NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before Mission Plans

Similar documents
InSight Spacecraft Launch for Mission to Interior of Mars

Mars 2020 Project. Matt Wallace Deputy Project Manager. October 27, Mars 2020 Project

Mars Update. Presented by NASA/JPL Solar System Educator Don W. Brown

Mars Science Laboratory - Overview Mars Express Conference

Today s Class. Results for Exam #2 11/7/2017. Today s Class: Robotic & Human Exploration of Mars

Applied Physics Laboratory University of Washington

Missions mars. Beyond the Book. FOCUS Book

Mars Exploration Program (MEP) Update

***Note: U.S. Citizenship is required of all participants (teacher and students).***

NASA: BACK TO THE MOON

E X O M A R S. The ESA/NASA ExoMars Programme

Meeting the neighbors. The exploration of Mars

James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations

James L. Green Director, Planetary Science NASA

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars

Mars rover Opportunity signs off after 15 years

Dive In What is an advantage of sending unmanned crafts to space?

Expanding Science with SmallSats/CubeSats

Activity 7 At a Glance

Mars Exploration Script

Remote Sensing/Reflectance Spectrometer

Scale: Mars is 6,787 km in diameter. Image 1. What is the feature across the middle? What do you think the circles on the left side are?

Mars Sample Return (MSR) Mission BY: ABHISHEK KUMAR SINHA

A Long-Range Vision for the Exploration of Mars

From VOA Learning English, this is Science in the News. I m June Simms.

Cassini - Huygens the Saturn orbiter-lander that changed it all

ESA UNCLASSIFIED For Official Use. BepiColombo à Exploring Mercury

WEATHER REPORT. Air Temperature in a Day on Mars. Temperature ( C)

FANTASTIC!! MARINER VENUS / MERCURY 1973 STATUS BULLETIN BULLETIN NO. 27

Mars. Professor Withers Boston University Guest lecture in AS105 Alien Worlds. Thursday :00 NASA

NASA Planetary Science Programs

MARS. The Red Planet

Lunar Discovery and Exploration program

Lowell II, Candor Chasma Base Station Mission Backstory

Why Should We Expect to Find Life on Mars?

COMMON THEMES IN PLANETARY SMALL BODIES RESEARCH (2018 UPDATE)

OPAG Aug. 24, Europa Mission Science Overview

ROVERQUEST: Greetings from Gusev

Curiosity Overview Nasa

The Latest from Mars: Recent Results and the Next Decade of Exploration

Phobos & Deimos Update

Space Story Three: The Phoenix Mission. Eric Choi and His Friends from the Phoenix Mission

Activity #1 - Getting Started in Mars Exploration

Life and habitability in the Solar System and beyond: the Roadmap

UK lunar exploration: Current activities and future possibilities

Welcome to Class 13: Is (or was) Life on Mars? Remember: sit only in the first 10 rows of the room

The SPE Foundation through member donations and a contribution from Offshore Europe

Planetary Protection Considerations For Mars 2020

4.2 Detecting Celestial Bodies and the Moon

LRO Lunar Reconnaissance Orbiter

Analyzing Next to Nothing

Astrobiology: The Semester in Review

PRESS KIT: Scientific work of the Royal Observatory of Belgium on the Mars Express mission

4.8 Space Research and Exploration. Getting Into Space

Space and Robotics. History of Unmanned Spacecraft David Wettergreen The Robotics Institute Carnegie Mellon University

Overview of Lunar Science Objectives. Opportunities and guidelines for future missions.

Exploring our Solar System and Beyond

Venus: NASA HQ Perspectives

Planetary Protection at NASA: Overview and Status

A Lander for Marco Polo

Robotic Lunar Exploration Scenario JAXA Plan

ExoMars 2016 Mission

Center for Astrobiology The origin of life and the evolution of the Universe

Lecture 27: Is There Life on Mars?

