The Optimal Analytical Method of NDMA(N-Nitrodimethylamine) by Solid-Phase Microextraction Analysis (SPME)

Similar documents
Sensitive Detection of 2-MIB and Geosmin in Drinking Water

Analysis of BTEX in Natural Water with SPME

Mi-Ae Cho and Seong-Bae Moon*

The Focus Robotic Sample Processor as a Tool for the Multiple Analysis of Samples using Complementary Techniques

PAL SPME Arrow The Better SPME

PAL SPME Arrow The Better SPME

OPTIMISATION OF SOLID PHASE MICROEXTRACTION (SPME) CONDITIONS FOR HEADSPACE ANALYSIS OF ORGANOPHOSPHATE PESTICIDES IN WHOLE BLOOD

anthracene Figure 1: Structures of Selected Polyaromatic Hydrocarbons (PAHs)

Determination of Volatile Substances Proof of Food Adulteration

Solid Phase Microextraction

Determination of releasable 2,4,6-trichloroanisole in wine by cork stoppers (Resolution OIV-Oeno 296/2009)

Headspace Solid Phase Microextraction/Gas Chromatography for Determination of Aldehydes

Application of Solid Phase Micro Extraction in Environmental Analysis

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples

Mi-Hyun Yoo*, Sang-Ihn Yeo, and Hun-Gi Hong

AYOUB ET AL.: JOURNAL OF AOAC INTERNATIONAL VOL. 85, NO. 6,

Screening of Pesticide Residues in Water by Sequential Stir Bar Sorptive Extraction-Thermal Desorption with GC/MS

Determination of Limonene Oxidation Products Using SPME and GC MS

Solid Phase Microextraction of Cyanogen Chloride and Other Volatile Organic Compounds in Drinking Water with Fast Analysis by GC-TOFMS

Headspace Hanging Drop Liquid Phase Microextraction and GC-MS for the Determination of Linalool from Evening Primrose Flowers

Determination of Volatile Aromatic Compounds in Soil by Manual SPME and Agilent 5975T LTM GC/MSD

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES

Vinyl chloride analysis with Solid Phase Microextraction (SPME)/GC/MS applied to analysis in materials and aqueous samples

천연산점토광물을이용한폐 - 유기염료제거

A Study on Dental Hygiene Students' Knowledge, Attitude and Behavior towards the Elderly in Busan

Surfactant Selection for the Enhanced Biological Degradation of Toluene

Determination of Size Distribution of Particles in Ground Water Using Flow Field-Flow Fractionation

Evaluation of Indoor Exposition to Benzene, Toluene, Ethylbenzene, Xylene, and Styrene by Passive Sampling with a Solid-Phase Microextraction Device

The Study for the Evaluation of the Method for 222 Rn in Water

Relationship between Ionic Conductivity and Composition of Li 2 O-ZrO 2 -SiO 2 Glasses Determined from Mixture Design. -SiO 2

Study of Residual Solvents in Various Matrices by Static Headspace

ENVIRONMENTAL analysis

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Chemical Analysis Problem

SOLID PHASE MICROEXTRACTION FOR TRACE ANALYSIS OF BENZENE IN ENVIRONMENTAL MONITORING

Solid-Phase Microextraction and Headspace Solid-Phase Microextraction for the Determination of Polychlorinated Biphenyls in Water Samples

Gas Chromatography (GC)

Selection of a Capillary

PA-DEP 3686, Rev. 1. Light Hydrocarbons in Aqueous Samples via Headspace and Gas Chromatography with Flame Ionization Detection (GC/FID)

Air Sampling and Analysis of Volatile Organic Compounds with Solid Phase Microextraction

Application. Gas Chromatography February Introduction

GC Application Note. Determination of C2-C12 aldehydes in water by SPME on-fiber derivatization.

