A NONLINEAR ELECTROMECHANICAL PENDULUM ARM WITH A NONLINEAR ENERGY SINK CONTROL(NES) APPROACH

Similar documents
Integration of a nonlinear energy sink and a piezoelectric energy harvester

Research Article. The Study of a Nonlinear Duffing Type Oscillator Driven by Two Voltage Sources

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Oscillations. Tacoma Narrow Bridge: Example of Torsional Oscillation

On nonlinear dynamics and control of a robotic arm with chaos

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

ON A MATHEMATICAL MODEL OF THE NON-IDEAL ENERGY HARVESTER VIBRATING SYSTEM

MAS212 Assignment #2: The damped driven pendulum

Chaotic motion. Phys 420/580 Lecture 10

DYNAMICAL JUMP ATTENUATION IN A NON-IDEAL SYSTEM THROUGH A MAGNETORHEOLOGICAL DAMPER

Handout 10: Inductance. Self-Inductance and inductors

Research Article Nonlinear Response of Vibrational Conveyers with Nonideal Vibration Exciter: Superharmonic and Subharmonic Resonance

Chaotic motion. Phys 750 Lecture 9

Chaotic Motion of the Double Pendulum

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon

Journal of Sound and Vibration

On Non-Ideal Simple Portal Frame Structural Model: Experimental Results Under A Non-Ideal Excitation

Simple Harmonic Motion

4.2 Homogeneous Linear Equations

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators

Physics 235 Chapter 4. Chapter 4 Non-Linear Oscillations and Chaos

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

RESPONSE OF NON-LINEAR SHOCK ABSORBERS-BOUNDARY VALUE PROBLEM ANALYSIS

Energy balance in self-powered MR damper-based vibration reduction system

Chapter 16: Oscillations

Chapter 15 - Oscillations

Entrainment Alex Bowie April 7, 2004

Midterm EXAM PHYS 401 (Spring 2012), 03/20/12

SHOCK ISOLATION THROUGH PASSIVE ENERGY PUMPING CAUSED BY NONSMOOTH NONLINEARITIES

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats

NONLINEAR MECHANICAL SYSTEMS (MECHANISMS)

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Nonlinear Dynamic Systems Homework 1

A Short Note on a Nonlinear System Vibrations under Two Non-Ideal Excitations

Here are some internet links to instructional and necessary background materials:

NONLINEAR NORMAL MODES OF COUPLED SELF-EXCITED OSCILLATORS

Oscillatory Motion SHM

Index. Index. More information. in this web service Cambridge University Press

2.4 Models of Oscillation

EXPLORING TARGETED ENERGY TRANSFER FOR VIBRATION DAMPING IN NONLINEAR PIEZOELECTRIC SHUNTS

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Forced Oscillations in a Linear System Problems

Research Article Dynamics of an Autoparametric Pendulum-Like System with a Nonlinear Semiactive Suspension

Experimental and numerical investigations of a pendulum driven by a low-powered DC motor (NUM305-15) Introduction

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

I. THE PENDULUM. y 1 (t) = θ(t) (2) y 2 (t) = dθ(t) dt

Chapter 14 Periodic Motion

Chapter 2 PARAMETRIC OSCILLATOR

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Applications of Second-Order Differential Equations

PH 120 Project # 2: Pendulum and chaos

EE 242 EXPERIMENT 8: CHARACTERISTIC OF PARALLEL RLC CIRCUIT BY USING PULSE EXCITATION 1

PHY217: Vibrations and Waves

Physics 401, Spring 2016 Eugene V. Colla

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Chapter 14 Oscillations

Lecture 3 : Bifurcation Analysis

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

TORSION PENDULUM: THE MECHANICAL NONLINEAR OSCILLATOR

CHAPTER 12 OSCILLATORY MOTION

Harmonic Oscillator - Model Systems

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

Copyright 2008, University of Chicago, Department of Physics. Experiment I. RATIO OF SPECIFIC HEATS OF GASES; γ C p

Identification of nonlinear mechanical systems: Comparison between Harmonic Probing and Volterra-Kautz methods.