Universe. of Space Exploration. Future Space Missions

Mars Sample Return Mission

7.1 Earth as a Planet 7.2 Mercury and the Moon 7.3 Mars 7.4 Venus 7.5 Earth as a Living Planet

AST 248, Lecture 19. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. October 22, 2018

Characterization & Modeling of Spacecraft Regolith Interactions

What You Already Know

Low Cost Enceladus Sample Return Mission Concept

Telescopes and the Atmosphere

ASTR 4800: Space Science - Practice & Policy Today s Topic: Science Goes to the Moon & Planets. Next class: Visit by Richard Truly, former NASA

Terrestrial Atmospheres

Europa Exploration: Challenges and Solutions

DRAFT. Caption: An astronaut climbs down a lunar module on the surface of the Moon. <Insert figure 1.4 here; photograph of the surface of Mars>>

Student Opportunities at JPL

1969: DAWN OF THE MARS METHANE ERA

Paper Session II-B - The Mars Environmental Survey (MESUR) Network and Pathfinder Missions

Planetary Science and Mars Program. James L. Green Director, Planetary Science NASA May 20,

The Genealogy of OSIRIS-REx Asteroid Sample Return Mission

ACTIVITY 6 Using Spectra to Search for an Earth-like Planet

Surface Observations Including from the 2012 Mars Curiosity Rover. Martian Atmosphere

The ExoMars Programme

NASA s Planetary Science Program Overview. James L. Green, Director Planetary Science Presenta6on to the SBAG January 9, 2014

A New Mission Concept: The Search for Trace Gases in the Mars Atmosphere

What is scan? Answer key. Space Communications and Navigation Program. Entering the Decade of Light.

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett

Lunar Precursor Robotics Program

Lunar Flashlight Project

Grades 9-12: Earth Sciences

Part 1: The Search for Evidence of Life on Mars. Chair: Dan McCleese

NEW HORIZONS CELEBRATES CLYDE TOMBAUGH S BIRTHDAY WITH NEW PLUTO IMAGES LAUREL KORNFELD

Strange New Planet. Time Budget: 1 hour

Sushil Atreya. Venus Chapman Conference Key Largo, 16 February

David Baxter. GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School

Newton s Legacy. 1- accelerate to break free of Earth. Rocket Science: How to send a spacecraft to Mars

Part 4: Exploration 1

Modeling the Orbits of the Outer Planets

Quiz 3 is available for pickup in front

Transcription:

mars.jpl.nasa.gov NASA Announces Mars 2020 Rover Payload to Explore the Red Planet as Never Before - 2020 Mission Plans 5 min read original Payload for NASA's Mars 2020 Rover This diagram shows the science instruments for NASA's Mars 2020 rover mission. Credit: NASA

Planning for NASA's 2020 Mars rover envisions a basic structure that capitalizes on the design and engineering work done for the NASA rover Curiosity, which landed on Mars in 2012, but with new science instruments selected through competition for accomplishing different science objectives. Credit: NASA/JPL-Caltech The next rover NASA will send to Mars in 2020 will carry seven carefully-selected instruments to conduct unprecedented science and exploration technology investigations on the Red Planet. NASA announced the selected Mars 2020 rover instruments Thursday at the agency's headquarters in Washington. Managers made the selections out of 58 proposals received in January from researchers and engineers worldwide. Proposals received were twice the usual number submitted for instrument competitions in the recent past. This is an indicator of the extraordinary interest by the science community in the exploration of the Mars. The selected proposals have a total value of approximately $130 million for development of the instruments. The Mars 2020 mission will be based on the design of the highly successful Mars Science Laboratory rover, Curiosity, which landed almost two years ago, and currently is operating on Mars. The new rover will carry more sophisticated, upgraded hardware and new instruments to conduct geological assessments of the rover's landing site, determine the potential habitability of the environment, and directly search for signs of ancient Martian life. "Today we take another important step on our journey to Mars," said NASA Administrator Charles Bolden." While getting to and landing on Mars is hard, Curiosity was an iconic example of how our robotic scientific explorers are paving the way for humans to pioneer Mars and beyond. Mars exploration will be this generation's legacy, and the Mars 2020 rover will be another critical step on humans' journey to the Red Planet." Scientists will use the Mars 2020 rover to identify and select a collection of rock and soil samples that will be stored for potential return to Earth by a future mission. The Mars 2020 mission is responsive to the science objectives recommended by the National Research Council's 2011 Planetary Science Decadal Survey. "The Mars 2020 rover, with these new advanced scientific instruments, including those from

