Direct Identification of Core- Collapse SN Progenitors. Schuyler D. Van Dyk (IPAC/Caltech)

Similar documents
Identifying Progenitors of Stripped-Envelope Supernovae

The Red Supergiant Progenitors of Core-collapse Supernovae. Justyn R. Maund

Type Ibn Supernovae. Type Ibn Supernovae. Andrea Pastorello (INAF-OAPd) Andrea Pastorello (INAF-OAPd) Stockholm May 28 - June 1, 2018

Giant Eruptions (Supernova Impostors) Schuyler Van Dyk IPAC/Caltech USA

PoS(MULTIF15)045. Constraining Supernova Progenitors. Hanindyo Kuncarayakti

Searching for Progenitors of Core-Collapse Supernovae

Ehsan Moravveji. WR124: A stellar fireball (HST WFPC2, NASA) Credit: Grosdidier (Uni. Montreal, CA)

The Empirical Grounds of the SN-GRB Connection. M. Della Valle INAF-Napoli ICRANet-Pescara

A SALT Spectropolarimetric Survey of Supernovae ( S 4 ) K. Nordsieck Univ of Wisconsin

CORE-COLLAPSE SUPERNOVAE

Explosive/Eruptive LBV-like mass loss and Superluminous Supernovae (especially Type IIn)

arxiv: v3 [astro-ph.sr] 7 Mar 2013

MIXING CONSTRAINTS ON THE PROGENITOR OF SUPERNOVA 1987A

A new method to search for Supernova Progenitors in the PTF Archive. Frank Masci & the PTF Collaboration

Photometric and Spectroscopic Observations of Type Ib Supernova SN 2012au by Kanata-Telescope

The structure and evolution of stars. Learning Outcomes

Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova

The dynamical sky Two frontiers Joel Johansson, Uppsala university

Supernovae. M. Della Valle. INAF-Napoli ICRANet-Pescara

Evolution, Death and Nucleosynthesis of the First Stars

Stellar Winds Jorick Vink (Keele University)

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Implications of binary evolution for electron-capture SNe

Effects of low metallicity on the evolution and spectra of massive stars

The impact of reduced mass loss rates on

arxiv: v1 [astro-ph.co] 17 Sep 2013

Stripped-envelope supernovae discovered by the Palomar Transient Factory. Christoffer Fremling

Supernova and Star Formation Rates

SN 2009ib: a Type II-P supernova with an unusually long plateau

ON THE PROGENITOR OF SN 2005gl AND THE NATURE OF TYPE IIn SUPERNOVAE

Astronomy. Astrophysics. Fundamental properties of core-collapse supernova and GRB progenitors: predicting the look of massive stars before death

Massive Star Outbursts and Their Optical Transients. Nathan Smith UC Berkeley. Hubble & Sandage 1953 (M31 & M33) Tammann & Sandage 1968 (NGC 2403)

Studies of core collapse SNe with NOT. Seppo Mattila Finnish Centre for Astronomy with ESO

ON THE PROGENITOR OF THE TYPE II-PLATEAU SN 2008cn in NGC 4603

Early Supernova Light Curves: Now and in the Future

SN 2011dh and the progenitors of Type IIb supernovae. Mattias Ergon

THE PROGENITOR OF THE TYPE IIB SN 2008AX REVISITED

PESSTO The Public ESO Spectroscopic Survey for Transient Objects

Carnegie Supernova Project: Detailed Observations of Supernovae

Supernova 2005cs and the Origin of Type IIP Supernovae

New Views of Stellar Explosions: The Supernova Spectropolarimetry Project

On luminous blue variables as the progenitors of core-collapse supernovae, especially Type IIn supernovae

The Theory of Supernovae in Massive Binaries

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

10 Years of Super-Luminous Supernovae: Analytical and Numerical Models

arxiv: v1 [astro-ph.sr] 20 Sep 2015

Hubble Space Telescope imaging of the progenitor sites of six nearby core-collapse supernovae

Astronomy. Astrophysics. Binary progenitor models of type IIb supernovae

Lecture 16. Supernova Light Curves and Observations SN 1994D

On the progenitors of (Long) GRBs

Determining the distance of type II supernovae

Optical counterparts of ULXs. S. Fabrika

Red Supergiants, Luminous Blue Variables and Wolf-Rayet stars: the single massive star perspective

