Acceleration and Transport of Galactic Cosmic Rays

Similar documents
Revue sur le rayonnement cosmique

Origin of cosmic rays

Diffusive shock acceleration with regular electric fields

Cosmic ray escape from supernova remnants

Seeing the moon shadow in CRs

Production of Secondary Cosmic Rays in Supernova Remnants

GeV-TeV Galactic Cosmic Rays (GCRs)

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES

Evidence of Stochastic Acceleration of Secondary. Antiprotons by Supernova Remnants! Ilias Cholis, 08/09/2017

Gamma ray emission from supernova remnant/molecular cloud associations

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Cosmic Rays, Photons and Neutrinos

a cosmic- ray propagation and gamma-ray code

Cosmic Pevatrons in the Galaxy

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

Questions 1pc = 3 ly = km

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

Open questions with ultra-high energy cosmic rays

Antimatter from Supernova Remnants

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

Antimatter spectra from a time-dependent modeling of supernova remnants

The role of ionization in the shock acceleration theory

arxiv: v1 [astro-ph] 17 Nov 2008

Effect of the Regular Galactic Magnetic Field on the Propagation of Galactic Cosmic Rays in the Galaxy

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Supernova Remnants and Cosmic. Rays

Cosmic-ray Acceleration and Current-Driven Instabilities

Origin of Galactic Cosmic Rays: Sources, Acceleration, and Propagation

Charged Cosmic Rays and Neutrinos

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

Interpretation of cosmic ray spectrum above the knee measured by the Tunka-133 experiment

Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, A02103, doi: /2008ja013689, 2009

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Subir Sarkar

Cosmic rays in the local interstellar medium

Particle Acceleration at Supernova Remnants and Supernovae

Dark Matter in the Universe

Cosmic rays and relativistic shock acceleration

TeV Cosmic Ray Anisotropies at Various Angular Scales

Acceleration Mechanisms Part I

High-energy cosmic rays

Cosmic Ray Astronomy. Qingling Ni

The High-Energy Interstellar Medium

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

High energy radiation from molecular clouds (illuminated by a supernova remnant

Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR

arxiv: v1 [astro-ph] 29 Jan 2008

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

Particle Acceleration Mechanisms in Astrophysics

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

arxiv: v1 [astro-ph.he] 18 Aug 2009

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

UHECR: Acceleration and Propagation

COSMIC RAY ACCELERATION

Propagation of TeV PeV Cosmic Rays in the Galactic Magnetic Field

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong.

Cosmic Rays 1. Introduction

Spectra of Cosmic Rays

Ultra High Energy Cosmic Rays I

On the GCR/EGCR transition and UHECR origin

Direct Measurements, Acceleration and Propagation of Cosmic Rays

Cosmic Rays in large air-shower detectors. Lecture 1: Introduction to cosmic rays Lecture 2: Current status & future

arxiv: v1 [astro-ph.he] 19 Apr 2017

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

Low-Energy Cosmic Rays

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

White dwarf pulsar as Possible Cosmic Ray Electron-Positron Factories

Galactic cosmic rays phenomenology: nuclei, antimatter, dark matter

Cosmic-ray energy spectrum around the knee

Cosmic Rays & Galactic Winds

Cosmic ray electrons from here and there (the Galactic scale)

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

PULSAR WIND NEBULAE AS COSMIC ACCELERATORS. Elena Amato INAF-Osservatorio Astrofisico di Arcetri

Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland. Cosmic Rays Eun-Suk Seo

arxiv: v2 [astro-ph.he] 27 Jul 2010

Radio Observations of TeV and GeV emitting Supernova Remnants

W.R. Webber. New Mexico State University, Astronomy Department, Las Cruces, NM 88003, USA

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

Troy A. Porter Stanford University

New Calculation of Cosmic-Ray Antiproton and Positron Flux

Neutrino Flavor Ratios as a Probe of Cosmic Ray Accelerators( 予定 ) Norita Kawanaka (UTokyo) Kunihito Ioka (KEK, Sokendai)

High and low energy puzzles in the AMS-02 positron fraction results

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

From the Knee to the toes: The challenge of cosmic-ray composition

Cosmic Rays: high/low energy connections

UHECR from Pulsars/Magnetars based on An Auroral Accelerator Model for Gamma Ray Pulsars

arxiv: v1 [astro-ph.he] 24 Jul 2013

Collisionless Shocks and Particle Acceleration

Strict constrains on cosmic ray propagation and abundances. Aaron Vincent IPPP Durham

Cosmic Rays & Magnetic Fields

A few grams of matter in a bright world

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley)