Effect of Aging Treatment on Shape Memory and Fatigue Properties in Ni-rich Ti-Ni Alloy

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Determination of Off-Odor Compounds in Drinking Water Using an SPME Device with Gas Chromatography and Mass Spectrometry

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to En vi ron men tal Aqueous Samples INTRODUCTION

Identification of High School Students' Understanding on the Reaction Rate Change During Chemical Equilibrium Shift

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System

GC/MS Application Note

Application. Gas Chromatography March 1998

Selection of a Capillary GC Column

1,2-Dibromoethane (EDB) and 1,2-dibromo-3-chloropropane (DBCP), gas chromatography, microextraction

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note

Analysis of Pb, Cd and As in the Ambient Air of Residential Areas in the Vicinity of the Ulsan Industrial Complex

Roger Bardsley, Applications Chemist; Teledyne Tekmar Page 1

DETERMINATION OF GAMMA-HYDROXYBUTYRATE (GHB) BY HEADSPACE-GC/MS (FID) IN FORENSIC SAMPLES

Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor

Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States

Development of a solid-phase microextraction method for the determination of phthalic acid esters in water

COMPARISON OF DIFFERENT TYPES OF COATINGS IN HEADSPACE SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF PESTICIDE RESIDUES IN VEGETABLES AND FRUITS

Ch24. Gas Chromatography (GC)

Jeong-Ah Bang, Chui Im Choi, Wonho Choi, *, and Dae Hong Jeong*

Analysis on Variations of Energy Load for Applications of Double Skin Envelope Systems in Buildings

ChromTech options for PAL systems

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID

AppNote 7/2003. Coupling Retention Time Locked Methods and Libraries to Automated SPME or SBSE for Analysis of Flavors and Fragrances KEYWORDS

Method for the determination of dimethyl sulfate

-xt. -xt SYSTEM. Specifications for PAL-xt Systems. Valid for PAL-xt System models only. Prep and Load Platform

AppNote 7/2003. Coupling Retention Time Locked Methods and Libraries to Automated SPME or SBSE for Analysis of Flavors and Fragrances

Supporting Information

Calibration for On-Site Analysis of Hydrocarbons in Aqueous and Gaseous Samples Using Solid- Phase Microextraction

AppNote 1/2004. Use of a Mass Spectral Based Chemical Sensor to Discriminate Food and Beverage Samples: Olive Oils and Wine as Examples KEYWORDS

Secrets of GC Column Dimensions

Luminescence transitions. Fluorescence spectroscopy

Sportswear Purchase Decision Factors and Brand Preference among College Students

Encapsulated Recyclable Porous Materials: An Effective Moisture-

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010

From Student to Scholar A 30- year Journey of Transformation

Analysis of Geosmin and 2-Methylisoborneol Utilizing the Stratum PTC and Aquatek 70

Application Note. Abstract. Authors. Introduction

GCXGC-qMS with Total Flow Modulation for Volatile secondary metabolites analysis from organically-grown apples by HS-SPME

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Spring 2010 updated March 24 Determination of Aromatics in Gasoline by Gas Chromatography- Mass Spectrometry: Comparison of Grades and Brands

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Solid Phase Micro Extraction (SPME) of Opiates from Urine: Coupling SPME and DESI-MS/MS Detection

Determination of Benzene, Toluene, Ethylbenzene and Xylene in River Water by Solid-Phase Extraction and Gas Chromatography

Accurate Analysis of Fuel Ethers and Oxygenates in a Single Injection without Calibration Standards using GC- Polyarc/FID. Application Note.

역산이론을이용한연안수질모형의매개변수추정 Parameter Estimation of Coastal Water Quality Model Using the Inverse Theory

Electronic Supplementary Information (ESI)

Introduction to Capillary GC

THEORETICAL DETERMINATION OF THE SAMPLING RATES OF DIFFUSION SAMPLERS FOR VOCS AND ALDEHYDES

Simultaneous dual capillary column headspace GC with flame ionization confirmation and quantification according to USP <467> Application Note

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging

Development and Validation of GC-FID Method for the Quantification of N-Iodosuccinimide

Chiral characterization of monoterpenes present in the volatile fraction of Myrtus communis L. growing in Algeria