Additive resonances of a controlled van der Pol-Duffing oscillator

Yell if you have any questions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES

Chapter 13: Oscillatory Motions

Introduction to Process Control

PREMED COURSE, 14/08/2015 OSCILLATIONS

Periodic motion Oscillations. Equilibrium position

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion

ECE 5670/6670 Lab 8. Torque Curves of Induction Motors. Objectives

SIMULATION AND TESTING OF A 6-STORY STRUCTURE INCORPORATING A COUPLED TWO MASS NONLINEAR ENERGY SINK. Sean Hubbard Dept. of Aerospace Engineering

Chapter 33. Alternating Current Circuits

Faculty of Computers and Information. Basic Science Department

Robotics. Dynamics. Marc Toussaint U Stuttgart

RLC Circuits. 1 Introduction. 1.1 Undriven Systems. 1.2 Driven Systems

Period-One Rotating Solutions of Horizontally Excited Pendulum Based on Iterative Harmonic Balance

Vibrations and waves: revision. Martin Dove Queen Mary University of London

Lecture V : Oscillatory motion and spectral analysis

Mechatronics Engineering. Li Wen

EE 410/510: Electromechanical Systems Chapter 4

P321(b), Assignement 1

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

2.4 Harmonic Oscillator Models

Transduction Based on Changes in the Energy Stored in an Electrical Field

On the force drop off phenomenon in shaker testing in experimental modal analysis

Topic 1: Simple harmonic motion

Electric Circuit Theory

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

DESIGN OF A NONLINEAR VIBRATION ABSORBER

Transcription:

JOURNAL OF THEORETICAL AND APPLIED MECHANICS 54, 3, pp. 975-986, Warsaw 2016 DOI: 10.15632/jtam-pl.54.3.975 A NONLINEAR ELECTROMECHANICAL PENDULUM ARM WITH A NONLINEAR ENERGY SINK CONTROL(NES) APPROACH G. Füsun Alışverişçi, Hüseyin Bayıroğlu Yıldız Technical University, Istanbul, Turkey; e-mail: afusun@yildiz.edu.tr; hbayir@yildiz.edu.tr Jorge Luis Palacios Felix UFFS Federal University of Fronteira Sul, Cerro Largo, RS, Brazil; e-mail: jorge.felix@uffs.edu.br José M. Balthazar ITA Aeronautics Technological Institute, São José dos Campos, SP, Brazil and UNESP-Bauru, SP, Brazil e-mail: jmbaltha@gmail.com Reyolando Manoel Lopes Rebello da Fonseca Brasil Federal University of ABC, Santo André, SP, Brazil; e-mail: reyolando.brasil@ufabc.edu.br This paper considers the nonlinear dynamics of an electromechanical device with a pendulum armandanonlinearenergysink(nes)putonthepointofthependulumsuspension.itis shown that the(nes) is capable of absorbing energy from the system. The numerical results are shown in a bifurcation diagram, phase plane, Poincaré map and Lyapunov exponents. Keywords: nonlinear electromechanical system, bifurcations, nonlinear energy sink 1. Introduction Mechanical oscillatory systems(e.g., a pendulum system which is a basic subsystem of any robot) are of special interest for research and applications as examples of simple systems that may exhibit complex nonlinear behavior. That is why mechanical pendulum-like models of robot arms and mechanical manipulators have recently drawn attention of researchers(mogo and Woafo, 2007). An interesting example of a driven pendulum device coupled with an electric circuit through a magnetic field. This enters the class of nonlinear electromechanical devices with a pendulum arm. It has been found that the device displays different nonlinear behavior, including chaos(mogo and Woafo, 2007). SDRE control and sensibility analysis of a chaotic double pendulum arm excited by a RLC circuit based nonlinear shaker was presented by Tusset et al. (2014, 2015). A non-ideal electromechanical damping vibration absorber, the Sommerfeld effect and energy transfer were studied by Felix and Balthazar(2009). The energy pumping, synchronization and beat phenomenon in a non-ideal structure coupled with an essentially nonlinear oscillator were discussed by Felix et al.(2009). Thispaperdealswithathinrodmountedtoaplatetowhichelectricalwindingsareapplied. Connected to an electric circuit(tusset et al., 2014, 2015), its oscillations are due to the electromagnetic force resulting from two identical and repulsive permanent magnets(mogo and Woafo,2007)aswellasaNonlinearEnergySink.NEShasrecentlydrawnattentionofmany researchers. The NES method represents a new and unique application of strong nonlinearity. The nonlinear energy sink is a local, simple, lightweight subsystem capable of completely alteringtheglobalbehavioroftheprimarysystemtowhichitisattached(vakakisetal.,2008). Elimination of chaotic behavior in a non-ideal portal frame structural system using both passive and active controls were described by Tusset et al.(2013). Steady-state dynamics of a linear