Studies of peculiar transients with TNG Past results and future perspectives

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO)

arxiv: v4 [astro-ph.sr] 15 Dec 2011

High-mass stars in the Galactic center Quintuplet cluster

arxiv:astro-ph/ v1 18 Jul 2005

The Supernova/Gamma-Ray Burst Connection. Jens Hjorth Dark Cosmology Centre Niels Bohr Institute University of Copenhagen

Differences Among SN-GRBs, SN Ic-bl and SN Ic

New perspectives on red supergiants

arxiv: v1 [astro-ph.sr] 6 Aug 2012

Supernova Explosions. Novae

Supernova Taxonomy - New Types

arxiv: v1 [astro-ph.he] 26 Mar 2014

The Supernova Spectropolarimetry Project: Probing the Evolution of Asymmetries in Supernovae

Supernova Explosions. Novae

Supernova events and neutron stars

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

arxiv: v1 [astro-ph.sr] 22 Oct 2009

Friday, April 29, 2011

The Evolution and Explosion of Mass-Accreting Pop III Stars. Ken Nomoto (IPMU / U.Tokyo)

arxiv: v1 [astro-ph.sr] 1 Oct 2015

The rebirth of Supernova 1987A

Red Supergiants, Luminous Blue Variables and Wolf-Rayet stars: the single massive star perspective

Multiconjugate Fluctuations: Measuring SBF with GeMS

The physical origins of the extreme luminosity for slowly fading Super-luminous Supernovae

arxiv: v1 [astro-ph.he] 28 Aug 2014

On the Range of Supernova Explosion Energies. K. Nomoto (IPMU / U. Tokyo)

Dust production in a variety of types of supernovae

arxiv:astro-ph/ v1 2 Aug 2006

Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae

SN 2012im/2013ek: A Supernova Double Take in NGC 6984 Cycle: 21, Proposal Category: GO/DD (Availability Mode: SUPPORTED)

HUNTING FOR HIDDEN SUPERNOVAE. The Progenitor-Supernova-Remnant Connection

arxiv: v1 [astro-ph.sr] 21 Jul 2015

The Massive Progenitor of the Possible Type II-Linear Supernova 2009hd in Messier 66

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

arxiv: v2 [astro-ph] 1 Jul 2009

arxiv: v2 [astro-ph.sr] 31 Dec 2015

arxiv: v1 [astro-ph.sr] 16 Jan 2018

Supernovae at Various Wavelengths

Boris Gänsicke. Type Ia supernovae and their progenitors

Hot Massive Stars: The Impact of HST

CONSTRAINTS ON THE MASSIVE SUPERNOVA PROGENITORS

THE PROGENITOR OF THE TYPE II-P SN 2004dj IN NGC 2403 J. Maíz-Apellániz, 1 Howard E. Bond, 2 and M. H. Siegel 3

The Progenitors of Type Ia Supernovae

arxiv:astro-ph/ v1 26 Dec 2006

The effect of massive binaries on stellar populations and supernova progenitors

Supernovae and possible NS-NS EM signatures. Keiichi Maeda

Lecture 17: Supernovae and Neutron Stars. For several weeks a supernova s luminosity rivals that of a large galaxy. SUPERNOVAE

Transcription:

Direct Identification of Core- Collapse SN Progenitors Schuyler D. Van Dyk (IPAC/Caltech)

Core- Collapse SNe: Classification Thermonuclear SNe Si II lines Ia (adapted from Turatto 2003) NO Hydrogen NO Si II lines NO Ic He Ib Core Collapse SNe YES (hypernovae, Ic-bl, SN-GRB) II/Ib hybrid IIb H lines disappear in ~few weeks, reappear in nebular phase Hydrogen Narrow IIn Light curve differences Linear Plateau II-L II-P H lines dominate at all epochs Envelope Stripping 2

Core- Collapse SNe: Classification 56 Ni/ 56 Co decay (Van Dyk & Matheson 2012) Mass of 56 Ni depends on mass of core 3

Core- Collapse SNe: Rates Smith et al. (2011) 4

Direct Identification of SN Progenitors SN 1978K (IIn) SN 2008bk (II- P) SN 1987A (II pec) SN 2008cn (II- P?) SN 1993J (IIb) SN 2009hd (II- L?) SN 1999ev (II- P) SN 2009kr (II- L) SN 2003gd (II- P) SN 2009md (II- P) SN 2004A (II- P) SN 2010jl (IIn)? SN 2004et (II- P) SN 2011dh (IIb) SN 2005cs (II- P) SN 2012A (II- P) SN 2005gl (IIn) SN 2012aw (II- P) SN 2008ax (IIb) 5