Volatile organic compounds (VOCs):

Dynamic headspace (DHS) technique: set-up and parameter control for GC/MS analysis of odorant formulations

FATTY ACID COMPOSITION, CHOLESTEROL-

Transcription:

w y wz 10«( 1y) 1~7, 2007 J. of the Korean Society for Environmental Analysis š (SPME) w NDMA(N-Nitrodimethylamine)» w y œw The Optimal Analytical Method of NDMA(N-Nitrodimethylamine) by Solid-Phase Microextraction Analysis (SPME) Soon-Woong Chang Dept. of Environmental Engineering, Kyonggi University, Suwon City, Korea Chlorine disinfection of secondary wastewater effluent and drinking water can result in the production of the potent carcinogen N-Nitrosodimethylamine(NDMA) at the lower concentration ranges. Because of increasing concern of presence of NDMA in water, effective analytical method to determine NDMA should be developed. In this study, we have investigated to determine optimal condition for the analysis of NDMA(N-Nitrosodimethylamine) and by-products using SPME technique with GC-FID. Four fibers were compared and PDMS/ DVB fiber was found to be the most sensitive when used direct-sampling. An absorption time of 30min and a desorption time of 5min provided to be the most sensitivity. The effects of experimental parameters such as the addition of salts, agitation, absorption time, composition on the analysis were investigated. Key words: SPME, GC/FID, NDMA, DMA, DMF 1. NDMA(N-Nitrosodimethylamine) ww š, š, w Trihalomethane (THM) { ƒw š. 1990 eù k t N- p yw NDMAƒ š, 1998 e s NDMAƒ NDMA» w. 1,2) x, e s k ƒƒ NDMA w 10 ng/l(10 ppt) 9 ng/l(9 ppt) ³ e w š, NDMA ³ w š wš. NDMA z, ³ w w NDMA w x. ù» t 2) p w k, w p» ey w w NDMA w» yw w., NDMA» w» ƒ ƒw š w. y kœ NDMA š. p, p w k(thm) w y» û ³ wš. w w NDMAƒ. w 39 w w, 27 NDMAƒ š, š 220 ng/l. To whom correspondence should be addressed. E-mail: swchang@kyonggi.ac.kr

2 w ùkü. e s ü e w w NDMA w w, 100 ng/l w š NDMAƒ» w. 2,3) ü 14 w w sw NDMA w w w NDMAƒ. w 0.6-45 µg/g š NDMA w wš. w, w ƒ NDMAƒ. ¾ ü NDMAƒ ƒ š ƒ. ù ü 4,5) NDMA l w w. ü w œ š ƒ w, w NDMA ù, ü NDMA w š. SPME(Solid Phase Micro-Extraction)» wš, w w w.» w y w» {»yw (VOCs) ù, w fiber sampling» w matrix l w w š. x y,,, w, w w w SPME { ƒ w w». 6-8) SPME holder fiber, holder fiber e w plungerƒ š k fiber e š g Z-slot. fiber w š (Stationary Phase) x e w. wš w fiber š Ì w w. Sample w bottle fiberƒ holder k bottle septum z Z-slot fiber w. fiber holder š bottle GC-Injector septum š w. Z-slot fiber š k k g carrier gas wì column k z fiber holder š (Fig. 1). p, NDMA x ƒ Table 1 2.63 10-7 atm m /mol û 3 { ù» Direct extraction w» w. Direct extraction Fiber w.» w Agitation v ù, Fiberù Vial, m Agitation ù Sonication mw k. Agitation w sx w Depletion zone w w j v w. w w ƒ w NDMA GC/MS GC-FID w ppb ƒ w SPME w t w. 2. x Agilent 6890N Gas Chromatography System w, y»(flame Ionization Detector, FID) w. HP-5 column(5% Phenyl Methyl Siloxane, Capillary, 50.0 m 200 µm 0.33 µm film) w š carrier gas 1 ml/min 99.999% nitrogen gas Table 1. Physicochemical properties of NDMA, DMA, and DMF property NDMA DMA DMF Molecular weight 74.0822 45.084 73.0944 Vapor pressure 2.7 mmhg 1520 mmhg 3.87 mmhg Solubility 1 10 6 mg/l 1.63 10 6 mg/l 1 10 6 mg/l Henry's constant 1.82 10-6 atm m 3/ mole 1.77 10-5 atm m 3/ mole 7.39 10-8 atm m 3/ mole