Transcription:

Acceleration and Transport of Galactic Cosmic Rays Vladimir Ptuskin IZMIRAN, Moscow, Russia AMS days at CERN, April 15-17, 2015

CR spectrum at Earth GRB AGN interacting galaxies ultrafast pulsar E -2.7 cosmic ray halo, Galactic wind cosmological shocks Fermi bubble JxE 2 10 9 ev 10 20 ev LHC extragalactic 1/km 2 /century Sun pulsar, PWN SNR WMAP haze GC stellar wind close binary Galactic disk N cr = 10-10 cm -3 - total number density in the Galaxy w cr = 1.5 ev/cm 3 - energy density E max = 3x10 20 ev - max. detected energy Q cr = 10 41 erg/s power of Galactic CR sources A 1 ~ 10-3 dipole anisotropy at 1 100 TeV r g ~ 1 E/(Z 3 10 15 ev) pc - Larmor radius at B=3x10-6 G

Voyager 1 at the edge of interstellar space launched in 1977, 70 kb, 22 w 10 3 direct measurements of interstellar CR spectra at low energies 10 2 after E. Stone 2013 particle /(m 2 sec sr MeV/nuc) 10 1 10 0 10-1 10-2 10-3 10-4 He low energies: Voyager 1 Stone et al. 2013 high energies: BESS Pamela Sparvoli et al 2012 H 10-5 10 0 10 1 10 2 10 3 10 4 10 5 energy, MeV/nuc

cosmic ray intensity E -2.7 E -2.2 E -0.5 J cr (E) = Q cr (E) T e (E) source power escape time of CR from the Galaxy; ~ 10 8 yr at 1 GeV M51 ~ 15% of SN kinetic energy transfer to cosmic rays Ginzburg & Syrovatsky 1964 ν sn =(30 yr) -1 after Moskalenko traversed matter thickness (escape length) X e = m<n ism >T e ~ 12 g/cm 2 at 1 GeV/nuc (surface gas density of galactic disk ~ 2.5 10-3 g/cm 2 )

NGC4631 basic empirical diffusion model Ginzburg & Ptuskin 1976, Berezinskii et al. 1990, Strong & Moskalenko 1998 (GALPROP), Donato et al 2002, Ptuskin et al. 2006, Strong et al. 2007, Vladimirov et al. 2010, Bernardo et al. 2010, Maurin et al 2010, Putze et al 2010, Trotta et al 2011 H = 4 kpc, R = 20 kpc empirical diffusion coefficient D 28 2 ~ 310 cm / s at 1 GeV/n diffusion mean free path escape length l 1 pc X vh 2D e

diffusion-convection transport equation for cosmic rays Ginzburg & Syrovatsky 1964, Skilling 1975, Berezinskii et al. 1990 (loaded in GALPROP code) fi u f i 1 2 fi Difi ufi p p K 2 i t 3 p p p p 1 spatial diffusion advection stochastic acceleration dp f v. 2 i 2 p fin i fi qi Sij p p dt iion, i ji f( t, r, p) - phase-space density (isotropic part); N t dpp f ionization energy loss fragmentation radioactive decay 2 cr (, r) 4 - total cosmic-ray number density; N t E p f p 2 cr (, r, kin) 4 ( ) / v - spectrum on kinetic energy; 2 Jt (, r, E) 4 pf( p) - cosmic ray intensity. source contribution of fragmentations and decays

r g = 1/k - resonance condition spectrum of turbulence mechanism of cosmic ray diffusion 2 res D vr 3 g B = w(k)dk k res B B 2 tot 2 res Jokipii 1966, cosmic ray particles are strongly magnetized but large-scale random magnetic field (L max ~ 100 pc) makes diffusion close to isotropic

interstellar turbulence Armstrong et al 1995 10 17 ev 10 9 ev Kolmogorov-type spectrum L max 100 pc, B 3 G, A ( B/ B) 1, L L 27 1/3 p 2 17 D 410 cm /s, E 10 Z ev Z GV Kraichnan type spectrum A L p 0.3, D Z 1/2 w(k) ~ k -5/3 k -3/2 Kolmogorov Kraichnan Lin et al. 2015

flat component of secondary nuclei produced by strong SNR shocks Wandel et al. 1987, Berezhko et al. 2003 production by primaries inside SNRs grammage gained in SNR N N 2,flat 2,stand ~ X X SNR ISM ~ 0.02 reacceleration in ISM by strong shocks N N 2,flat 2,stand X ~ ISM fsnr XSNR ~ 0.2 grammage gained in interstellar gas Berezhko et al. 2003 RUNJOB 2003 preliminary volume filling factor of SNRs standard plain diff. reacceleration plain diff. reacceleration n ism = 0.003 1 cm -3 Bohm diffusion T SNR = 10 5 yr