976 G.F. Alışverişçi et al. structure weakly coupled to an essentially nonlinear oscillator was studied by Malatkar and Nayfeh(2007). Steady state passive nonlinear energy pumping in coupled oscillators was studied by Jiang et al.(2003). Introduction of passive nonlinear energy sinks to linear systems was discussed by Vakakis(2001). Energy pumping in nonlinear mechanical oscillators for resonance capture was examined by Vakakis and Gendelman(2001). The energy transfer between linear and non-linear oscillators was investigated by Dantas and Balthazar(2008). Fig.1.IdealizationofaNESappliedtoapendulumarm,u r andu θ arethepolarunitvectors Inthiswork,aNESdeviceisappliedtothefreeendofthependulum(Fig.1).Thisset-up isasystemwiththreedegreesoffreedom:(i)chargeqofthenonlinearcondenser,(ii)angular displacementθofthependulum,(iii)displacementζofthem nes. 2.1. Equation of the electric drive 2. Equations of motion The electric oscillator used to drive the pendulum is an RLC series circuit with a sinusoidal excitatione(t)=v 0 cosωt(v 0 andωbeing,respectively,theamplitudeandfrequency,and ttime).denotingtheforcedmeshcurrentiintherlccircuit,asshowninfig.1,applying Kirchhoff s rules, and taking into account the contribution of Lenz s electromotive voltage for Nturnsbyintegratingoverθfromzeroto2πN(e= 0.5NBσ 2 l 2 dθ/dt)oneobtains L di dt +Ri+V c(q) e=e(t) (2.1) whereldi/dt,ri,v C (q)arethevoltagesacrosstheselenoidoftheinductancel,theresistorr, and the nonlinear capacitor C, respectively. In this electromechanical model, the electrical nonlinear term is introduced by considering that the voltage of the capacitor is a nonlinear function of the instantaneous electrical charge q of the following form V c (q)= 1 C 0 q+a 3 q 3 (2.2) wherec 0 isthelinearvalueofcanda 3 isthenonlinearcoefficientdependingonthetypeof the capacitor used. Inserting Eq.(2.2) in Eq.(2.1), the electric part of the model is described by the following nonlinear differential equation d 2 q dt 2+R L dq dt +ω2 e q+a 3 L q3 + NBσ2 l 2 2L dθ dt =v 0 L cos(ωt) (2.3) whereω 2 e=1/(lc 0 )istheresonancefrequencyoftheelectricoscillator.