š (SPME) w NDMA(N-Nitrodimethylamine) 3 Fig. 1. Structure of SPME and process of adsorption and desorption using SPME. w, make-up gas 30 ml/min w. 280 o C,» 300 C o w, split ratio 2 w. oven» 40 C 1 w ƒ o 5 C/min o w 200 C 3 o w. SPME e Supelco (U.S.A.) SPME manual holder w, Supelco fiber w. x NDMA Sigma-Aldrich (U.S.A.) HPLC, 3 w. fiber k, w» w 100 ml amber serum bottle w yw 100 ml w teflon-silicon septa aluminum crimp cap w z direct-sampling w w. z» w» Coling Co.(Korea) PL-351x w, Sonication w Bransonic Co.(U.S.A.) 5210R-DTH w. w (salts) w r» w yw NaCl 30%(w/w) ƒw w. 3. š 3.1. Fiber fiber w» w SPME fiber PDMS/DVD, CAR/PDMS, PDMS kw xw, NDMA ƒ w 1 DMA, DMF 5 ppb~100 ppb y ww w. Table 2 fiber ùkü. w SPME fiber wš w» w» w gq š ƒ. w z sx Table 2. List of fibers used in the study Stationary Phase/ film thickness ph Max. temp. Rec. Operating temp. Applications PDMS 100 µm 2-10 280 o C 220-280 o C Volatiles PDMS 107 µm 2-11 340 o C 220-320 o C Nonpolar semivolatiles Nonpolar high molecular weight compounds Polyacrylate 85 µm 2-11 320 o C 220-310 o C Polar semivolatiles CAR/PDMS 75 µm 2-11 320 o C 250-310 o C Gases and low molecular weight compounds

4 š š (partition). sx w j»ù fiber Ì, fiber ̃ É sx w. ƒ ùkù, fiber š. ƒ j. jš ƒ û ƒ j, ƒ j s x w. Direct-sampling sx (agitating) j ù ƒ, ph, ww fiber k ƒ k. x 6,9) PDMS/DVB(65 µm) >CAR/PDMS(75µm) > PDMS(100 µm) (Fig. 2). 3.2. Fiber y Fig. 3 ùkü. Fig. 3 w 3ƒ fiber 30 z š, NDMAƒ ù ù kü. yw SPME š, w fiber sx. ù y k ƒ fiber ƒ k x ƒ y w. Fig. 3 ü k y w, w» Fig. 2. Effect of fiber on the adsorption. Fig. 3. Effect of extraction time from 0.5 to 60 min. w x y w» š w w v ƒ. PDMS/DVB(65 µm) ƒ ƒ CAR/PDMS (75 µm) PDMS(100 µm) û. y PDMS/DVB d w 50 ppb w w. ƒƒ 5, 10, 20, 30 60 w xw z 30 ùkû (Fig. 3). 3.3. k Fiber l k z. ƒ ƒw gq /» wš, gq w w. GC k ƒ j fiber» ƒ w, w» w k jš ƒ û column w x y k k w w. 150~250 o C fiber l k w. ù j yw x Supelco q gq 310 o C ƒ w k ƒ w. x GC 270 C o w, PDMS/DVB 250~310 o C

