Status of Supersymmetric Models

Similar documents
Top Quark Physics at the LHC

Supersymmetry Searches at ATLAS and CMS UK HEP Forum 2012 Friday 23 rd November, 2012

ATL-PHYS-PROC

String Theory in the LHC Era

Life beyond the minimal supersymmetry

SUSY Phenomenology & Experimental searches

Supersymmetry: A status report

29 September

CMS Searches for New Physics

Searches for Supersymmetry at ATLAS

Dark Matter at the LHC: Understanding Experimental Reach

Status of ATLAS+CMS SUSY searches

Hunting light SUSY: combined impact of LHC searches

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Searches for SUSY in Final States with Photons

Natural SUSY and the LHC

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC)

Stop NLSPs. David Shih Rutgers University. Based on: Kats & DS ( ) Kats, Meade, Reece & DS ( )

LHC signals for SUSY discovery and measurements

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Search for Supersymmetry at CMS

SUSY w/o the LHC: Neutralino & Gravitino LSPs

Searches for squark and gluino production in hadronic final states with the ATLAS experiment

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Hints from Run 1 and Prospects from Run 2 at ATLAS

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Latest ATLAS results from Run 2

arxiv:hep-ph/ v1 17 Apr 2000

SUSY searches with ATLAS What did we learn with few fb -1?

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS)

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration

Beyond the SM: SUSY. Marina Cobal University of Udine

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Inclusive searches in ATLAS: How can we discover SUSY in 2009

Higgs boson(s) in the NMSSM

SUSY searches at LHC and HL-LHC perspectives

Search for Supersymmetry at LHC

14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009

Search for Supersymmetry at CMS in all-hadronic final states

Supersymmetry at the LHC

Top Quark Properties Measurements with the ATLAS Experiment

Supersymmetry Without Prejudice at the LHC

Recent Results on New Phenomena and Higgs Searches at DZERO

Probing SUSY Dark Matter at the LHC

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

General Gauge Mediation Phenomenology

Overview of LHC Searches in Colorless SUSY Sectors

Probing SUSY Contributions to Muon g-2 at LHC and ILC

LHC Studies on the Electroweak Sector of MSSM

Yukawa and Gauge-Yukawa Unification

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

SUSY at the LHC. Bhaskar Dutta Texas A&M University. LHCP 2018, 4-9 June

Searches for SUSY & Exotics with ATLAS

Recent searches for new particles using 13 TeV data with ATLAS at the LHC

What the LHC Will Teach Us About Low Energy Supersymmetry

New physics at the LHC

Supersymmetry at the LHC: Searches, Discovery Windows, and Expected Signatures

S.Abdullin ITEP. July 8, 2003 S.Abdullin (UMD) LHC SUSY Potential 1

Searching for Supersymmetry at the LHC David Stuart, University of California, Santa Barbara. CMS SUSY Search, D. Stuart, June 2011, Lisbon!

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Non-Standard Higgs Decays

CMS Searches for SUSY in Hadronic Final States

Search for SUperSYmmetry SUSY

This work is supported in part by the

Search for Electroweakinos with the ATLAS Detector at the LHC

Introduction to SUSY and MSSM

Interpre'ng a CMS lljjp T Excess With the Golden Cascade of the MSSM

Szuperszimmetria keresése az LHC-nál

SUSY Search Strategies at Atlas and CMS

Perspectives on Future Supersymmetry at Colliders

Exotica in CMS. ICNFP 2015 Kolymbari, Crete 25 August Claudia-Elisabeth Wulz CMS Collaboration Institute of High Energy Physics, Vienna

SUSY or not, what is the evidence? Status and perspectives of collider searches Part IIB

Supersymmetry at the LHC

P. Sphicas/SSI2001. Standard Model Higgs

Search for squarks and gluinos with the ATLAS detector. Jeanette Lorenz (LMU München)

SUSY searches at the LHC * and Dark Matter

Background photo: CMS detector in access (i.e., broken-symmetry) mode. David Stuart, UCSB 1

