Application of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015

Similar documents
Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and

Chapter 8. Rotational Equilibrium and Rotational Dynamics

General Physics (PHY 2130)

Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

= o + t = ot + ½ t 2 = o + 2

Physics A - PHY 2048C

Chapter 12 Static Equilibrium

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration:

Chapter 8. Centripetal Force and The Law of Gravity

Rotational Kinetic Energy

CHAPTER 9 ROTATIONAL DYNAMICS

Rotational Motion and Torque

Physics 101 Lecture 11 Torque

Chapter 9. Rotational Dynamics

Chapter 7. Rotational Motion

Rotational Motion About a Fixed Axis

Physics 1A Lecture 10B

Chapter 9. Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)

Chapter 11 Rotational Dynamics and Static Equilibrium. Copyright 2010 Pearson Education, Inc.

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

P12 Torque Notes.notebook. March 26, Torques

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Rotational Kinematics and Dynamics. UCVTS AIT Physics

AP Physics 1 Rotational Motion Practice Test

Chapter 8 continued. Rotational Dynamics

Chapter 8 Lecture Notes

ROTATIONAL DYNAMICS AND STATIC EQUILIBRIUM

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

PHYSICS 149: Lecture 21

III. Work and Energy

Torque. Introduction. Torque. PHY torque - J. Hedberg

Angular Momentum L = I ω

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Chapter 8 continued. Rotational Dynamics

Rotational Equilibrium

Chapter 8 Rotational Motion and Equilibrium

We define angular displacement, θ, and angular velocity, ω. What's a radian?


Chapter 9. Rotational Dynamics

Angular Momentum L = I ω

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009

Chapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path.

Physics 201 Lab 9: Torque and the Center of Mass Dr. Timothy C. Black

Class XI Chapter 7- System of Particles and Rotational Motion Physics

Chapter 10. Rotation

Rotational Dynamics. A wrench floats weightlessly in space. It is subjected to two forces of equal and opposite magnitude: Will the wrench accelerate?

Chapter 11. Angular Momentum

Torque and Static Equilibrium

( )( ) ( )( ) Fall 2017 PHYS 131 Week 9 Recitation: Chapter 9: 5, 10, 12, 13, 31, 34

Rotational Motion What is the difference between translational and rotational motion? Translational motion.

Static Equilibrium and Torque

Chapter 9-10 Test Review

Rotation. I. Kinematics - Angular analogs

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 9- Static Equilibrium

Rotational Dynamics continued

Review for 3 rd Midterm

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Rotational Dynamics. Slide 2 / 34. Slide 1 / 34. Slide 4 / 34. Slide 3 / 34. Slide 6 / 34. Slide 5 / 34. Moment of Inertia. Parallel Axis Theorem

Torque and Rotational Equilibrium

Rotational N.2 nd Law

Unit 8 Notetaking Guide Torque and Rotational Motion

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size

Test 7 wersja angielska

Chapter 8 continued. Rotational Dynamics

Center of Gravity Pearson Education, Inc.

PSI AP Physics I Rotational Motion

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PSI AP Physics I Rotational Motion

Chapter 9. Rotational Dynamics

Rotational Motion. Chapter 8: Rotational Motion. Angular Position. Rotational Motion. Ranking: Rolling Cups 9/21/12

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Chap. 10: Rotational Motion

Chapter 9 Rotational Dynamics

Chapter 8. Rotational Motion

Torque and Rotation Lecture 7

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

LECTURE 22 EQUILIBRIUM. Instructor: Kazumi Tolich

Kinetic Energy of Rolling

Dynamics of Rotational Motion

Ch 8. Rotational Dynamics

Physics 8 Wednesday, October 25, 2017

Chapter 8 Rotational Motion

Exam 3 Practice Solutions

Transcription:

Raymond A. Serway Chris Vuille Chapter Eight Rotational Equilibrium and Rotational Dynamics Application of Forces The point of application of a force is important This was ignored in treating objects as point particles The concepts of rotational equilibrium and rotational dynamics are important in many fields of study Angular momentum may be conserved Angular momentum may be changed by exerting a torque Introduction Force vs. Torque Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related The door is free to rotate about an axis through O There are three factors that determine the effectiveness of the force in opening the door: The magnitude of the force The position of the application of the force The angle at which the force is applied Torque, cont Torque,, is the tendency of a force to rotate an object about some axis = r F is the torque Symbol is the Greek tau r is the length of the position vector F is the force SI unit is Newton. meter (N. m) Direction of Torque Torque is a vector quantity The direction is perpendicular to the plane determined by the position vector and the force If the turning tendency of the force is counterclockwise, the torque will be positive If the turning tendency is clockwise, the torque will be negative 1

Multiple Torques When two or more torques are acting on an object, the torques are added As vectors If the net torque is zero, the object s rate of rotation doesn t change General Definition of Torque The applied force is not always perpendicular to the position vector The component of the force perpendicular to the object will cause it to rotate General Definition of Torque, cont When the force is parallel to the position vector, no rotation occurs When the force is at some angle, the perpendicular component causes the rotation General Definition of Torque, final Taking the angle into account leads to a more general definition of torque: r F sin r is the position vector F is the force is the angle between the force and the position vector Lever Arm Torque and Axis The lever arm, d, is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force d = r sin This also gives = r F sin The value of the torque depends on the chosen axis of rotation Torques can be computed around any axis There doesn t have to be a physical rotation axis present Once a point is chosen, it must be used consistently throughout a given problem 2

Point the fingers in the direction of the position vector Curl the fingers toward the force vector The thumb points in the direction of the torque Right Hand Rule Net Torque The net torque is the sum of all the torques produced by all the forces Remember to account for the direction of the tendency for rotation Counterclockwise torques are positive Clockwise torques are negative Section 8.2 Torque and Equilibrium First Condition of Equilibrium The net external force must be zero Selecting an Axis It s usually best to choose an axis that will make at least one torque equal to zero This will simplify the torque equation This is a statement of translational equilibrium The Second Condition of Equilibrium states The net external torque must be zero This is a statement of rotational equilibrium Section 8.2 Section 8.2 Equilibrium Example The woman, mass m, sits on the left end of the see saw The man, mass M, sits where the see saw will be balanced Apply the Second Condition of Equilibrium and solve for the unknown distance, x Center of Gravity The force of gravity acting on an object must be considered In finding the torque produced by the force of gravity, all of the weight of the object can be considered to be concentrated at a single point Section 8.2 3

Calculating the Center of Gravity The object is divided up into a large number of very small particles of weight (mg) Each particle will have a set of coordinates indicating its location (x,y) Calculating the Center of Gravity, cont. We assume the object is free to rotate about its center The torque produced by each particle about the axis of rotation is equal to its weight times its lever arm For example, m 1 g x 1 Calculating the Center of Gravity, cont. We wish to locate the point of application of the single force whose magnitude is equal to the weight of the object, and whose effect on the rotation is the same as all the individual particles. This point is called the center of gravity of the object Coordinates of the Center of Gravity The coordinates of the center of gravity can be found from the sum of the torques acting on the individual particles being set equal to the torque produced by the weight of the object Center of Gravity and Center of Mass The three equations giving the coordinates of the center of gravity of an object are identical to the equations giving the coordinates of the center of mass of the object The center of gravity and the center of mass of the object are the same if the value of g does not vary significantly over the object Center of Gravity of a Uniform Object The center of gravity of a homogenous, symmetric body must lie on the axis of symmetry Often, the center of gravity of such an object is the geometric center of the object 4