š (SPME) w NDMA(N-Nitrodimethylamine) 5 Fig. 4. Effect of desorption time from 0.5 to 30 min. ò w k w. x 270 C 5 40 k y o k y r. ƒ w ò û Fig. 4 k k y k 5 z y ùkû. 11) 3.4., Salt, Sonication w y k ƒ fiber ƒ k x, z ƒ. y k SPME» w» w š. 6,12) Headspace SPME ƒ œ ƒ g, j w ƒw. w, ƒ ò ƒ j ò ƒ û k. x 10~40 C¾ y k o r. ùkû, { ƒ (K h ) k fiber j. Headspace SPME headspace v w w. Headspace v fiber Fig. 5. Effect of vial volume from 1 to 100 ml. ƒ v y. w (50 µg/l) 120 ml bottle headspace v 50, 70, 90 ml wš, PDMS/DVB Fiber w 30 k 5 xw. Fig. 5 headspace vƒ NDMA ƒw ùk û. w y j z w x NaCl ƒ z w z r. ƒ ƒ w ùkü. ƒ w ƒ w» ƒ ƒw ƒ ƒw ƒ. x SPME z» w yùp 0, 10, 25, 30(w/vol %) y x w, yùp 550 C o 30 zy w w. ƒƒ 50 µg/l PDMS/DVB w w š, 30, k 5 ³ w x ww. ƒ ƒw w ƒw ùkû, yùp ƒ 30%ƒ w ùk û., y» z y. z w. Sonication sx 1 š w sx m 2~60. sx SPME sampling

6 ƒ. Microwave heating ƒ x w gq /». w x w y» fiber yƒ ùkû, sampling sonication w z x. ƒ bottle yw 50 µg/l ³ w w, 25% w 10 w. static < static+salt < stirred < stirred + salt ƒ ùkû, z w z ƒ ù. NDMA» y w w ƒ w z headspace y w fiber j. 3.5 k w. w kƒ yw, y w» w w x w. Fig. 6~7 ƒƒ w NDMA w w z. w single composition Fig. 6. Effect of single composition on the extraction. Fig. 7. Effect of multi composition on the extraction. multi composition ùkü x ƒƒ ƒ Inhibition j. j yw peak area w š. ù, DMA NDMAù DMF w wš j» x w j ù dw. SPME w fiber-pdms/ DVB, -30 min, k -5 min, vial volume-1.5 ml ƒ ùkü w. 4. PDMS/DVD Fiberƒ NDMA w ƒ, NDMAƒ z. 30 ùkû, k 5 ƒ z ùkþ, 10 z k y ƒ.» w NDMA ƒ w DMA DMF, ƒ NDMA»k ùkû. Sonication x NDMA»k w. yw w x w, NDMA yw w

š (SPME) w NDMA(N-Nitrodimethylamine) 7 z ùkû, DMF z ƒ., DMA yw NDMA w z. GC/FID w ppt w w ƒ ù, SPME w ppb ¾ ƒ w w w ü NDMA»k wš z ww š». 2005» w w ( ) w w. š x 1. J.Choi, R.L. Valetine, Wat. Res., 2002, 36(4), 817-824. 2. W.A. Mitch, D.L. Sedlak, Environ. Sci. Technol., 2004. 38(5), 1445-1454. 3. W.A. Mitch, D.L. Sedlak, D.L., Environ. Sci. Technol. 2002, 36(4), 588-595. 4. ½ x,, wy œwz, 2002, 24(4). 5.,, w,, w wz, 2003, 17(1). 6. ½k, wz ( ), 2000, 1515. 7. J. Pawliszyn., 1997, Wiley-VCH, 37. 8. L. Liberatore, G. Procida, N. d'alessandro and A. Cichelli, Food Chemistry, 2001, 73, 119-124. 9. J. Dron, R. Garcia and E. Millán, J. Chromatography. A, 2002, 963, 259-264 10. J. Ai., Anal. Chem., 1997, 69, 1230-1236. 11. F. Fang, C.S. Hong, S. Chu, W. Kou and A. Bucciferro, J. of Chromatography A, 2003, 1021(1-2), 157-164. 12. D. A. Cassada, Y. Zhang, D. D. Snow, and R. F. Spalding, Anal. Chem., 2000, 72, 4654-4658.