SN II- P Progenitors The most common core- collapse SNe Inserra et al. (2011) 6

L bol - v exp relation for SNe II- P high- lum II- P Defined at age ~ 50 d ( on the plateau) just right II- P V p ~ L p 0.33 (Hamuy & Pinto 2001) Low- lum II- P 7

SN 1987A: Sk - 69 202 (David Malin AAT image) SN 1987A is a peculiar SN II- P The star was a B3I!!! (Isserstedt 1975, Rousseau et al. 1978) 8

SN II- P 2008bk The second best progenitor detection ever Gemini- S GMOS g r i from 2007 Van Dyk et al. (2012) also, Mattila et al. (2008) Gemini + archival VLT ISAAC & HAWK- I (MARCS stellar atmospheres) 9

SN II- P 2008bk Low luminosity - - - low 56 Ni mass, NSE reached in thin O/Si- rich layer around core Explosion of super- AGB star at low(er) metallicity??? Van Dyk et al. (2012) M ini = 8 8.5 M 10

SN II- P Progenitors What is the mass range for the RSG progenitors of SNe II- P??? Smartt et al. (2009) Upper mass limit for SNe II- P progenitors 11

SN II- P Progenitors What is the mass range for the RSG progenitors of SNe II- P??? Properties unknown A constraint, not a detection! 99A/87A- like II- P (pec) *: BSG! A constraint, not a detection! Low- lum II- P Probable II- L **! Possible normal II- P! (from Smartt et al. 2009) *Harutyunyan et al. (2008) **Gallagher et al. (2010) 12

SN II- P 2012aw in M95 Van Dyk et al. (2012, in revision) Hubble Legacy Archive F555W and F814W image mosaics from 1994 13

SN II- P 2012aw in M95 Van Dyk et al. (2012, in revision) Ekström et al. (2012) rotating models at solar metallicity M ini 17- - 18 M 15

SN II- P Progenitors 56 Ni yield vs. progenitor mass SN II- P spectropolarimetry (This is wrong) Smartt et al. (2009) Grey curve is ratio of M(O) in the CO core to M(core) Leonard et al. (2012) 16

High- luminosity SNe II- P SN 2008cn in NGC 4603 (Elias- Rosa et al. 2009) most distant direct identification, at 33 Mpc A V =1.08 mag; Z=0.02 Yellow supergiant (!) with M ini = 15 ± 2 M 17

SN II- L Progenitors SN 2009kr in NGC 1832 (Elias- Rosa et al. 2010) A V =0.25 mag d= 26 Mpc Z=0.02 Yellow supergiant (!) with M ini = 18 24 M (also Fraser et al. 2010; M ini = 15 +5-4 M ) 18

Evolution of Massive Stars What do theoretical stellar evolutionary tracks predict/explain? Departure from standardized Mass loss formulation Pulsationally- driven superwinds from RSGs, solar Z (Yoon & Cantiello 2010) 19

SN II- L Progenitors SN 2009kr in NGC 1832 (Elias- Rosa et al. 2010) Yoon & Cantiello (2010) track Yellow supergiant with M ini 19 20 M? 20

SN II- L Progenitors SN 2009hd in M66 (Elias- Rosa et al. 2011) Hubble Legacy Archive data from 1997-1998 d =9.4 Mpc A V 3.8 mag F555W F814W At M V (max) = - 17.2 mag, SN 2009hd is probably a SN II- L 21

SN II- L Progenitors SN 2009hd in M66 (Elias- Rosa et al. 2011) Geneva tracks Yoon & Cantiello track Z=0.02 Yellow or red supergiant (?) with M ini 20 M 22

SN IIb Progenitors SN 1993J in M81 A v =0.75 mag, d = 3.6 Mpc SN 1 1990 10 Aldering, Humphreys, & Richmond (1994) Ground- based archival plates/images Van Dyk et al. (2002) HST WFPC2 from 2001 Early K- type supergiant with M V 0-7.0 mag and M ini 13 22 M 23

SN IIb Progenitors SN 1993J in M81 companion progenitor Maund et al. (2004); also Maund & Smartt (2009) Chevalier & Soderberg (2010): SNe IIb from extended (R 10 13 cm) progenitors, e.g, SN 1993J, and from compact (R 10 11 cm) progenitors, e.g., SN 2008ax 24

