EE40 Lec 20. MOS Circuits

Similar documents
Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

THE INVERTER. Inverter

DC and Transient Responses (i.e. delay) (some comments on power too!)

Digital Integrated Circuits

CMOS Inverter (static view)

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

EE5311- Digital IC Design

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Lecture 5: DC & Transient Response

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

EEE 421 VLSI Circuits

Lecture 28 Field-Effect Transistors

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Lecture 12 Circuits numériques (II)

ECE 546 Lecture 10 MOS Transistors

EE5311- Digital IC Design

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

Lecture 18. Common Source Stage

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

ECE 342 Electronic Circuits. 3. MOS Transistors

Lecture 6: DC & Transient Response

EE 434 Lecture 33. Logic Design

Integrated Circuits & Systems

VLSI Design and Simulation

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Chapter 13 Small-Signal Modeling and Linear Amplification

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

The Physical Structure (NMOS)

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

MOS Inverters. Digital Electronics - INEL Prof. Manuel Jiménez. With contributions by: Rafael A. Arce Nazario

4.10 The CMOS Digital Logic Inverter

EE5780 Advanced VLSI CAD

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

ECE 342 Solid State Devices & Circuits 4. CMOS

High-to-Low Propagation Delay t PHL

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 4: DC & Transient Response

L2: Combinational Logic Design (Construction and Boolean Algebra)

MOSFET and CMOS Gate. Copy Right by Wentai Liu

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

MOS Transistor Theory

MOS Transistor Theory

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

L2: Combinational Logic Design (Construction and Boolean Algebra)

VLSI Design I; A. Milenkovic 1

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE141Microelettronica. CMOS Logic

Lecture 5: DC & Transient Response

VLSI Design I; A. Milenkovic 1

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

The CMOS Inverter: A First Glance

9/18/2008 GMU, ECE 680 Physical VLSI Design

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

Topic 4. The CMOS Inverter

VLSI Design I; A. Milenkovic 1

CMOS Technology for Computer Architects

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

Integrated Circuits & Systems

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

EECS 141: FALL 05 MIDTERM 1

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

COMBINATIONAL LOGIC. Combinational Logic

Lecture 4: CMOS review & Dynamic Logic

ECE315 / ECE515 Lecture 11 Date:

Chapter7. FET Biasing

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

MOS SWITCHING CIRCUITS

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Static CMOS Circuits

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

Digital Electronics Part II - Circuits

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

Properties of CMOS Gates Snapshot

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ECE 546 Lecture 11 MOS Amplifiers

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Transcription:

EE40 Lec 20 MOS Circuits eading: Chap. 12 of Hambley Supplement reading on MOS Circuits http://www.inst.eecs.berkeley.edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1

Bias circuits OUTLINE Smallsignal equivalent circuits Examples: Common source amplifier Source follower Common gate amplifier igital Gates CMOS Slide 2

Bias Circuits Use load line to find Quiescent operating point. emember no current flow through the gate. Fixedplus SelfBias CKT 1 V G v in 2 S Slide 3

Steps for MOSFET Circuit Analysis 1) Look at C case to find Q point Use load line technique All capacitors are open circuit, Inductors are short circuit etermine Qpoint, get g m and r d for small signal AC model 2) AC Small signal analysis C source is ac ground (because there is no AC signal variation). All capacitors are approximated as short circuit (unless otherwise specified). Slide 4

Example: Common Source Amplifier v(t) v in C 1 V G C v L o 2 S C Slide 5

Step 1: find Q point v(t) 2 VG V 1 2 V V I GS G S V I ( ) V S S v in C 1 V G V S C 2 S C Not connected for C component v L o Not connected for C component Slide 6

Load line to determine Q Point by graphical method Loadline to determine V GSQ I V G V S GS I V G V S GS I V V S 0 Loadline to determine V S SQ V GSQ I V 0 V S S From load lines, we get I and hence g m and r d Slide 7

Load line to determine Q Point by analytical method Solve V GSQ assume saturation region first I I Q Q V G K(V V S GSQ GSQ V ) t 2 I Q is known, then solve V SQ V I ( ) Q S V SQ Check V SQ value is consistent with saturation region ( i.e. V S > V GSQ V t ) From load lines, we get I and hence g m and r d Slide 8

etermination of g m and r d graphically Example: Q point is known to be V GS 2.5V, V S 6V r or i v r d S (2.9 2.3) ma (14 2) V 1 3 d 20kΩ 0.05 10 Siemens Slide 9

etermination of g m and r d by Analytical Models In Saturation egion i g m 1/ r d K(v i v GS GS i v S V ) t 2 2K(v λ i GS Q V ) t 2 K i Q KP W K 2 L λ channel mod ulation factor In Triode egion i g m 1/ r K[2(v d i v GS i v S GS 2Kv V )v t SQ K[2(v S GSQ v 2 S t ] V ) 2v SQ ] Slide 10

