 124.48 124.31 123.39 123.16 122.46 119.46 117.48 116.03 111.65 111.17 40.08 39.99 39.92 39.83 39.75 39.66 39.58 39.49 39.33 39.16 38.99 27.38 23.84 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 26: 13 C NMR in DMS 19

bsr-bc-104-01-1 131.54 129.78 129.65 129.01 128.33 128.30 127.83 127.50 127.07 126.88 124.48 124.32 123.39 122.46 119.46 117.48 116.03 111.65 111.17 40.08 39.91 39.75 39.58 39.41 27.38 23.84 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 27: dept135 NMR in DMS 9-methy-7H-benzo[c]xanthene 3j 8.29 8.27 7.91 7.89 7.62 7.60 7.59 7.58 7.57 7.57 7.55 7.55 7.53 7.35 7.33 7.16 7.14 7.09 7.09 7.07 4.15 3.34 2.28 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 1.00 1.02 3.15 1.02 1.02 2.07 Figure 28: 1 H NMR in DMS 2.08 3.07 20

148.92 145.61 132.87 132.39 129.39 128.26 127.63 126.97 126.08 123.37 122.26 120.70 119.88 116.04 114.44 40.08 39.99 39.92 39.83 39.75 39.66 39.58 39.49 39.32 39.16 38.99 27.10 20.24 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 29: 13 C NMR in DMS 129.39 128.26 128.06 127.63 127.29 126.97 126.26 126.08 122.26 120.70 116.03 40.08 39.91 39.74 39.58 39.41 28.15 27.10 26.77 26.11 20.24 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 30: dept135 NMR in DMS 21

14H-dibenzo[a,h]xanthene 3k 7.83 7.81 7.79 7.63 7.63 7.61 7.61 7.61 7.60 7.60 7.59 7.58 7.58 7.58 7.57 7.57 7.56 7.53 7.53 7.52 7.50 7.50 7.49 7.49 7.48 7.46 7.46 7.44 7.39 7.38 7.26 4.51 0.09 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 0.96 4.06 3.02 3.00 1.00 2.02 Figure 31: 1 H NMR in CDCl 3 148.60 145.62 133.43 132.13 130.33 128.55 128.47 128.30 127.59 127.04 126.74 126.08 125.98 124.43 124.25 124.18 122.65 122.43 121.42 118.04 113.50 111.68 77.31 77.06 76.80 39.76 25.36 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 32: 13 C NMR in CDCl 3 22

128.48 128.30 128.12 127.59 127.04 126.74 126.09 125.98 124.25 122.65 122.43 121.43 118.04 25.36 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 33: dept135 NMR in CDCl 3 2-methoxy-7H-benzo[c]xanthene 3l 7.83 7.81 7.60 7.60 7.55 7.53 7.30 7.28 7.20 7.19 7.18 7.17 7.16 7.11 4.16 3.94 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 1.00 2.01 3.04 2.00 1.11 Figure 34: 1 H NMR in DMS 2.00 3.01 23

157.61 151.14 144.80 129.38 129.19 128.29 127.72 124.44 124.27 123.44 122.29 120.39 118.30 116.38 115.18 99.42 55.20 55.08 54.90 40.08 39.99 39.91 39.82 39.74 39.65 39.58 39.49 39.32 39.15 38.99 30.66 27.21 26.47 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 35: 13 C NMR in DMS 129.38 129.19 127.72 124.27 123.44 123.13 122.29 118.30 116.38 115.18 99.42 55.20 40.08 39.91 39.74 39.58 39.40 27.21 26.47 25.89 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 36: dept135 NMR in DMS 24

13,14-dihydrochromeno[3,2a]xanthene 5 7.26 7.21 7.20 7.18 7.04 7.02 7.02 7.01 7.00 6.89 4.00 1.56 0.08 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 4.03 4.00 2.01 4.01 Figure 37: 1 H NMR in CDCl 3 151.53 147.04 129.13 128.95 127.90 122.83 118.75 118.60 116.32 115.87 115.42 77.33 77.08 76.82 29.77 29.43 27.79 25.57 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 38: 13 C NMR in CDCl 3 25

129.13 127.90 122.84 118.75 118.60 116.31 115.86 115.42 77.28 29.77 27.79 25.57 25.39 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Figure 39: dept135 NMR in CDCl 3 IR spectra of products 26

27

H 28

Cl 29

30

31

32

HPLC analysis 150 mm Chiralpak IC-3 4.6 mm i. D. n-heptan/2-propanol 95:5, 1.0mL/min, 4.9 MPa, 305K 33