regimes of cosmic ray diffusion Kolmogorov spectrum: D ~ vr 1/3 + reacceleration - may be valid up to 10 17 Z ev -source spectrum R -2.4 at high energies too soft to be produced in SNRs? (dispersion of SNR parameters may help); considerable flattening at < 3 GV - anisotropy acceptable - peak of B/C ratio at 1 GeV/n explained by distributed reacceleration - underpredicts antiproton flux below few GeV - in contradiction with theory of MHD turbulence (Alfven wave distribution in k-space) Kraichnan spectrum: D ~ vr 1/2 + wave damping - may be valid up to 10 16 Z ev only -source spectrum R -2.2 consistent with shock acceleration in SNRs - anisotropy too high - peak of B/C ratio at 1 GeV/n qualitatively explained by turbulence dissipation on CR - not in contradiction with theory of MHD turbulence (fast magnetosonic waves)

diffusion-convection model: galactic wind driven by CR H ef (p/z) u inf = 500km/s R sh = 300 kpc Ipavich 1975, Breitschwerdt et al. 1991, 1993, Everett et al.2008, 2010, Salem & Bryen 2014 CR scale height is larger then the scale height of thermal gas. CR pressure gradient drives the wind. + cosmic ray streaming instability with nonlinear saturation Zirakashvili et al. 1996, 2002, 2005, VP et al. 1997, 2000, D 1 1.1 s vb p p q cr Zmpc Zmpc 27 2 ~ 10 cm / s, (3 1) / 2 2.7, at 2.1 s s X s 1 2 H ef p p ~ ~ ~ D Zmpc Z 0.55

u sh SNR shock diffusive shock acceleration Fermi 1949, Krymsky 1977, Bell 1978, -γ s σ +2 J~p, γ s = = 2 σ -1 compression ratio = 4 for test particles! ushr sh >10 D(p) -condition of CR acceleration and confinement -D(р) should be anomalously small both upstream and downstream; CR streaming creates turbulence in shock precursor Bell 1978; Lagage & Cesarsky 1983; McKenzie & Vőlk 1982 Bohm limit D B =vr g /3: ush Emax 0.3Ze BR c E max,ism =10 13 10 14 Z ev ~ B sh t -1/5 at Sedov stage sh for B ism = 5 10-6 G

more detailed investigation: - streaming instability gives B >> B ism in young SNR Bell & Lucek 2000, Bell 2004, Pelletier et al 2006; Amato & Blasi 2006; Zirakashvili & VP 2008; Vladimirov et al 2009; Gargate & Spitkovsky 2011, Bell 2013, Caprioli & Spitkovsky 2014 from Caprioly 2012 confirmed by X-ray observations B 2 /8π = 0.035 ρu 2 /2 Voelk et al. 2005 under extreme conditions (e.g. SN1998 bw): E max ~ 10 17 ZeV, B max ~ 10-3 G -wave dissipation in shock precursor leads to rapid decrease of E max with time VP & VZ 2003 Jxp 2 - finite V a leads to steeper CR spectrum u u V 1 a,1 V 2 a,2 t = 10 3 yr Alfv. drift downstream

effect of cosmic ray pressure 2 P ξ ρu, ξ 0.5 cr cr sh cr - back reaction of cosmic-ray pressure modifies the shock and produces concave particle spectrum Axford 1977, 1981; Eichler 1984; Berezhko et al. 1996, Malkov et al. 2000; Blasi 2005 σ 2.5 sub approximate modified spectrum N (E ) E -2 cr kin kin - Eichler spectrum

equations for numerical modeling Zirakashvili & VP 2008-2012,

particle acceleration and radiation in SNR Berezhko et al. 1994-2006, Kang & Jones 2006 Zirakashvili & VP 2006-2012, semianalytic models Blasi et al.(2005), Ellison et al. (2010) ) Zirakashvili & VP 2012 Zirakashvili et al 2014 Cas A radio polarization in red (VLA), X-rays in green (CHANDRA), optical in blue (HST)