Small Signal Model Inverting v v, v 0 v v v g in s gs in L ( g v ) o m gs L A v in v g v o L m in L v 1 2 i in in 1 2 Slide 11 For output impedance out : 1. Turn off all independent sources. 2. Take away load impedance L v 0, v 0, g v 0 in gs m gs out r d r d

Example: Source Follower 1 C V G C v(t) v in 2 S v L o Slide 12

Step 1: find Q point 2 VG V 1 2 V V I GS G S V I V S S 1 C V G C v(t) v in 2 S v L o Slide 13

Small Signal Model Noninverting, Voltage Gain <1 in high Current gain can be high L v v v v gs in o 1 1 1 d S L o m gs L v v (1 g ) A in gs m L v in 1 r g v vo gm L v 1 g in m L v 1 2 i in in 1 2 For output impedance out : 1. Turn off all independent sources. 2. Take away L 3. Add V x and find i x, 0, r ( ) d s vx 1, ( ) v v v v v x s g gs x i g v v g rd s s 1 out g r out is small s x m x x s m Slide 14 1 1 m d s

Example: Common Gate Amplifier C V G v L o v(t) v in C S V SS Slide 15

Step 1: find Q point V 0 I V GS S SS V V I ( ) V SS S S C V G v L o v(t) v in C S V SS Slide 16

Load line The only difference in all three circuits are the intercepts at the axes. Again from load lines, we get I and hence g m and r d Slide 17

Small Signal Model Noninverting v v A i L gs 1 1 1 L in o m gs L o v m L vin vgs ( g v ) in m gs in v g v v g v 1 i g in 1 in m s s For output impedance out : 1. Turn off all independent sources. 2. Take away L 3. Add V x and find i x s s vx ix gmvgs Slide 18 v g v, but g 1 v 0 gs m gs m gs out

Logic Gates : PullUp and Pullown PMOS or esistor NMOS or esistor Slide 19

Inverter NOT Gate V in V out Ideal Transfer Characteristics V out V/2 V V in Slide 20

NMOS Inverter: esistor PullUp Circuit: VoltageTransfer Characteristic v OUT i i A v IN F v S v OUT v IN 0 V T v IN / 0 v GS v in V T increasing v GS v IN > V T v S A F 0 1 1 0 Slide 21

NMOS NAN Gate Output is low only if both inputs are high A F B Truth Table A B F 0 0 1 0 1 1 1 0 1 1 1 0 Slide 22

NMOS NO Gate Output is low if either input is high F A B Truth Table A B F 0 0 1 0 1 0 1 0 0 1 1 0 Slide 23

isadvantages of NMOS Logic Gates Large values of are required in order to achieve a low value of V LOW keep power consumption low Large resistors are needed, but these take up a lot of space. Slide 24

CMOS Inverter: Intuitive Perspective CICUIT SWITCH MOELS G S p V IN G S V OUT n V OUT V OL 0 V V OUT V OH Low static power consumption, since one MOSFET is always off in steady state V IN Slide 25 V IN 0 V

The CMOS Inverter: Current Flow V OUT N: sat P: sat i N: off P: lin C V IN G I S V OUT N: sat P: lin A B E G S N: lin P: sat 0 0 N: lin P: off V IN Slide 26

Power issipation: irectpath Current G S v IN : V T v IN i v OUT 0 I peak V T G S i: 0 t sc Energy consumed per switching period: time E t dp sc V I peak Slide 27

CMOS NAN Gate A A B F A B F 0 0 1 0 1 1 1 0 1 1 1 0 Notice that the pullup network is related to the pulldown network by emorgan s Theorem! NMOS, Pulldown PMOS, Pullup B Slide 28

B A B A CMOS NO Gate V A B F 0 0 1 0 1 0 1 0 0 1 1 0 F Notice that the pullup network is related to the pulldown network by emorgan s Theorem! NMOS, Pulldown PMOS, Pullup Slide 29

Multiple Input NO Gate Slide 30

Features of CMOS igital Circuits The output is always connected to or GN in steady state Full logic swing; large noise margins Logic levels are not dependent upon the relative sizes of the devices ( ratioless ) There is no direct path between and GN in steady state no static power dissipation Slide 31