Experimentally Determining the Center of Gravity The wrench is hung freely from two different pivots The intersection of the lines indicates the center of gravity A rigid object can be balanced by a single force equal in magnitude to its weight as long as the force is acting upward through the object s center of gravity Notes About Equilibrium A zero net torque does not mean the absence of rotational motion An object that rotates at uniform angular velocity can be under the influence of a zero net torque This is analogous to the translational situation where a zero net force does not mean the object is not in motion Solving Equilibrium Problems Diagram the system Include coordinates and choose a convenient rotation axis Draw a free body diagram showing all the external forces acting on the object For systems containing more than one object, draw a separate free body diagram for each object Problem Solving, cont. Apply the Second Condition of Equilibrium This will yield a single equation, often with one unknown which can be solved immediately Apply the First Condition of Equilibrium This will give you two more equations Solve the resulting simultaneous equations for all of the unknowns Solving by substitution is generally easiest Example of a Free Body Diagram (Forearm) Isolate the object to be analyzed Draw the free body diagram for that object Include all the external forces acting on the object 5

Example of a Free Body Diagram (Ladder) The free body diagram shows the normal force and the force of static friction acting on the ladder at the ground The last diagram shows the lever arms for the forces Example of a Free Body Diagram (Beam) The free body diagram includes the directions of the forces The weights act through the centers of gravity of their objects Torque and Angular Acceleration When a rigid object is subject to a net torque (Στ 0), it undergoes an angular accelera on The angular acceleration is directly proportional to the net torque The rela onship is analogous to F = ma Newton s Second Law Moment of Inertia The angular acceleration is inversely proportional to the analogy of the mass in a rotating system This mass analog is called the moment of inertia, I, of the object SI units are kg m 2 Newton s Second Law for a Rotating Object The angular acceleration is directly proportional to the net torque The angular acceleration is inversely proportional to the moment of inertia of the object More About Moment of Inertia There is a major difference between moment of inertia and mass: the moment of inertia depends on the quantity of matter and its distribution in the rigid object The moment of inertia also depends upon the location of the axis of rotation 6

Moment of Inertia of a Uniform Ring Other Moments of Inertia Imagine the hoop is divided into a number of small segments, m 1 These segments are equidistant from the axis Example, Newton s Second Law for Rotation Draw free body diagrams of each object Only the cylinder is rotating, so apply = I The bucket is falling, but not rotating, so apply F = m a Remember that a = r and solve the resulting equations Rotational Kinetic Energy An object rotating about some axis with an angular speed, ω, has rotational kinetic energy KE r = ½Iω 2 Energy concepts can be useful for simplifying the analysis of rotational motion Conservation of Energy Conservation of Mechanical Energy Remember, this is for conservative forces, no dissipative forces such as friction can be present Potential energies of any other conservative forces could be added Work Energy in a Rotating System In the case where there are dissipative forces such as friction, use the generalized Work Energy Theorem instead of Conservation of Energy W nc = KE t + KE r + PE 7

Problem Solving Hints for Energy Methods Choose two points of interest One where all the necessary information is given The other where information is desired Identify the conservative and nonconservative forces Problem Solving Hints for Energy Methods, cont Write the general equation for the Work Energy theorem if there are nonconservative forces Use Conservation of Energy if there are no nonconservative forces Use v = r to eliminate either or v from the equation Solve for the unknown Angular Momentum Similarly to the relationship between force and momentum in a linear system, we can show the relationship between torque and angular momentum Angular momentum is defined as L = I ω Angular Momentum, cont If the net torque is zero, the angular momentum remains constant Conservation of Angular Momentum states: Let L i and L f be the angular momenta of a system at two different times, and suppose there is no net external torque so Σ τ = 0, then angular momentum is said to be conserved and Conservation of Angular Momentum Mathematically, when Applies to macroscopic objects as well as atoms and molecules Conservation of Angular Momentum, Example With hands and feet drawn closer to the body, the skater s angular speed increases L is conserved, I decreases, increases 8

Conservation of Angular Momentum, Example, cont Coming out of the spin, arms and legs are extended and rotation is slowed L is conserved, I increases, decreases Conservation of Angular Moment, Astronomy Example Crab Nebula, result of supernova Center is a neutron star As the star s moment of inertia decreases, its rotational speed increases 9