cosmic ray spectrum injected in ISM during SNR life time VP, Zirakashvili, Seo 2010 - Bohm diffusion in amplified magnetic field B 2 /8π = 0.035 ρu 2 /2 ( Voelk et al. 2005 empirical; Bell 2004, Zirakashvili & VP 2008 theoretical) JxE 2 - account for Alfvenic drift w = u + V a upstream and downstream - relative SNR rates: SN Ia : IIP : Ib/c : IIb = 0.32 : 0.44 : 0.22 : 0.02 Chevalier 2004, Leaman 2008, Smart et al 2009 protons only E -3 «knee» is formed at the beginning of Sedov stage E Z=1.1 10 W n M ev, 15 1/6-2/ 3 knee sn,51 ej 15-1 knee sn,51-5 w,6 ej E Z=8.4 10 W M u M ev

calculated spectrum of Galactic cosmic rays pc JxE 2.75 (normalized at 10 3 GeV; ISM diffusion D Ze ) VP, Zirakashvili, Seo 2010 0.54 solar modulation interstellar spectrum of all particles extragalactic component data from HEAO 3, AMS, BESS TeV, ATIC 2, TRACER experiments data from ATIC 1/2, Sokol, JACEE, Tibet, HEGRA, Tunka, KASCADE, HiRes and Auger experiments

features to explain: hardening above 200 GeV/nucleon superposition of sources Vladimirov et al 2012 new source Zatsepin & Sokolskaya 2006 reacceleration in local bubble Erlykin & Wolfendale 2011 streeming instability below 200 GV Blasi et al. 2012 spectra of p and He are different shock goes through material enriched in He: -helium wind VP et al. 2010, - bubble Ohira & Ioka 2011 effect of injection Malkov et al 2011 JxE 2.7 possible explanation of both features: concave spectrum and contribution of reversed SNR shock VP et al 2013

collection of data Mitchell 2013 positrons in cosmic rays AMS, 2014 electrons positrons

- pulasar/pwn origin Harding, Ramaty 1987, Aharonian et al. 1995, Hooper et al. 2008, Malyshev et al. 2009, Blasi, Amato 2011, Di Mauro et al. 2014 - e+ production and acceleration in shell SNRs Blasi 2009, Mertsch & Sarkar 2014 - reverse shock in radioactive ejecta Ellison et al 1990, Zirakashvili, Aharonian 2011 - annihilation and decay of dark matter Tylka 1989, Fan et al 2011 electrons positrons anti-matter factory electrons + positrons positron fraction L pairs = 20-30% L psr Di Mauro et al 2014: SNR (electrons), PWN (electrons + positrons), secondary leptons from ISM after Amato

structure above the knee JxE 3 p,he knee 2nd knee knee at 3 PeV (light primaries), hardening at 20 PeV (medium component), 2 nd knee at 300 PeV Prosin et al 2013 Sveshnikova et al 2014: composition at 1PeV: H 17%, He 46%, CNO 8%, Fe 16% + EG component H 75%, He 25% as in Kotera & Lemoine 2008

JxE 2.7 CNO,Si,Fe p,he Iron knee at 8*10 16 ev = 26*3*10 15 ev TUNKA KASCADE-G CNO,Si,Fe light ankle at 1.2*10 17 ev - transition to EG component or onset of a new high energy Galactic source population p,he

other Galactic accelerators at ultra-high energies reacceleration by multiple shocks SNR OB association u=3 10 3 km/s B=10-5 G R=30 pc SNR SNR R u f ~ 1/p 3 t a ~ R/(F sh u) at D i < ur ~ D/(F sh u 2 ) at D i > ur E max ~ 10 17 Z ev Bykov & Toptygin 1990, 2001, Klepach et al. 2000 newly-born pulsars with ultrarelativistic wind E ~ 10 19 Z B 13 (Ω/3000 rad/s) 2 ev Blasi et al. 2000, Arons 2003, Fang et al. 2013,

Fermi bubbles Su et al 2010 gamma-ray emission E ph = 1 100 GeV, 4x10 37 erg/s J e ~ E -2 gamma rays, X-rays, radio, WMAP Haze

Galactic wind u SNR R acceleration at termination shock Jokipii & Morfill 1985, 1991 Zirakashvili & Völk 2004 R = 300 kpc, u = 400 km/s E max = 10 18 Z ev galactic disk

Kulikov & Kristiansen 1958 GZK suppression? from Beatty et al 2013

Conclusions Cosmic ray origin scenario where supernova remnants serve as principle accelerators of cosmic rays in the Galaxy is strongly confirmed by numerical simulations. SNRs can provide cosmic ray acceleration up to 5x10 18 ev. PWN may be responsible for observed flux of cosmic ray positrons. Diffusion provides reasonably good description of cosmic ray propagation in the Galaxy even under simple assumptions on cosmic ray transport coefficients and geometry of propagation region (e.g. as loaded in GALPROP code).