our international partners, holds the promise to unlock more mysteries of Mars' past as revealed in the geological record," said John Grunsfeld astronaut, and associate administrator of NASA's Science Mission Directorate in Washington. "This mission will further our search for life in the universe and also offer opportunities to advance new capabilities in exploration technology." The Mars 2020 rover also will help advance our knowledge of how future human explorers could use natural resources available on the surface of the Red Planet. An ability to live off the Martian land would transform future exploration of the planet. Designers of future human expeditions can use this mission to understand the hazards posed by Martian dust and demonstrate technology to process carbon dioxide from the atmosphere to produce oxygen. These experiments will help engineers learn how to use Martian resources to produce oxygen for human respiration and potentially for use as an oxidizer for rocket fuel. "The 2020 rover will help answer questions about the Martian environment that astronauts will face and test technologies they need before landing on, exploring and returning from the Red Planet," said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington. "Mars has resources needed to help sustain life, which can reduce the amount of supplies that human missions will need to carry. Better understanding the Martian dust and weather will be valuable data for planning human Mars missions. Testing ways to extract these resources and understand the environment will help make the pioneering of Mars feasible." The selected payload proposals are: Mastcam-Z, an advanced camera system with panoramic and stereoscopic imaging capability with the ability to zoom. The instrument also will determine mineralogy of the Martian surface and assist with rover operations. The principal investigator is James Bell, Arizona State University in Tempe. SuperCam, an instrument that can provide imaging, chemical composition analysis, and mineralogy. The instrument will also be able to detect the presence of organic compounds in rocks and regolith from a distance. The principal investigator is Roger Wiens, Los Alamos National Laboratory, Los Alamos, New Mexico. This instrument also has a significant contribution from the Centre National d'etudes Spatiales,Institut de Recherche en Astrophysique et Plane'tologie (CNES/IRAP) France. Planetary Instrument for X-ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer that will also contain an imager with high resolution to determine the fine scale elemental composition of Martian surface materials. PIXL will provide capabilities that permit more detailed detection and analysis of chemical elements than ever before. The principal investigator is Abigail Allwood, NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC), a spectrometer that will provide fine-scale imaging and uses an

ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds. SHERLOC will be the first UV Raman spectrometer to fly to the surface of Mars and will provide complementary measurements with other instruments in the payload. The principal investigator is Luther Beegle, JPL. The Mars Oxygen ISRU Experiment (MOXIE), an exploration technology investigation that will produce oxygen from Martian atmospheric carbon dioxide. The principal investigator is Michael Hecht, Massachusetts Institute of Technology, Cambridge, Massachusetts. Mars Environmental Dynamics Analyzer (MEDA), a set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity and dust size and shape. The principal investigator is Jose Rodriguez-Manfredi, Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Spain. The Radar Imager for Mars' Subsurface Exploration (RIMFAX), a ground-penetrating radar that will provide centimeter-scale resolution of the geologic structure of the subsurface. The principal investigator is Svein-Erik Hamran, the Norwegian Defence Research Establishment, Norway. "We are excited that NASA's Space Technology Program is partnered with Human Exploration and the Mars 2020 Rover Team to demonstrate our abilities to harvest the Mars atmosphere and convert its abundant carbon dioxide to pure oxygen'" said James Reuther, deputy associate administrator for programs for the Space Technology Mission Directorate. "This technology demonstration will pave the way for more affordable human missions to Mars where oxygen is needed for life support and rocket propulsion." Instruments developed from the selected proposals will be placed on a rover similar to Curiosity, which has been exploring Mars since 2012. Using a proven landing system and rover chassis design to deliver these new experiments to Mars will ensure mission costs and risks are minimized as much as possible, while still delivering a highly capable rover. Curiosity recently completed a Martian year on the surface -- 687 Earth days -- having accomplished the mission's main goal of determining whether Mars once offered environmental conditions favorable for microbial life. The Mars 2020 rover is part the agency's Mars Exploration Program, which includes the Opportunity and Curiosity rovers, the Odyssey and Mars Reconnaissance Orbiter spacecraft currently orbiting the planet, and the MAVEN orbiter, which is set to arrive at the Red Planet in September and will study the Martian upper atmosphere. In 2016, a Mars lander mission called InSight will launch to take the first look into the deep interior of Mars. The agency also is participating in the European Space Agency's (ESA's) 2016 and 2018 ExoMars missions, including providing "Electra" telecommunication radios to ESA's 2016 orbiter and a critical element of the astrobiology instrument on the 2018 ExoMars rover. NASA's Mars Exploration Program seeks to characterize and understand Mars as a dynamic system, including its present and past environment, climate cycles, geology and biological

potential. In parallel, NASA is developing the human spaceflight capabilities needed for future round-trip missions to Mars. NASA's Jet Propulsion Laboratory will build and manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency's headquarters in Washington. For more information about NASA's Mars programs, visit: http://www.nasa.gov/mars Dwayne Brown Headquarters, Washington 202-358-1726 dwayne.c.brown@nasa.gov Original URL: http://mars.jpl.nasa.gov/mars2020/news/whatsnew /index.cfm?fuseaction=shownews&newsid=1678