A nonlinear electromechanical pendulum arm... 977 2.2. Equation of the pendulum arm and the Nonlinear Energy Sink InFig.1,theforcesactingonthependulumarerepresented.Themechanismconsistsofa uniformthinrodoaofmassmandlengthl,havingaplatetowhichnconductingelectric windingsoflengthσleachareapplied,withσ=1/2.thependulumishingedatoabouta horizontalaxis,withonlytheportionσloftherodinthemagneticfield.thetotalmassofthe conducting wire and the plate bathing in the magnetic field have been neglected compared to thependulummass.themomentofinertiaoftheoutputisthenreducedto I O = 1 3 ml2 +M nes l 2 (2.4) wherem,m nes aremassofthependulumandnes,respectively.whenthecurrentiflows through the conducting wire in the magnetic field, there appear, according to the directions of the current(upward or downward), two identical Laplace forces(direction and intensity) whose resultant f sets the pendulum into motion in a viscous medium with the frictional coefficient β. Accordingtotheequationforkineticmoment,themomentofinertiaI O timestheangular acceleration equals the sum of torques due to forces applied to the pendulum. The Laplace force f=nbσldq/dtisappliedtothecenteroftheplategravityandfrictionforces.nesspringand frictionforcesareappliedtothefreeendofthependulum. Thus, the pendulum motion is described by d 2 θ l 2 dq I O dt 2=NBσ2 2 dt mgl dθ 2 sinθ βl2 4 dt C nesl (l dθ ) dt dζ K nes l(lθ ζ) n (2.5) dt wheren=1andn=3.itcanbedividedbythemomentofinertiatoobtainthisequationin the standard form d 2 θ NBσ 2 l 2 dq dt 2= ) 2( m 3 +M nes l 2 dt mgl βl 2 dθ sinθ ) 2( m 3 +M nes )l 4( 2 m 3 +M nes l 2 dt C nes l ( m 3 +M nes) l 2 (l dθ ) dt dζ dt K nes l ( m 3 +M nes) l 2 (lθ ζ) n d 2 θ dt 2+ω2 m sinθ+ β ) 4( dθ m 3 +M dt NBσ 2 ) nes 2( dq m 3 +M dt + C nes ( (l m nes 3 nes) dθ ) +M l dt dζ dt (2.6) + K nes ( (lθ ζ) m 3 nes) n =0 +M l whereω 2 m=mg/[2( m 3 +M nes)l]istheresonancefrequencyofthependulum,c nes isthedamping coefficientsofthenes,k nes isthespringcoefficientofthenes. According to Newton s second law, the NES motion is described by d 2 ζ ( dζ ) M nes dt 2= C nes dt ldθ K nes (ζ lθ) n (2.7) dt ItcanbedividedbymassoftheNEStoobtainthisequationinthestandardform d 2 ζ ( dt 2+C nes dζ ) M nes dt ldθ + K nes (ζ lθ) n =0 (2.8) dt M nes