34

35

36

37

38

39

40

41

42

43

44

45

X-ray analysis Single crystals of 3h and 3j were recrystallised from Et 2 / pentane, mounted in inert oil and transferred to the cold gas stream of the diffractometer. C16 C15 2 C10 C9 C8 C7 C6 C5 C11 C12 C13 1 C1 b Crystal data for 3h: C 16 H 16 2, M = 240.29, triclinic, a = 7.3745(19) Å, b = 8.763(3) Å, c = 10.395(2) Å, α = 99.79(2), β = 110.27(2), γ = 98.47(3), V = 605.3(3) Å 3, T = 100 K, space group P 1, Z = 2, μ(mok α ) = 0.086 mm -1, 11977 reflections measured, 4896 independent reflections (R int = 0.0273). The final R 1 values were 0.046 (I > 2σ(I)). The final wr(f 2 ) values were 0.134 (all data). The goodness of fit on F 2 was 1.043. CCDC reference number: 797429. C2 C4 C3 C14 C11 C12 C13 C14 C15 1 C16 C17 C18 C2 C1 C10 C9 C6 C5 C4 C3 C8 C7 a Crystal data for 3j: C 18 H 14, M = 246.29, monoclinic, a = 4.7615(5) Å, b = 11.9406(12) Å, c = 21.373(2) Å, β = 93.296(2), V = 1213.1(2) Å 3, T = 100 K, space group P2 1 /c, Z = 4, μ(mo-kα) = 0.082 mm -1, 69156 reflections measured, 5495 independent reflections (R int = 0.0768). The final R 1 values were 0.045 (I > 2σ(I)). The final wr(f 2 ) values were 0.136 (all data). The goodness of fit on F 2 was 1.037. CCDC reference number: 797428. 46

ptimization studies Given are isolated yields. All reactions were performed by refluxing in an oil bath for 24 hours unless noted otherwise. Screening of catalysts A H + B Catalyst Chlorobenzene Run Catalyst loading Catalyst Solvent Equivalents A : B Yield % 1 20 mol % - chlorobenzene 1 : 1 0 2 20 mol % ZnCl 2 chlorobenzene 1 : 1 50 3 20 mol % Zn(Tf) 2 chlorobenzene 1 : 1 23 4 20 mol % Sc(Tf) 3 chlorobenzene 1 : 1 55 5 20 mol % Yb(Tf) 3 chlorobenzene 1 : 1 40 6 20 mol % Y(Tf) 3 chlorobenzene 1 : 1 22 7 20 mol % Er(Tf) 3 chlorobenzene 1 : 1 42 8 20 mol % Sm(Tf) 3 chlorobenzene 1 : 1 23 9 20 mol % Cu(Tf) 2 chlorobenzene 1 : 1 23 10 20 mol % CF 3 S 3 H chlorobenzene 1 : 1 9 ptimization of catalyst loading A H + B Sc(Tf) 3 Chlorobenzene Run Catalyst loading Solvent Equivalents A : B Yield % 1 5 mol % chlorobenzene 1 : 1 59 2 10 mol % chlorobenzene 1 : 1 47 3 15 mol % chlorobenzene 1 : 1 55 4 3 mol % chlorobenzene 1 : 1 48 5 20 mol % chlorobenzene 1 : 1 55 47

solvent screening A H + B Sc(Tf) 3 Solvent Run Catalyst loading Solvent Equivalents A : B Yield % 1 5 mol % chlorobenzene 1 : 1 59 2 5 mol % toluene 1 : 1 40 3 5 mol % iso-hexane 1 : 1 7 4 5 mol % dichloroethane 1 : 1 9 Equivalents Screening Run Catalyst loading Solvent Equivalents Yield % A : B 1 5 mol % chlorobenzene 1.5 : 1 61 2 5 mol % chlorobenzene 1 : 1.5 54 3 5 mol % chlorobenzene 1.25 : 1 59 4 5 mol % chlorobenzene 1.10 : 1 63 ptimal conditions for the Xanthene derivative synthesis are 5 mol % catalyst loading using chlorobenzene as solvent and a slight excess of the aldehyde. Reaction with 1,4-cyclohexanedione H + Sc(Tf) 3 H P2 A B P1 Equivalents A : B Catalyst loading Solvent Yield % GP A (oil bath) 1.1 :1 5 mol % chlorobenzene P1 (7) P2 (25) Yield % GP B (microwave) P1 (5) P2 (51) 48

Effect of molecular sieves A H + B Sc(Tf) 3 Chlorobenzene Molecular sieve 3 A * Using reactions conditions of general procedure A, plus addition of molecular sieves (3A, 0.5 g). Isolated yield after 24 h was 6 %. 49