Search for long-lived particles at CMS. TeVPA Brian Francis for the CMS Collaboration

Carlos Sandoval Universidad Antonio Nariño On behalf of the ATLAS collaboration DIS Kobe, Japan

Flavoring GMSB - Non-Degenerate Squarks and a Heavy Higgs in Flavored GMSB

Dissertation der Fakultät für Physik der Ludwig-Maximilians-Universität München. Sebastian Becker. vorgelegt von. geboren in Mainz

SUSY and Exotica. Talk outline. Ben Allanach (University of Cambridge)

Supersymmetry at the LHC

Slepton, Charginos and Neutralinos at the LHC

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Searches for new physics at ATLAS

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

Discovery potential for SUGRA/SUSY at CMS

Higgs Signals and Implications for MSSM

Master Thesis Topics 2013/14 in Experimental Particle Physics

Search for SUSY at CMS in lepton or photon final states. PANIC 2011 K. Theofilatos (on behalf of CMS)

SUSY searches with ATLAS

Lecture 18 - Beyond the Standard Model

Photons, Missing Energy and the Quest for Supersymmetry at the LHC

Overall CMS SUSY search strategy

Transcription:

Status of Supersymmetric Models Sudhir K Vempati CHEP, IISc Bangalore Institute of Physics, Bhubhaneswar Feb, 203

Outline Why Supersymmetry? Structure of MSSM Experimental Status New models of SUSY

S/(S+B) Weighted Events /.5 GeV 500 000 500 0 CMS s = 7 TeV, L = 5. fb Data S+B Fit B Fit Component ±σ ±2 σ Events /.5 GeV 500 000 = 8 TeV, L = 5.3 fb 0 20 30 40 50 m γ γ (GeV) s Unweighted 20 30 m γγ (GeV)

6 5 4 July 20 Theory uncertainty Δα had = Δα (5) 0.02750±0.00033 0.02749±0.0000 incl. low Q 2 data m Limit = 6 GeV Δχ 2 3 2 Excluded 0 30 00 300 m H [GeV]

The Structure of MSSM

Supersymmetry breaking

Some traditional Models

Two loop diagrams contributing to soft masses

dimensional-full couplings Q A-terms are essentially zero!!!