978 G.F. Alışverişçi et al. 2.3. Nondimensional equations and values of the parameter Using the transformation x= q y= θ z= ζ Q 0 θ 0 lθ 0 dq dt =Q dx dθ 0ω e dτ dt =θ dy dζ 0ω e dτ dt =lθ dz 0ω e dτ d 2 q dt 2=Q 0ωe 2 d 2 x d 2 θ dτ 2 dt 2=θ 0ωe 2 d 2 y d 2 ζ dτ 2 dt 2=lθ 0ωe 2 d 2 z dτ 2 τ=ω e t (2.9) wherex,y,τaredimensionlessvariables,q 0 isthereferencechargeofthecondenser,andθ 0 is the reference pendulum angular displacement. The equations of motion of the complete system can be written as follows and d 2 x dτ 2+ R Lω e dx x 3 + NBσ2 l 2 θ 0 dy 2LQ 0 ω e dτ = v ( 0 Ω ) Q 0 ωel 2 cos τ ω e dτ +x+a 3Q 2 0 Lωe 2 d 2 y NBσ 2 dx dτ 2= ) Q 0 2( m 3 +M nes ω e θ 0 dτ mg β sin(θ 0 y) 2( m 3 +M nes )θ 0 ωe 4( 2l m 3 +M nes C ( nes dy ( ) m 3 nes) +M ω e dτ dz K nes(lθ 0 ) n 1 ( (y z) dτ m 3 nes) n +M ωe 2 d 2 z C ( dτ 2+ nes dz )+ M nes ω e dτ dy K nes(lθ 0 ) n 1 dτ M nes ωe 2 (z y) n =0 dy ) ω e dτ (2.10) x +µ 1 x +x+αx 3 +γ 1 y =Ecos(ωτ) y +µ 2 y +ω 2 2 sin(θ 0 y) γ 2x +c 2nes (y z )+k 2nes (y z) n =0 z +c 1nes (z y )+k 1nes (z y) n =0 (2.11) wheretheprimedenotesaderivativewithrespecttoτand µ 1 = R Lω e α= a 3Q 2 0 Lω 2 e ω= Ω ω e γ 1 = NBσ2 l 2 θ 0 2LQ 0 ω e µ 2 = E= v 0 LQ 0 ω 2 e β ) 4( m 3 +m nes ω e ω 2 2 = ω2 m ω 2 e θ 0 c 2nes = C nes ( m 3 +M nes) ω e NBσ 2 Q 0 γ 2 = ) 2( m 3 +m nes ω e θ 0 k 1nes = K nes(lθ 0 )n 1 M nes ω 2 e c 1nes = C nes m nes ω e k 2nes = ( Knes(lθ 0) n 1 m )ω 3 +Mnes e 2 Thephysicalparametersusedarethefollowing:C 0 =0.11F,a 3 =158VC 3,Q 0 =0.24C, R=0.97Ω,L=1.15H,B=0.02T,N =685,θ 0 =πrad,l=0.465m,g=9.81m/s 2, m = 1kg,M nes = 0.1kg,β = 0.49Ns/m,Ω = 5.6rad/s,σ = 0.5,K nes = 1.5N/m, C nes =0.3Ns/m. Thisgivesthefollowingvaluesfornon-dimensionalconstants:ω=2,ω 2 =1,µ 1 =0.30, µ 2 =0.1,α=1,γ 1 =1.5,γ 2 =0.1,c 1nes =1,c 2nes =5,k 1nes =2,k 2nes =8.

A nonlinear electromechanical pendulum arm... 979 2.4. Bifurcation structures and basin of chaoticity Theaimofthissubsectionistofindhowchaosarisesinourelectromechanicalmodelasthe parameters of the system evolve. For this purpose, we numerically solve equations of motion (2.11) and plot the resulting bifurcation diagrams, Lyapunov exponents, phase planes and PoincaremapsasE,ω,ω 2,α,µ 1,µ 2,γ 1,γ 2,c 1nes,c 2nes,k 1nes,k 2nes varies.figures2and3show the non-dimensional amplitude diagram for the pendulum arm as the other non-dimensional Fig. 2. Amplitude of the pendulum arm versus(a) excitation amplitude E,(b) excitation frequency ω; bleulinesn=1,blacklinesn=3,greylineswithoutnes Fig.3.Amplitudeofthependulumarmversus(a)functionofα,(b)functionofω 2,(c)functionofµ 1, (d)functionofµ 2,(e)functionofγ 1,(f)functionofγ 2 ;bleulinesn=1,blacklinesn=3, grey lines without NES