SN IIb Progenitors SN 2011dh in M51 A v =0.12 mag, d = 7.7 Mpc Van Dyk et al. (2011) WN progenitor companion HLA data from 2005 Keck- II NIRC2 AO Z=0.02 Maund et al. (2011) claim that the F- type supergiant is the progenitor however, SN 2011dh had a compact progenitor (Arcavi et al. 2011) 25

SN Ib Progenitors SN Ib 2009jf in NGC 7479 (Van Dyk et al., in prep.) A V = 0.53 mag, d = 33.9 Mpc HST/WFPC2 F569W from 1995 HST/ACS F555W 26

SN Ib Progenitors Comparison of the bolometric light curve for SN 2009jf with the models by Dessart et al. (2011) The light curve is consistent with the close binary model with a primary of M ini = 18 M and M fin = 3.79 M WN star (Van Dyk et al., in prep.) Secondary has Mini = 17- - 23 M (Yoon, Woosley, & Langer 2010) SN Ib 27

SN Ib Progenitors SN Ib 2009jf in NGC 7479 (Van Dyk et al., in prep.) Combined light Secondary Evolution of the primary Primary terminus Yoon, Woosley, & Langer (2010) 28

SN Ibn Progenitor SN 2006jc in UGC 4904 (Pastorello et al. 2007; Foley et al. 2007) 2001 Dec 2004 Oct 2006 Sep 2006 Oct Preceded by an LBV- like eruption 2 years prior to explosion! 29

SN Ic Progenitors SN Ic 2004gt in NGC 4038 (Gal- Yam et al. 2005; Maund et al. 2005) HST AO Not very restrictive limits, based on detection limits/star cluster properties 30

SN Ic Progenitors SN Ic 2007gr in NGC 1058 d=9.3 Mpc, A V,tot 0.3 mag WFC2 chip PC chip Not very restrictive limits, based on properties of star cluster (Crockett et al. 2008) PC chip may not be in the cluster after all 31

SN Ic Progenitors Cluster 1 SN HST WFPC2 F555W from 2008 13/03/12 IAU 279, Death of Massive Stars, Nikko, Japan 32

SN Ic Progenitors e.g., SN Ic 2000ew in NGC 3810 (Van Dyk, Li, & Filippenko 2003a) Also, SN 2003jg in NGC 2997, SN 2004cc in NGC 4568, SN 2005V in NGC 2146, etc. (Elias- Rosa et al. in prep.) - - - These are all highly extinguished 33

SN Ic Progenitors SN Ic 2003jg in NGC 2997 A V,tot 4 mag Subsec@ons of NGC 2997 before (le# - HST/WFPC2) and aker (right - HST/ACS- HRC) the SN 2003jg explosion, in F814W. The posi@on of the SN is indicated by a circle 34

SN Ic Progenitors WC star detectability SN 2007gr (Crockett et al. 2008) SN 2002ap (Crockett et al. 2007) ground- based L. Smith WFC3 F336W survey Sander et al. (2012) Red = WFPC2 Blue = WFC3 Green = ACS/WFC 35

SN IIn Progenitors SN 2005gl in NGC 266 (d = 66 Mpc) (Gal- Yam et al. 2007; Gal- Yam & Leonard 2009) HST WFPC2 F547M M V - 10.3 mag (!!) Keck- II NIRC2 AO HST WFPC2 F547M 36

SN IIn Progenitors SN 2010jl in UGC 5189A (d = 50 Mpc) (Smith et al. 2011) 37

Conclusions Progression of progenitor initial mass related to stripping of H envelope ( binarity?) SNe II- P have M lower = 8- - 9 M : low- luminosity (lower 56 Ni mass produced, super- AGB?) Not clear yet what is M upper (largest initial mass) for SN II- P RSG progenitors High- luminosity SNe II- P may arise from YSGs with M ini 15 M (??) Current evolutionary tracks do not adequately predict observed pre- SN stars SNe II- L may also arise from YSGs, with M ini 20 M (??) Envelope has been stripped - - - dense circumstellar matter, leading to radio/x- ray emission Some SNe IIn arise from LBVs (see also Kiewe et al. 2011): very high- mass stars SNe IIb may have high- mass extended or compact progenitors (stripped components in interacting binaries) SNe Ib may have similar high- mass compact (WR) progenitors in binaries SNe Ic: high- mass, single WC stars or binaries???? 38