Experimental Status

Inclusive searches 3rd gen. sq. gluino med. 3rd gen. squarks direct production EW direct RPV Long-lived particles MSUGRA/CMSSM : 0 lep + j's + E T,miss MSUGRA/CMSSM : lep + j's + E T,miss Pheno model : 0 lep + j's + E T,miss Pheno model : 0 lep + j's + E T,miss Present LHC limits Gluino med. χ ( g qqχ ) : lep + j's + E T,miss ± GMSB GMSB (τ ( l NLSP) : 2 lep (OS) + j's + E T,miss NLSP) : -2 τ + 0 lep + j's + E T,miss GGM (bino NLSP) : γγ + E T,miss GGM (wino NLSP) : γ + lep + E T,miss GGM (higgsino-bino NLSP) : γ + b + E T,miss GGM (higgsino NLSP) : Z + jets + E T,miss Gravitino LSP : 'monojet' + E T,miss 0 g bbχ (virtual b) : 0 lep + 3 b-j's + E 0 T,miss g ttχ (virtual t) : 2 lep (SS) + j's + E 0 T,miss g ttχ (virtual t) : 3 lep + j's + E 0 T,miss g ttχ (virtual t) : 0 lep + multi-j's + E 0 T,miss g ttχ (virtual t) : 0 lep + 3 b-j's + E 0 χ T,miss bb, b b : 0 lep + 2-b-jets + E ± χ T,miss bb, b ± χ t : 3 lep + j's + E T,miss tt (light), t b : /2 lep (+ b-jet) + E ± χ T,miss tt (medium), t b : lep + b-jet + E ± χ T,miss tt (medium), t b : 2 lep + E 0 T,miss tt, t tχ : lep + b-jet + E 0 T,miss tt, t tχ : 0//2 lep (+ b-jets) + E T,miss tt (natural GMSB) : Z( ll) + b-jet + E 0 l l l lχ T,miss : 2 lep + E +- + 0 χ χ ±0, χ L lν(lν) lν L, χ T,miss : 2 lep + E,miss χ χ l l νν), lν l νν) T : 3 lep + E ± L ν 0 L l( ( )0 L l( 2 ( )0 T,miss χ χ W * χ Z * χ : 3 lep + E ± ± Direct χ 2 T,miss pair prod. (AMSB) : long-lived χ Stable g R-hadrons : low β, βγ (full detector) Stable t R-hadrons : low β, βγ (full detector) GMSB : stable τ 0 χ qqµ (RPV) : µ + LFV : pp ν heavy ν displaced vertex LFV : pp ν τ +X, ν τ e+µ resonance τ +X, τ e(µ)+τ resonance Bilinear RPV CMSSM : lep + 7 j's + E T,miss +- + 0 0 χ χ, χ Wχ, χ eeν : 4 lep + E + - 0 0,miss l l, l χ, χ µ,eµν e T L L L l eeν µ,eµν : 4 lep + E T,miss e g qqq : 3-jet resonance pair Scalar gluon : 2-jet resonance pair WIMP interaction (D5, Dirac χ) : 'monojet' + E T,miss ± L=5.8 fb, 8 TeV [ATLAS-CONF-20209] L=5.8 fb, 8 TeV [ATLAS-CONF-20204] L=5.8 fb, 8 TeV [ATLAS-CONF-20209] L=5.8 fb, 8 TeV [ATLAS-CONF-20209] L=4.7 fb L=4.7 fb, 7 TeV [208.4688], 7 TeV [208.4688] L=4.7 fb, 7 TeV [20.34] L=4.8 fb, 7 TeV [209.0753] L=4.8 fb, 7 TeV [ATLAS-CONF-20244] L=4.8 fb, 7 TeV [2.67] L=5.8 fb, 8 TeV [ATLAS-CONF-20252] L=0.5 fb, 8 TeV [ATLAS-CONF-20247] L=2.8 fb, 8 TeV [ATLAS-CONF-20245] L=5.8 fb, 8 TeV [ATLAS-CONF-20205] L=3.0 fb, 8 TeV [ATLAS-CONF-2025] L=5.8 fb, 8 TeV [ATLAS-CONF-20203] L=2.8 fb, 8 TeV [ATLAS-CONF-20245] L=2.8 fb, 8 TeV [ATLAS-CONF-20265] L=3.0 fb, 8 TeV [ATLAS-CONF-2025] L=4.7 fb, 7 TeV [208.4305, 209.202] 67 GeV