980 G.F. Alışverişçi et al. parameters(e,ω,ω 2,α,µ 1,µ 2,γ 1,γ 2 )vary.thedarkgreylinesareshownforn=1,theblack linesforn=3andthegreyonesforwithoutnes.theinvestigationofthesefiguresshowsthat thependulumarmwithnesandn=3diminishesthechaoticeffectandamplitude. Figure 4 shows the non-dimensional amplitude diagram for the pandulum arm as the other non-dimensionalparameters(c 1nes,c 2nes,k 1nes,k 2nes )vary.thedarkgreylinesareforn=1,the blacklinesforn=3.itisclearthatforn=3thechaoticeffectandamplitudearediminished. Fig.4.Amplitudeofthependulumarmversus(a)functionofc 1nes,(b)functionofc 2nes, (c)functionofk 1nes,(d)functionofk 2nes ;darkgreylinesn=1,blacklinesn=3 Table1showsthestabilityconditionasafunctionofE,ω,ω 2,α,γ 2,k 1nes,k 2nes,c 1nes,c 2nes. It has been constructed with Figs. 5-8 and Figs. 10-14. According to this Table, the pendulum armwithnesandn=3diminishesthechaoticeffectandamplitude.figure9showsthatonly forµ1<0.01thesystemexhibitschaoticeffectwithoutnes. Fig.5.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofEinthe ydirection,(a)nes,n=1,(b)nesn=3,(c)withoutnes.theotherparametersaree=30,ω=2, µ 1 =0.3,µ 2 =0.1,θ 0 =π,γ 1 =1.5,γ 2 =0.1,c 1nes =1,c 2nes =5,k 1nes =2,k 2nes =8; dark grey line bifurcation diagram, grey line Lyapunov exponent

A nonlinear electromechanical pendulum arm... 981 Fig.6.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofωinthe ydirection,(a)nes,n=1,(b)nesn=3,(c)withoutnes.theotherparametersaree=30, ω 2 =1,µ 1 =0.3,µ 2 =0.1,θ 0 =π,γ 1 =1.5,γ 2 =0.1,c 1nes =1,c 2nes =5,k 1nes =2,k 2nes =8; dark grey line bifurcation diagram, grey line Lyapunov exponent Fig.7.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofω 2 inthe ydirection,(a)nes,n=1,(b)nesn=3,(c)withoutnes.theotherparametersaree=30,ω=2, µ 1 =0.3,µ 2 =0.1,θ 0 =π,γ 1 =1.5,γ 2 =0.1,c 1nes =1,c 2nes =5,k 1nes =2,k 2nes =8; dark grey line bifurcation diagram, grey line Lyapunov exponent Fig.8.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofαinthe ydirection,(a)nes,n=1,(b)nesn=3,(c)withoutnes.theotherparametersaree=30,ω=2, µ 1 =0.3,µ 2 =0.1,θ 0 =π,γ 1 =1.5,γ 2 =0.1,c 1nes =1,c 2nes =5,k 1nes =2,k 2nes =8; dark grey line bifurcation diagram, grey line Lyapunov exponent

982 G.F. Alışverişçi et al. Fig.9.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofµ 1 inthe ydirection,(a)nes,n=1,(b)nesn=3,(c)withoutnes.theotherparametersaree=30,ω=2, α=1,µ 2 =0.1,θ 0 =π,γ 1 =1.5,γ 2 =0.1,c 1nes =1,c 2nes =5,k 1nes =2,k 2nes =8; dark grey line bifurcation diagram, grey line Lyapunov exponent Fig.10.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofγ 2 inthe ydirection,(a)nes,n=1,(b)nesn=3,(c)withoutnes.theotherparametersaree=30,ω=2, µ 1 =0.3,µ 2 =0.1,θ 0 =π,α=1,γ 1 =1.5,c 1nes =1,c 2nes =5,k 1nes =2,k 2nes =8; dark grey line bifurcation diagram, grey line Lyapunov exponent Fig.11.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofk 1nes with NES,(a)n=1,(b)n=3.TheotherparametersareE=30,ω=2,µ 1 =0.3,µ 2 =0.1,θ 0 =π,α=1, γ 2 =0.1,c 1nes =1,c 2nes =5,k 2nes =8;darkgreyline bifurcationdiagram, grey line Lyapunov exponent

A nonlinear electromechanical pendulum arm... 983 Fig.12.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofk 2nes with NES,(a)n=1,(b)n=3..TheotherparametersareE=30,ω=2,µ 1 =0.3,µ 2 =0.1,θ 0 =π,α=1, γ 2 =0.1,c 1nes =1,c 2nes =5,k 1nes =2;darkgreyline bifurcationdiagram, grey line Lyapunov exponent Fig.13.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofc 1nes with NES,(a)n=1,(b)n=3.TheotherparametersareE=30,ω=2,µ 1 =0.3,µ 2 =0.1,θ 0 =π,α=1, γ 2 =0.1,c 1nes =1,c 2nes =5,k 1nes =2,k 2nes =8;darkgreyline bifurcationdiagram, grey line Lyapunov exponent Fig.14.BifurcationdiagramsandLyapunovexponentsofthependulumarmasfunctionsofc 2nes with NES,(a)n=1,(b)n=3.TheotherparametersareE=30,ω=2,µ 1 =0.3,µ 2 =0.1,θ 0 =π,α=1, γ 2 =0.1,c 1nes =1,k 1nes =2,k 2nes =8;darkgreyline bifurcationdiagram, grey line Lyapunov exponent

984 G.F. Alışverişçi et al. Table1.StabilityconditionsasafunctionofE,ω,ω 2,α,γ 2,k 1nes,k 2nes,c 1nes,c 2nes Periodic Quasi periodic Chaotic Fig.5a,n=1, E<45, 45<E<57, 57<E<73, variouse E>93 73<E<87 87<E<93 Fig.5b,n=3, E<20, 20<E<28, 58<E<72, variouse 93<E, 45<E<58, 86<E<93 28<E<45 72<E<86 Fig.5c,without 5<E<20, E=32, E<5, NES,variousE E>95 48<E<60 60<E<73, 85<E<95 Fig.6a,n=1, ω<0.7, 1.5<ω<1.8, 0.7<ω<0.8, variousω ω>2.3 2.1<ω<2.3 1.3<ω<1.45 Fig.6b,n=3, ω<1.45, 1.5<ω<1.7 1.45<ω<1.5, variousω ω>2.3 ω=1.7 Fig.6c,without ω<0.4, 0.5<ω<0.6, 1.2<ω<1.5, NES,variousω ω>2.3 0.8<ω<0.9 1.6<ω<1.7 Fig.7a,n=1, 0>ω 2 <5 variousω 2 Fig.7b,n=3, 0>ω 2 <5 variousω 2 Fig.7c,without ω 2 <1.3, 1.3<ω 2 <1.6, NES,variousω 2 ω 2 >2.55, 2.5<ω 2 <2.55 1.6<ω 2 <2.5 Fig.8a,n=1, α<2.3 2.3<α<3.7 α>3.7 various α Fig.8b,n=3, α<2.2 2.3<α<3.7, 3.7<α<4.4, variousα 4.4<α<4.6 α>4.6 Fig.8c,without 0.2<α<0.4, 1.2<α<1.4, 0<α<0.2, NES,variousα 0.5<α<1, 2.2<α<3.4 0.4<α<0.5, 1.4<α<2.2 4.4<α<4.6 3.4<α<3.6, 3.8<α<4.4, 4.6<α<5 Fig.10a,n=1, 0<γ 2 <2 variousγ 2 Fig.10b,n=3, 0<γ 2 <0.8, 0.8<γ 2 <1.3 variousγ 2 1.38<γ 2 <2 Fig.10c,without 0<γ 2 <0.15, 1.9<γ 2 <2.5 0.15<γ 2 <1.1, NES,variousγ 2 1.35<γ 2 <1.4 1.8<γ 2 <1.9 Fig.11a,n=1, 0<k 1nes <2.1 3<k 1nes <3.2, 2.1<k 1nes <3, variousk 1nes 4.8<k 1nes <5, 3.1<k 1nes <5, 6.4<k 1nes <10 5<k 1nes <6.4 Fig.11b,n=3, 6.4<k 1nes <10 0<k 1nes <6.4 variousk 1nes Fig.12a,n=1, 7<k 2nes <15 0<k 2nes <7 variousk 2nes Fig.12b,n=3, 0<k 2nes <15 variousk 2nes