L=3.0 fb, 8 TeV [ATLAS-CONF-20266] L=3.0 fb, 8 TeV [ATLAS-CONF-20267] L=3.0 fb, 8 TeV [ATLAS-CONF-20266] L=4.7 fb, 7 TeV [208.447,208.2590,209.486] L=2. fb, 7 TeV [204.6736] L=4.7 fb, 7 TeV [208.2884] L=4.7 fb, 7 TeV [208.2884] L=3.0 fb, 8 TeV [ATLAS-CONF-20254] L=3.0 fb, 8 TeV [ATLAS-CONF-20254] L=4.7 fb, 7 TeV [20.2852] L=4.7 fb, 7 TeV [2.597] L=4.7 fb, 7 TeV [2.597] L=4.7 fb, 7 TeV [2.597] L=4.4 fb, 7 TeV [20.745] L=4.6 fb, 7 TeV [Preliminary] L=4.6 fb, 7 TeV [Preliminary] L=4.7 fb, 7 TeV [ATLAS-CONF-20240] L=3.0 fb, 8 TeV [ATLAS-CONF-20253] L=3.0 fb, 8 TeV [ATLAS-CONF-20253] L=4.6 fb, 7 TeV [20.483] L=4.6 fb, 7 TeV [20.4826] L=0.5 fb, 8 TeV [ATLAS-CONF-20247] *Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus σ theoretical signal cross section uncertainty. ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 202) 69 GeV 0 900 GeV g mass (m( χ ) > 220 GeV) 690 GeV g mass (m( H) > /2-4 F scale (m(g 200 GeV) 645 GeV ) > 0 ev) 0.24 TeV g mass (m( χ ) < 200 GeV) 0 850 GeV g mass (m( χ ) < 300 GeV) 0 860 GeV g mass (m( χ ) < 300 GeV) 0.00 TeV g mass (m( χ ) < 300 GeV) 0.5 TeV g mass (m( χ ) < 200 GeV) 0 620 GeV b mass (m( χ ) < 20 GeV) ± 0 405 GeV b mass (m( χ ) = 2 m( χ )) 0 t mass (m( χ ) = 55 GeV) 0 ± 60-350 GeV t mass (m( χ ) = 0 GeV, m( χ ) = 50 GeV) 0 ± 60-440 GeV t mass (m( χ ) = 0 GeV, m( t)-m( χ ) = 0 GeV) 0 230-560 GeV t mass (m( χ ) = 0) 0 230-465 GeV t mass (m( χ ) = 0) 0 30 GeV t mass (5 < m( χ ) < 230 GeV) 0 8595 GeV l mass (m( χ ) = 0) ± χ 0 ± 0 0-340 GeV mass (m( χ ) < 0 GeV, m( l, ν) = (m( χ ) + m( χ ))) ± ± 0 2 0 580 GeV χ mass (m( χ ) = m( χ ), m( χ ) = 0, m( l, ν) as above) ± ± 0 0 2 40-295 GeV χ mass (m( χ ) = m( χ ), m( χ ) = 0, sleptons decoupled) ± 2 ± 220 GeV χ mass ( < τ( χ ) < 0 ns) 985 GeV 300 GeV 00-287 GeV τ,.0 TeV ν + χ τ mass (λ 3 =0.0, λ (2)33 =0.05).2 TeV q = g mass (cτ LSP < mm) 0 700 GeV mass (m( χ ) > 300 GeV, λ or λ > 0) 0 2 22 l mass (m( χ ) > 00 GeV, m( l e )=m( l µ )=m( l τ ), λ or λ > 0) 2 22 666 GeV g mass sgluon mass (incl. limit from 0.2693) 704 GeV M* scale (m χ < 80 GeV, limit of < 687 GeV for D8) 430 GeV 683 GeV mass.50 TeV q =.24 TeV q = g mass.8 TeV g mass (m(.38 TeV q mass 0 g mass (m( χ.24 TeV g mass.20 TeV g mass 0 g mass (m( χ g mass 900 GeV.07 TeV g mass t mass g mass 0 q) < 2 TeV, light χ ) 0 (m( g) < 2 TeV, light χ ) ± 0 ) < 200 GeV, m( χ ) = (m( χ )+m( g)) 2 (tanβ < 5) (tanβ > 20) ) > 50 GeV) (5 < tanβ < 20) -5, 700 GeV q mass (0.3 0 < λ2 <.5 0,.6 TeV ν τ mass (λ 3 =0.0, λ 32 =0.05) Ldt -5, mm < cτ < m, g decoupled) ATLAS Preliminary = (2. - 3.0) fb s = 7, 8 TeV 8 TeV results 7 TeV results 0 0 Mass scale [TeV]