A nonlinear electromechanical pendulum arm... 985 Fig.13a,n=1, 0.2<c 1nes <0.4, 0<c 1nes <0.2 0.4<c 1nes <0.7 variousc 1nes 0.7<c 1nes <2 Fig.13b,n=3, 0<c 1nes <2 variousc 1nes Fig.14a,n=1, 0<c 2nes <2 2<c 2nes <20 variousc 2nes Fig.14b,n=3, 0<c 2nes <2 2<c 2nes <20 variousc 2nes 3. Conclusion WehavestudiedtheeffectoftheNESonaelectro-mechanicaldevicewithapendulum. The system exhibits complex dynamical behavior such as multi-periodic, quasi-periodic and chaotic responses, and these are strongly dependent on non-dimensional control parameters E, ω andanonlinearitycoefficientαforrlccircuit,andnesparametersc 1nes,c 2nes,k 1nes,k 2nes. Moreover,thesystemwithoutNESexhibitsachaoticresponsedependingonγ 2.TheNES parameters(c 1nes,c 2nes,k 1nes,k 2nes )forn=1leadtochaoticresponses,butforn=3,they induce periodic and quasi-periodic responses. It is shown that the NES is capable of absorbing energy from the system and decreases the amplitude as well as diminishes the chaotic effect. References 1. Dantas M.J.H., Balthazar J.M., 2008, On energy transfer between linear and non-linear oscillator, Journal of Sound and Vibration, 315, 4/5, 1047-1070 2. Felix J.L.P., Balthazar J.M., 2009, Comments on a nonlinear and a non-ideal electromechanical damping vibration absorber, sommerfeld effect and energy transfer, Nonlinear Dynamics, 55, 1, 1-11 3. Felix J.L.P., Balthazar J.M., Dantas M.J.H., 2009, On energy pumping, synchronization and beat phenomenon in a non-ideal structure coupled to an essentially nonlinear oscillator, Nonlinear Dynamics, 56, 1, 1-11 4. Jiang X., McFarland D.M., Bergman L.A., Vakakis A.F., 2003, Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results, Nonlinear Dynamics, 33, 87-102 5. Malatkar P., Nayfeh A.H., 2007, Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator, Nonlinear Dynamics, 47, 167-179 6. Mogo J.B., Woafo P., 2007, Dynamics of a nonlinear electromechanical device with a pendulum arm, Journal of Computational and Nonlinear Dynamics, 2, 4, 374-378, DOI: 10.1115/1.2756080 7. Tusset A.M., Balthazar J.M., Felix J.L.P., 2013, On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls, Journal of Vibration and Control, 19, 6, 803-813 8. Tusset A.M., Bueno A.M., Sado D., Balthazar J.M., Colón D., 2014, SDRE control and sensibility analysis of a chaotic double pendulum arm excited by a RLC circuit based nonlinear shaker, Conference on Dynamical Systems Theory and Applications, Łódź, Poland, 195-204 9. Tusset A.M., Picirillo V., Bueno A.M., Sado D., Balthazar J.M., Felix J.L.P., 2015, Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker, Journal of Vibration and Control, 1077546314564782

986 G.F. Alışverişçi et al. 10. Vakakis A.F., 2001, Inducing passive nonlinear energy sinks in linear vibrating systems, Journal of Vibration and Acoustics, 123, 3, 324-332 11. Vakakis F., Gendelman O., 2001, Energy pumping in nonlinear mechanical oscillators. II: Resonance capture, Journal of Applied Mechanics, 68, 1, 42-48 12. Vakakis A.F., Gendelman O.V., Bergman L.A., McFarland D.M., Kerschen G., Lee Y.S., 2008, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems(Solid Mechanics and Its Applications), Springer Manuscript received January 13, 2015; accepted for print January 8, 2016