Model A P t g t χ 0 Model A2 P g t t t χ 0 g χ 0 g t χ 0 P 2 Model B P b t t χ t W χ 0 P 2 Model B2 P g b b t t χ t W χ 0 P 2 b χ + t W + χ 0 Figure 3: Diagrams for the four SUSY models considered (A, A2, B, and B2). P 2 g b b χ + t W + χ 0

m(g) (GeV) m(b ) (GeV) t ) (GeV) m( 000 800 ) (GeV) 900 800 0 χ m( CMS, CMS, s = 8 TeV, s = 8 LTeV, = 0.5 L = 0.5 fb int fb int Model Model A2 A prod Observed Limit prod σ = σ NLO+NLL ± Observed Limit σ = σ NLO+NLL ± σ Expected Limit ± stat. σ Expected Limit ± stat. σ 700 600 0 700 500 m( χ ) = 50 GeV 600 400 500 300 400 200 300 00 200 00 400 500 600 700 800 900 000 m( 00 400 500 600 700 800 900 000 g) (GeV) m( 00 g) (GeV) σ t ± m( χ ) (GeV) ) (GeV) m( 000 s CMS, s = 8 TeV, Lint = 0.5 fb int 900 300 800 700 250 600 200 500 400 50 300 Model Model A2 B prod Observed Limit σprod Observed Limit σ = σ NLO+NLL Expected Limit ± stat. NLO+NLL ± σ σ 0 m( χ ) Expected = 50 GeV Limit ± stat. σ 0 m( χ ) = 250 GeV 200 00 00 250 300 350 400 450 400 500 600 700 800 900 m( b 000 ) (GeV) m( 00 g) (GeV) b ) (GeV) m( 00 000 900 800 700 600 500 400 300 200 300 00 400 500 600 700 800 900 000 00 CMS, s = 8 TeV, L = 0.5 fb m( g) (GeV) int 000 b ) (GeV) CMS, s = 8 TeV, L = 0.5 fb int 000 Model B2 Model B2 igure 4: Exclusion regions prod at 95% CL in the planes of m( ec 0 Observed Limit σ = σ NLO+NLL prod ± σ Observed ) vs. m(eg) (model A), m( ec Limit σ = σ NLO+NLL ± σ ) m( CMS, s = 8 TeV, L = 0.5 fb int Model B2 prod Observed Limit σ = σ NLO+NLL ± σ Expected Limit ± stat. σ 0 m( χ ) = 50 GeV + m( χ ) = 50 GeV 900 Expected Limit ± stat. σ 800 0 Monday, February m( 3χ ) = 50 GeV b ) (GeV) m( b ) (GeV) m( 00 000 900 800 700 600 500 400 300 200 00 300 400 500 600 700 800 900 m( 000 00 g) (GeV) 900 800 CMS, s = 8 TeV, L = 0.5 fb int Model B2 prod Observed Limit σ = σ NLO+NLL ± σ Expected Limit ± stat. σ 0 m( χ ) = 50 GeV + m( χ ) = 300 GeV s. m( e b ) (model B), m(et ) vs. m(eg) (model A2), and m( e b ) vs. m(eg) (model B2). Models Expected Limit ± stat. σ 0 m( χ ) = 50 GeV

Tree Level Mass H + H u = u H 0 Hu 0 H d = d H d Y Hu =+ Y Hd =

where and

where and

at tree level the lightest Higgs mass upper limit is

Lightest Higgs mass @ -loop (top-stop enhanced) in the limit of no-mixing

in the case of non-zero mixing the correction is where -loop correction adds 20 GeV to the tree-level, assuming the sparticles are < TeV (in no-mixing scenario).

dominant 2-loop contribution due to top-stop loops dominant 2-loop correction increases the lightest Higgs mass <0 GeV to the tree-level, assuming the sparticles are < TeV (in nomixing scenario).

40 30 20 M h (GeV) 0 00 90 -loop 2-loop FeynHiggs 80-4 -3-2 0 2 3 4 X t (TeV) Allanach et al. 04

Abrey et al., 2 X t p 6M S

SuSeFLAV SUpersymmetric SEesaw and Flavour Violation Our Webpage Published in Computer Physics Communications 84 (203) 899

Present Constraints on msugra + Seesaw

the A-terms in the gauge mediation are very small!! So a 25 GeV Higgs is very difficult unless we have a very heavy stop spectrum (beyond LHC )

Novel SUSY Scenarios

Our Solution to the problem

RS and compressed Spectrum